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Abstract 

This paper suggests a new quality measure of an image, 
pertaining to its contrast. Several contrast measures exist in the 
current research. However, due to the abundance of Image 
Processing software solutions, the perceived (or measured) image 
contrast can be misleading, as the contrast may be significantly 
enhanced by applying grayscale transformations. Therefore, the 
real challenge, which was not dealt with in the previous literature, 
is measuring the contrast of an image taking into account all 
possible grayscale transformations, leading to the best “potential” 
contrast. Hence, we suggest an alternative “Potential Contrast” 
measure, based on sampled populations of foreground and 
background pixels (e.g. scribbles or saliency-based criteria). An 
exact and efficient implementation of this measure is found 
analytically. The new methodology is tested and is shown to be 
invariant to invertible grayscale transformations. 

Introduction 
Establishing the contrast of an image is a well-studied 

problem in the fields of Optics and Image Processing. Several 
measures have been proposed, for that purpose, in the past. Among 
these are the contrast measures of Weber [1], Michelson [1, 2], 
root-mean-square contrast and its enhancements [3,4], CMI [5-8], 
as well as measures based on frequency domain analysis [1,9], 
wavelet transforms [9,10] and edge detection [11,12]. 

However, the problem is complicated by the immense set of 
transformations which can be applied to the image, potentially 
improving its contrast. Given a proliferation of the available Image 
Processing software solutions, applying such enhancements is 
almost indispensable. Therefore, the real challenge, which was not 
dealt with in the previous literature, is measuring the contrast of an 
image taking into account all its possible transformations. In this 
article, we will limit ourselves to the wide range of grayscale 
transformations. 

Prior Art 
Various algorithms were designed to give an objective 

contrast measure that correlates with human assessment. In what 
follows, we consider grayscale images of the form 

     : 1, 1, 0,255I L M   (unless stated otherwise, throughout 

the article, the intervals are assumed to be subsets of integers). We 
review several popular contrast measures, stating their relative 
shortcomings. 

A simple way of measuring a bi-population image contrast is 
calculating the ratio between foreground and background: 

 : /B FSimpleContrast    (1) 

where B  and F  are the averages of the sampled background 

and foreground luminance values, respectively. 
 A more commonly used measure (closely related to 
SimpleContrast ) is Weber's contrast ratio [1] defined as: 
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Another prominent contrast ratio measure is given by 

Michelson [1, 2]: 
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where maxI  and minI  are the maximal and minimal luminance 

values of the entire image, respectively. This definition can be 
adapted to the case of bi-population images as follows: 
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 The ratios (1), (2) and (4) result in different values for a single 
image. Nevertheless, given a set of images, the ordering based 
upon them will be identical. This can be verified via algebraic 
manipulations. 

A different statistical approach is the root-mean-square 
contrast [3]: 
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where ( , ) [0,1]I l m   is a normalized gray level and 
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  . Another, closely related statistical-based 

measure is suggested by [4]. 
 A very simple, yet valuable contrast measure, developed and 

utilized in [5-8] for the purpose of historical document analysis, is 
the CMI index: 

 : B FCMI     (6) 

This measure will play an important role in the current paper.  
Some additional approaches are based on frequency domain 

analysis (e.g. [1,9]), wavelet transforms (e.g. [9,10]) and edge 
detection (e.g. [11,12], that also deal with contrast improvements). 
 

Popular image enhancements bear the potential of improving 
the image quality. These include brightening and darkening, 
histogram stretching and equalization - all performed by grayscale 
transformations. Unfortunately, all of the above mentioned 
measures are affected, to some extent, by such transformations. For 
instance, the Weber and Michelson ratios are not invariant to 
grayscale shifts, the CMI is not invariant to grayscale rescalings, 
while all the measures are not invariant to histogram equalizations. 
This aspect is demonstrated in Fig. 1 and Table I. The RMS seems 
relatively stable with respect to most of the grayscale 
transformations. Unfortunately, although its definition represents 
the standard deviation of the image, which is an important statistic, 
it does not quantify the quality of separation between foreground 
and background. 
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 (a) (b) 

 
 (c) (d) 
Figure 1. Example of images undergoing grayscale transformations. 
(a) original image with sampled foreground (in red) and background (in blue). 
(b) the image after brightness change (+70) (c) the image after histogram 
rescaling (x1.3) (d) the image after histogram equalization. 
 

