

Microarchitectural analysis of a GPU implementation of the
Most Apparent Distortion image quality assessment algorithm

Vignesh Kannan​ 1​ , Joshua Holloway​ 1​ , Sohum Sohoni​ 1​ , and Damon M. Chandler​ 2​ ; ​ 1​ Arizona State University, ​ 2​ Shizuoka University;
1​ Arizona, USA; ​ 2​ Shizuoka, JAPAN

Abstract
Due to the massive popularity of digital images and videos over
the past several decades, the need for automated quality
assessment (QA) is greater than ever. Accordingly, the impetus on
QA research has focused on improving prediction accuracy.
However, for many application areas, such as consumer
electronics, the runtime performance and related computational
considerations are equally as important as the accuracy. Most
modern QA algorithms exhibit a large computational complexity.
However, the large complexity of these algorithms does not
necessarily prohibit their ability of achieving low runtimes if
hardware resources are used appropriately. GPUs, which offer a
large amount of parallelism and a specialized memory hierarchy,
should be well-suited for QA algorithm deployment.

In this paper, we analyze a massively parallel GPU
implementation of the most apparent distortion (MAD)
full-reference image QA algorithm with optimizations guided by a
microarchitectural analysis. A shared memory based
implementation of the local statistics computation has yielded 25%
speedup over its original implementation. We describe the
optimizations that produce the best results. We also justify our
optimization recommendations with descriptions of the
microarchitectural underpinnings. Although our study focuses on a
single algorithm, the image-processing primitives used in this
algorithm are fundamentally similar to those used in most modern
QA algorithms.

Introduction
Image quality simply is how good the image appears to

an observer. It is a measure of how accurate the image of a subject
represents the subject. Digital images are rapidly becoming part of
our daily lives in the form of photos and videos of different
resolution[18]. Right from the acquisition of an image, whether it
is transmitted over the internet or stored on a disk, image
processing is done as part of the standard. It is not always possible
to use lossless compression because of its bad compression ratio
and lossless compression techniques cannot guarantee compression
for all input datasets[19]. Lossy compression schemes introduce
blurring and ringing effects, leading to quality degradation [2].
Hence, it is critical to analyze the impact of the effects caused by
distortion on image’s visual quality bringing in the need for Image
quality assessment algorithms.

In applications where the end-users are humans, the default method
of quantifying image quality is through evaluation by the subject,
which is usually expensive, inconvenient, subject-biased, and
time-consuming [8]. This introduces a need for automated quality
prediction. In order and to fulfil this requirement, objective image

quality assessment was introduced to develop methods that can
predict perceived image quality automatically.

Until 2010, research on IQA algorithms were focusing only on
prediction fidelity with very less importance to practical
constraints such as algorithmic, runtime and microarchitectural
complexities [3] [4] [5]. When IQA algorithms march into
production scenarios, the runtime performance and related
computational considerations become as important as the
prediction accuracy. There has been very little research on
accelerating IQA algorithms using hardware techniques such as
GPU or FPGA. GPU implementations of SSIM[24], MSSIM[23]
and MAD[9] yielded 150x, 35x and 24x speedups over their
corresponding CPU versions [6][7].

In this paper, we perform microarchitectural analysis of a CUDA
[25] implementation of MAD algorithm to identify a CUDA
portion of code with the largest bottleneck. Then, we exploit
shared memory[11] feature provided by the NVIDIA GPU to
resolve the bottleneck and improve performance. By exploiting the
microarchitectural features of the GPU, it is possible to achieve a
better match between the what the algorithm requires and what the
underlying hardware can offer thus utilizing the GPU to its full
potential. Most Apparent Distortion IQA algorithm is selected
because it is currently the best predictive performance IQA
algorithm.

Related Work
It is crucial to have knowledge of the underlying GPU hardware
for efficient programming. Programmers can improve the
efficiency by tailoring their algorithm specifically for parallel
execution. ​Che ​et al.​ [12] explored the GPU bottlenecks on
different applications in terms of memory overhead, shared
memory bank conflict and control flow overhead setting the stage
for further research on GPU bottlenecks. Harris[1] discussed
different strategies for doing parallel reduction such as interleaved
addressing with divergent branches, interleaved addressing with
bank conflicts, sequential addressing and optimal method of doing
computation while loading the data from global memory. This
paper[1] proposed the idea of using a sliding window across the
shared memory as well as the need to avoid bank conflicts showing
a speeding up 30X over the naive implementation. Our research
takes inspiration from the shared memory implementation[1] to
resolve the memory bottleneck as described in Experiment 1.