Table I: Contrast Measures Comparison Based On Fig. 1 

Image Weber Michelson RMS CMI 
(a) Original I  0.535 0.365 1.42x10-4 90.6 
(b) Brightened 70I   0.378 0.233 1.42x10-4 90.6 
(c) Rescaled 1.3I   0.536 0.366 1.43x10-4 117.7 
(d) Equalized ( )eq I  0.33 0.197 1.27x10-4 72.1 
 

Problem Setting 
Given a contrast measure m , and an image I , the task is 

finding a grayscale transformations     : 0,255 0,255g G    

maximizing ( )m g I . At first glance, this may seem as a 
computational-intensive undertaking, since the set of 

transformations of a given image is immense (
log222

B B

 for images 
of bit-depth B ). The main contribution of this paper is a 
constructive procedure for finding the optimal transformation g

analytically, for a particular measure m . This would lead to a 
definition of a new, “potential” contrast measure, possessing the 
following properties: 

 

1. Quantifying the difference between foreground and 
background pixels (i.e. the measure is a meaningful one). 

2. Images will be judged according to their potential for 
improvements via all possible grayscale transformations (i.e. 
the measure is “aware” of the possibility to perform image 
enhancements such as brightening, rescaling and equalizing 
its grayscale levels). 

3. In particular, the measure ought to be invariant to invertible 
grayscale transformations (as the inherent information of the 
image is preserved and the potential for image improvement 
after such transformation is maintained). 

Measure Definition 

Definition of Potential Contrast 
In order to deal with this problem analytically, we restrict 

ourselves to the CMI measure defined in Eq. 6,  m CMI . 
Furthermore, we deal with a case of sampled histograms 
(“populations”) of foreground and background pixels, as is 

observed in Fig 1a. These are respectively denoted as  255

0
( )F t

p t


 

and  255

0
( )B t

p t


  (satisfying 0 ( ) 1Fp t  ,  0 ( ) 1Bp t   and  

255 255

0 0

( ) ( ) 1F B
t t

p t p t
 

   ). 

 We begin with finding the maximal ( )CMI g I  for an image 

I , with the wealth of optional grayscale transformations g , 
proceeding with the definition of a new measure. 
 
Proposition I (optimality): 

 For a given image I , with sampled populations  255

0
( )F t

p t


 

and  255

0
( )B t

p t


 (as denoted above), the optimal grayscale 

transformation with respect to the CMI measure is: 

 
0 ( ) ( )

( ) : arg max ( )
255 ( ) ( )

F Bopt
I

g G F B

p t p t
g t CMI g I

p t p t


   

  (7) 

Proof: 

 
255 255 255

0 0 0

255 255

0, 0,
( ) ( ) ( ) ( )

255 255

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

255 [ ( ) ( )] 0 [ ( ) ( )]

( ) ( ) ( ) ( ) ( )

B F B F

B F B F
t t t

B F B F
t t

p t p t p t p t

opt opt opt
I B I F I

t t

CMI g I g t p t g t p t g t p t p t

p t p t p t p t

g t p t g t p t CMI g I

  

 
 

 

    

      

  

  

 

 





 

■ 
Definition: The Potential Contrast (PC) of an image is: 

 ( ) : ( )opt
IPC I CMI g I   (8) 

Remarks: 
1. Due to its nature, the PC measure reflects the innate image 

quality, not necessarily compatible with immediate human 
impression. Consider a pair of images created from the same 
source (Fig. 1a), one with added Gaussian noise (Fig. 2a), 
while the other brightened to some extent (Fig. 2b). Although 
the former may be viewed as more contrasted, in fact the 
latter has considerably higher Potential Contrast (PC=206.28 
vs. PC=255.0). This is due to the fact that it possesses the 
same information as the original image, unlike the image with 
Gaussian noise. 
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 (a) (b) 
Figure 2. An example of misleading naked eye: Two images stemming from 
the same source, with the same sampled populations (Fig. 1a). (a) added 
Gaussian noise of μ=0, σ=32, PC=206.28 (b) narrowing the dynamic range 
and brightening (pixel_value/4+200), PC=255.00. 
 
2. Foreground and background selection can be performed in 

numerous ways. These choices represent diverse, often 
incompatible, needs of human operators. For example, in Fig. 
3, what are the expected foreground and background? Are 
they respectively the kettle and the chair? Or maybe the 
writing and the whiteboard? 

 

 
 
Figure 3. Example of ambiguous foreground and background. While it is 
possible that the kettle is the foreground and the chair is the background, 
writing as a foreground and whiteboard as a background is another viable 
option. 
 

Therefore, in our view, no “ultimate” background and 
foreground selections encompassing all feasible tasks can be 
defined. This explains our preference for sampled foreground 
and background populations – the foreground and the 
background are in the eyes of the beholder. Nonetheless, a 
“naïve” suggestion for automatic foreground and background 
estimation is proposed below. 

3. The CMI was chosen as a basis for the Potential Contrast 
definition due to the possibility of optimizing analytically the 
measure for all possible grayscale transformations. We did 
not succeed to similarly utilize other measures. 

 

Measure Properties 
Population separability: opt

Ig   may be viewed as a function 

separating between foreground and background populations. This 
function serves as a classifier, denoted herein as PC-binarization. 
If the populations are separable by a certain threshold (e.g. distinct 
Gaussians), the function can be represented as: 

 
0

( )
255

opt
I

t T
g t

t T


  

 (9) 

However, this is not the general case (which can be seen in 
Eq. 7). Fig. 4 provides an example of grayscale histogram not 
separable by thresholding, while easily classifiable by the PC 
framework. 

 
 (a) (b) 

 
 (c) (d) 

 
 (e) (f) 
Figure 4. Example of foreground and background not separable by 
thresholding, while easily classifiable by the PC framework. (a) original 
grayscale image (circle=0, writing within the circle=195, writings outside the 
circle=127, other areas outside the circle=255), (b) example of thresholded 
image (c) circle and its content as foreground (in red) with the rest as 
background (in blue), (d) PC-binarization based on (c), (e) writing as 
foreground (in red) with the rest as background (in blue), (f) PC-binarization 
based on (e). 
 

In fact, even a slight difference in gray levels between the two 
populations may suffice to achieve a reasonable separation, i.e. 
binarization. See an example of “challenging” contrast 
enhancement in Fig. 5, based on the RGB decomposition of the 
original image, with several resulting PC-binarizations. 

Complexity: The calculation of foreground and background 
histograms is linear in the number of pixels ML , which tends to be 
small. The construction of opt

Ig  is only dependent on the number 

of levels in the histogram. Therefore, for a grayscale image of 256 
levels, the overall complexity is ( 256)O ML  . Hence, the 
complexity is linear with respect to the number of pixels. 

Equivalence to error estimation: ( )PC I  can be viewed as a 
measure minimizing the rate of false positives (FP) and false 
negatives (FN) mistakes, i.e. confusing foreground for background 
and vice-versa. This follows from the fact that: 
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In the case of perfect separability of populations, the PC would be 
maximal, i.e. 255. Note: this is the case in Figs. 2b, 4c and 4e. 
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 (a) (b) 

 
 (c) (d) 

 
 (e) (f) 

 
 (g) 
Figure 5. A natural scene handled by our method. A good contrast 
enhancement is achieved despite the similarity in foreground and background 
shade. (a) RGB image of the scene with manual selection of foreground in red 
and background in blue; R (b), G (c) and B (d) channels, with respective PC 
values of 244.8, 67.6 and 61.2; the PC-binarizations for R (e), G (f) and B (g). 
 
 Symmetry between foreground and background: The last 
property proves that if we replace the foreground sampled 
histogram with the background sampled histogram and vice-versa, 
the result of the PC measure is the same. On the other hand, the 
respective PC-binarizations would be each other’s negatives. 
 