Tuning strategies to improve performance, such as coalescing,
prefetching, unrolling, and occupancy maximization are
introduced in classical CUDA textbooks​[13]. Ryoo, S. et
al.​ [14][15] ​discussed different tuning strategies and also show how
optimum usage of hardware resources is critical for occupancy and

36
IS&T International Symposium on Electronic Imaging 2017

Image Quality and System Performance XIV

https://doi.org/10.2352/ISSN.2470-1173.2017.12.IQSP-224
© 2017, Society for Imaging Science and Technology

performance. However, the entire study focused on a pre-Fermi
architecture. ​An analytical performance model discussed by Hong
.S [16] provided details of the number of parallel memory requests
by using details about currently running threads and memory
bandwidth consumption. Performance analysis via profiling can
yield invaluable information in understanding the behavior of
GPUs[17], which is the model adopted in this paper for
microarchitectural analysis.

It is common to observe irregular memory accesses on the GPU.
Wu, B.​et al.​ [20] discussed reorganizing data to minimize
non-coalesced memory access. Brodtkorb ​et al. [21] gave a
detailed picture on profile driven development, stressing the
importance of iterative programming and optimization. The
authors[21] got into detail about using the NVIDIA profiler to
profile the implementation and by using the data, improving a local
search. Micikevicius[22] asserted the importance of increasing the
memory bandwidth, optimum utilization of compute resources,
instruction, and memory latency by discussing about profiler
driven analysis and optimization. The author[22] provided a note
on the essential profiling parameters to consider and possible
conclusions to be drawn from the data, which is the model applied
in the experiment section of this paper.

There is no prior research on microarchitectural analysis of image
quality assessment algorithms on a GPU and this document
provides first of its kind microarchitectural analysis of a GPGPU
implementation of an image quality assessment algorithm,
specifically the most apparent distortion (MAD) algorithm. While
this analysis is specific to a CUDA implementation of MAD, it can
provide insight into other related algorithms, which can reuse the
concepts discussed in this document​.

Experimental Setup (Apparatus and Stimulus)

The GPU version of MAD was developed using NVIDIA’s CUDA
API and the CPU portion of the code uses C++. GPU Profiling of
the implementation is performed by NVIDIA Nsight[10] and
Visual Profiler. The apparatus consists of a modern desktop
computer with Intel I7 processor and two NVIDIA GPUs. For this
experiment, we are using NVIDIA Tesla K40.

Table 1​:​ Details of The Test System
CPU Intel® Xeon® Processor E5-1620 @ 3.70 GHz

Cores: 4 cores (8 threads)
Cache: L1: 256 KB, L2: 1 MB, L3: 8 MB

RAM RAM: 24GB DDR3@1866MHz(dual channel)
OS Windows 7 64-bit

Compiler

Visual Studio 2013 64-bit;

GPU1 NVIDIA Tesla K40(PCIe3.0)
GPU2 NVIDIA NVS 310 (PCIe3.0)

The application entail two experiments.

1. Microarchitectural analysis of the statistical
computations of the CUDA MAD implementation which
take the worst running time and least occupancy to
identify the bottleneck.

2. By using the microarchitectural information about the
underlying GPU - shared memory, the bottleneck
identified in Experiment 1 is resolved.

EXPERIMENT 1: Microarchitectural analysis of
CUDA-MAD

Using NVIDIA Visual Profiler, local statistics component of the
current MAD implementation has been identified as the code with
highest bottleneck. Every thread running an instance of the local
statistics computation does the following operations.

IN: 512 x 512 image OUT: Three 128x128 arrays corresponding to
local statistics (​standard deviation, skewness and kurtosis).

1. Declare a 1D array of 256 elements.
2. Gather 16x16 data from global memory [11] and store

into its own local memory from step 1.
3. Sum all the elements of its local array through a 1D

traversal. Using the sum, calculate the mean.
4. Using the mean value, calculate standard deviation,

skewness and kurtosis.
5. Scatter the calculated values across the corresponding

memory locations in global memory.