Proposition II (invariance with respect to invertible g): 
 Given an image I , and an invertible g G , 

( ) ( )PC I PC g I  . 
Proof: 

g  is invertible, therefore 1 1.g G g g identity    . Thus: 
1( ) ( ) ( )opt opt

I IPC I CMI g I CMI g g g I      

Denoting: 1: opt
Ih g g    and :J g I  : 

( ) ( )PC I CMI h J   

Assuming opt
Jh g , then: 

( ) ( ) ( ) ( ) ( )opt opt
J JPC I CMI h J PC J CMI g J CMI g g I        

A contradiction to the optimality of opt
Ig . 

Therefore, ( ) ( )PC I PC g I  . 
■ 

Remark: This defines the following equivalence relation between 
two images: 

1 2 1 2~  invertible s.t. I I g I g I     

 The invariance property of the PC, with respect to the images 
of Fig. 1, is demonstrated in Table II. This supplements and 
contrasts with the results in Table I. 

Table II: PC measure based on Fig. 1 

Image PC 
(a) Original I  255.00 
(b) Bright 70I   255.00 
(c) Rescaled 1.3I   255.00 
(d) Equalized ( )eq I  254.98 

 

Automated Foreground/Background Selection 
 As stated above, the foreground and background selection 
largely depends on the specific task and usage scenario. 
Nevertheless, one generic approach would be to utilize one of the 
existing saliency estimation techniques. Fortunately, a useful and 
enlightening comparison of the leading saliency methods is 
presented in [13]. Surprisingly, among the “leading” saliency 
methods is a simple saliency map dependent on the distance of 
each pixel from the center of the image. In this estimation, 255 (the 
most salient value) is assigned to the central pixels, while 0 (the 
least salient value) is assigned to its corners. The empirical success 
of this unsophisticated technique probably has to do with either 
conscious or unconscious preference of human photographers for 
images centered on the object of their interest. 
 Despite Bylinskii et al.’s [13] claim of using a Gaussian 
model in this estimation, a reverse-engineering of their saliency 
image reveals a replacement of the Gaussian with a second-order 
polynomial approximation. In particular, given an image 

     ( , ) : 1, 1, 0,255I x y L M  , the saliency (i.e. foreground) map 

     ( , ) : 1, 1, 0,255S x y L M   is constructed via the following 

formula: 
2 2

1 / 2 / 2
( , ) 255 1

2 / 2 / 2

x L y M
S x y

L M

                     
 (10) 

 It is easy to see that this formula satisfies 
(0,0) ( ,0) (0, ) ( , ) 0S S L S M S L M    , ( / 2, / 2) 255S L M  , as 

well as 0 ( , ) 255S x y  . Examples of such a saliency map used 
for the foreground, as well as its complimentary 255 ( , )S x y  used 
for the background, can be seen in Fig. 6. 
 

 
 (a) (b) 
Figure 6. An example of automatically created saliency-based foreground (a) 
and background (b) maps. 
 
 Naturally, utilization of such continuous maps comes with the 
small price of adapting the measures. Indeed, apart from RMS 
(which does not rely on either the foreground or the background), 
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all the measures utilize “crisp” definitions of the foreground and 
background populations. Fortunately, the measures’ definitions can 
be easily adapted for a “fuzzy” case, in which each pixel belongs 
to both the foreground and the background with a certain 
probability (in fact ( , ) / 255S x y  for foreground and 

 255 ( , ) / 255S x y  for background). E.g., F  and B  now 

become weighted means, while  255

0
( )F t

p t


 and  255

0
( )B t

p t


 

represent weighted histograms over the entire image – maintaining 
the properties of the PC measure. 
 
Experimental Results 
 The purpose of the following experiments is to empirically 
validate the behavior of the various contrast metrics including the 
Potential Contrast, with an emphasis on their invariant properties. 
The experiment consisted of the following steps: 
1. The input for the experiments were images belonging to the 

popular GRAZ-02 data set, containing natural images [14]. 
This included all images under the categories “bike”, “car” 
and “person”, which possessed a ground truth. With 300 files 
in each category, this resulted in 900 files. 

2. If needed, each image was converted to grayscale by 
averaging its channels. The histogram of the result was 
rescaled between 25 and 230 (maintaining the full dynamic 
range in transformations applied in the next step). This 
rescaled image is denoted herein as “initial” image. 

3. Various gray-level transformations were applied to the 
“initial” image. This resulted in 6 additional images for each 
“initial” image. The transformations in use were: negative of 
an image, addition of 25, subtraction of 25, multiplication by 
1.1, histogram stretching (from 0 to 255), and histogram 
equalization (from 0 to 255). In total, further 900x6=5400 
images were obtained. 

4. Five contrast measures (Weber, Michelson, RMS, CMI and 
PC) were applied on all the images (“initial” and 
transformations). The calculation used either marked 
background and foreground (utilizing ground truths from 
[14]), or an automated foreground and background selection 
scheme, as described above (the results for these two types of 
experiments are presented separately below). 

5. For a given measure, the result for each transformation was 
divided by the result of the “initial” image, in order to obtain 
a “ratio of change” (e.g., if a given measure results in 2.718 
on “initial” image, and in 3.14 on a transformed one, the 
division produces a ratio of 1.1557). 

6. Ratios within the range of [0.99,1.01] were marked as 
indicating “invariance” of the measure with respect to a 
particular transformation, while others were counted as “non-
invariant” outcomes. The percentage of the “invariant” ratios 
was calculated. 

Experiment Results for Manual Foreground and 
Background Selection 
 The results in Table III were achieved by using existing 
ground truths, marking foreground and background. 
 
 
 
 

Table III: Manual foreground and background selection: Ratios 

between the measures of transformed images with respect to 

the “initial” image (predicted invariance marked in red). 

 
 
As expected, the most invariant and well-behaving metrics are 

RMS and Potential Contrast. However, only the latter holds an 
almost-perfect invariance on histogram equalization 
transformation, whose non-linearity breaks the RMS record. 
 
Experiment Results for Automated Foreground 
and Background Estimation 

The results, which can be seen in Table IV, were achieved by 
using automated foreground and background estimation. 
 

 
 
Since this experiment is based on an estimated foreground 

and background, which may be quite far from a clear-cut partition 
of an image, the outcomes are expected to be less numerically 
stable. Indeed, the results for many transformations are much more 
spread-out. Nevertheless, yet again, the challenging histogram 
equalization provides a clear winner. In fact, it doesn’t seem that 
the stability of Potential Contrast was significantly hampered by 
the inaccuracy and fuzziness in the foreground and background 
selection. 

 
  

Transformation Statistics Weber Michelson RMS CMI PC
Negative Minimum -2.8741 -1.7535 1 -1 1 

Maximum -0.1468 -0.1842 1 -1 1 
Average -0.8913 -0.7291 1 -1 1 
Invariance % 0.0% 0.0% 100.0% 0.0% 100.0%

+25 Minimum 0.5663 0.6134 1 1 1 
Maximum 0.8833 0.8666 1 1 1 
Average 0.8167 0.8032 1 1 1 
Invariance % 0.0% 0.0% 100.0% 100.0% 100.0%

-25 Minimum 1.1523 1.1820 1 1 1 
Maximum 4.2715 2.7046 1 1 1 
Average 1.3132 1.3391 1 1 1 
Invariance % 0.0% 0.0% 100.0% 100.0% 100.0%

x1.1 Minimum 1 1 1 1.1 1 
Maximum 1 1 1 1.1 1 
Average 1 1 1 1.1 1 
Invariance % 100.0% 100.0% 100.0% 0.0% 100.0%

Histogram 
stretching 

Minimum 1.1523 1.1820 1 1.2439 1 
Maximum 4.2715 2.7046 1 1.2439 1 
Average 1.3132 1.3391 1 1.2439 1 
Invariance % 0.0% 0.0% 100.0% 0.0% 100.0%

Histogram 
equalization 

Minimum -99.4991 -102.5043 0.7581 -100.0948 0.9727 
Maximum 20.0625 19.6348 4.5870 19.2820 1.0000 
Average 1.3029 1.4134 1.5294 1.5560 0.9983 
Invariance % 0.7% 0.8% 1.1% 0.6% 98.7%

Transformation Statistics Weber Michelson RMS CMI PC
Negative Minimum -2.0264 -1.7467 1 -1 1 

Maximum -0.1561 -0.1679 1 -1 1 
Average -0.8588 -0.8406 1 -1 1 
Invariance % 0.0% 0.0% 100.0% 0.0% 100.0%

+25 Minimum 0.5794 0.5945 1 1 1 
Maximum 0.8723 0.8664 1 1 1
Average 0.8143 0.8138 1 1 1
Invariance % 0.0% 0.0% 100.0% 100.0% 100.0%

-25 Minimum 1.1715 1.1823 1 1 1 
Maximum 3.6483 3.1459 1 1 1 
Average 1.3161 1.3144 1 1 1 
Invariance % 0.0% 0.0% 100.0% 100.0% 100.0%

x1.1 Minimum 0.2481 0.2481 0.9993 0.2730 1 
Maximum 1.0399 1.0399 1.0039 1.1443 1 
Average 0.9980 0.9980 1.0023 1.0983 1 
Invariance % 96.7% 96.7% 100.0% 0.0% 100.0%

Histogram 
stretching 

Minimum 0.5342 0.5342 0.9993 0.5426 1 
Maximum 3.6398 3.1516 1.0033 3.0089 1
Average 1.3175 1.3158 1.0001 1.2452 1
Invariance % 0.0% 0.0% 100.0% 0.0% 100.0%

Histogram 
equalization 

Minimum -2977.7504 -2740.1799 0.7597 -2664.9400 0.9718 
Maximum 351.1975 336.0259 4.5821 326.7109 1 
Average -0.8685 -0.6326 1.5308 -0.3027 0.9983 
Invariance % 0.1% 0.1% 1.0% 0.4% 99.1%
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Additional Usage and Results 
The PC measure received extensive real-world usage, applied 

on multispectral imagery of large corpora of ancient inscriptions. 
The first problem included a selection of optimal wavelengths for 
multispectral imagery of Second Temple Period Dead Sea Scrolls 
[15]. See Fig. 7a for an example of such a scroll, with a correct 
channel automatically selected and binarized in Fig. 7b. 

 

 
 (a) (b) 
Figure 7. Section of Dead Sea scroll #124, fragment 001 [15]. (a) Image of a 
scroll (b) PC-binarization of (a). 
 
 Another test for our technique had to do with First Temple 
Period Hebrew, as well as Late Bronze Hieratic (cursive Egyptian) 
ink-on-clay inscriptions. These were unearthed during the 
excavations of Horvat Radum and Horvat Uza (e.g. Figs. 8, 9) 
[16,17], Tel Malhata [18,19], Qubur el-Walaydah (e.g. Fig. 10) 
[20] and Jerusalem [21]. The difficult and noisy medium of the ink 
written on pottery sherds presented a good opportunity to test the 
new methodology. Again, our task was to automatically select the 
“potentially” most contrasted image out of a spectral cube, in order 
to allow further analysis by human scholars. See Figs. 8-10 for 
examples of ostraca handled by our method, in order to find an 
optimal imaging wavelength. An elaboration of our experiments 
pertaining to this particular use case appears in [22]. 
 

 
 (a) (b) 
Figure 8. Images of Horvat Radum ostracon No. 1 [16,17]. (a) optimal image 
at λ=620 nm, selected by our method (b) sub-optimal image at λ=950 nm. 
 

 
 (a) (b) 
Figure 9. Images of ostracon No. 3 from Horvat Uza [16,17]. (a) RGB image 
(b) multispectral image taken at λ=660 nm, selected by our method. 
 

 
 

 
 (a) (b) 
Figure 10. Images of ostracon No. 13.056-01-S01 from Qubur el-Walaydah 
[20]. (a) RGB image, (b) multispectral image taken at λ=690 nm, selected by 
our method. 
 

Summary 
This paper presents a new approach for contrast estimation. 

Using available Image Processing software, an image can undergo 
various grayscale transformations, often improving its contrast. 
The common contrast evaluation methods, surveyed in this article, 
do not take this possibility into account. 

Our Potential Contrast measure encompasses an analytic 
solution to the problem of finding the most contrasting grayscale 
transformation. The properties of the Potential Contrast were tested 
and compared to other measures on a large data set of 900 images, 
in two scenarios of foreground and background selection. The 
results indicate the invariance and the stability of the measure with 
respect to various gray-scale transformations. 
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