In order to evaluate the development process guided by the profiler
[22], in this study, the current MAD implementation is profiled in
terms of Memory bandwidth, Compute resources, Instruction and
memory latency. Figure 1 identifies Memory bottleneck to be the
primary performance limiter. Hence, we will focus on Memory
bandwidth. Compute resources and Latency are not covered as part
of this paper.

figure 1​.​ ​ Stall Reasons

Memory Bandwidth​ :

Memory Bandwidth is the rate at which data is read or written
from the memory. On a GPU, bandwidth depends on efficient
usage of memory subsystem, which involves L1/shared memory,
L2 cache, Device memory and System memory (via PCIe). Since
there are many components in the memory subsystem, separate
profiling is done to collect data from the corresponding subsystem.
Memory statistics are collected from Global, Local, Shared, Buffer
and Caches.

IS&T International Symposium on Electronic Imaging 2017
Image Quality and System Performance XIV 37

● Global​: Performs profiling on memory operations to the
global memory. Specifically focuses on the
communication between streaming multiprocessors (SM)
and L2 cache.

Note: Memory statistics from Local, Shared, Buffer and Caches
are not taken into consideration in this paper.

Memory Statistics – Global:

Global device memory can be accessed in two different data paths;
Data traffic can go either through (L2 and/or L1), read only global
memory access can alternatively go through the read-only data
cache/texture cache. NVCC compiler has control over the behavior
of caches by setting appropriate compilation flag. In this
experiment, no explicit setting has been made. In Figure 1, cached
loads uses the L1 cache or texture cache as well as L2 whereas
uncached loads uses only the L2 cache.

figure 2. ​Memory Statistics - Global

A warp [25] in execution accessing device memory using
LD or ST assembly instruction coalesces the memory accesses of
all the 32 threads in a warp into one or more of these memory
transactions depending on the size of the word accessed by each
thread. It can be observed that if all the threads within a warp
performs random stride, coalescing gets disturbed resulting in 32
different accesses in a warp. Figure 1 shows the average number of
L1 and L2 transactions required per executed global memory
instruction, separately for load and store operations. Lower
numbers are better; It is better to have 1 transaction for a 4-byte
access (32 threads * 4 byte = one 128 byte cache line), 2
transactions for a 8-byte access (32 threads * 8 byte = two 128 byte
cache lines) access. The exact lines of code performing global
memory access is described in Table 2.

Table 2​: ​Global memory access in original implementation

for(x = global_threadIdx_x; x < (x + tile_size) ; ++x)
 {
 for(y = global_threadIdx_y; y < (y+ tile_size) ; ++y)
 {
 local_memory[index] = global_memory[x *
SIZE_OF_IMAGE + y];

 index = index + 1;
 }
 }

Note: tile_size = 16, SIZE_OF_IMAGE = 512

A memory "request" is an instruction, which accesses memory,
and a "transaction" is the movement of a unit of data between two
regions of memory. In this seemingly benign, otherwise correct
implementation, 129,024 requests are made resulting in 2,256,000
transactions. Each of the requests are 4-byte requests (float).
Hence, there are almost 17 transactions made for each load
request. This exorbitant number of transactions and global memory
access latency of 200 - 400 cycles indicate the need to reduce
access to global memory. Moreover, the current implementation
does not use the shared memory effectively.

EXPERIMENT 2: Microarchitectural analysis of
CUDA-MAD

Using proposed changes from Experiment 1, the current local
statistics computation will be modified by exploiting the shared
memory feature provided by the GPU to reduce global memory
access and the results will be compared.

figure 3. ​Global Memory Stride Visualization

From Figure 3, it can be inferred that there is overlap among the
elements gathered from global memory by subsequent threads.
Also, every thread fetches 128 bytes of data in a single request i.e.
when thread 0 requests data, 128-bytes are provided to the thread
(coalesced memory access). However, the requester thread utilizes
only 4-byte, other threads in the warp utilizing only 60 bytes data
thus discarding rest of the fetched in data. Only the mean
computation in local statistics calculation takes 1.000512 ms.

Proposed changes in shared memory implementation:
In the original implementation, nested for loops are involved in
fetching the data from global to local memory as seen in Table 2.
In shared memory implementation, every thread will access a
memory location based on its global thread id. Every thread copies
the data from global memory referenced using its global thread id

38
IS&T International Symposium on Electronic Imaging 2017

Image Quality and System Performance XIV

to location in shared memory corresponding to its local thread id. It
can be calculated as given in Table 4.

Table 4: ​Shared memory implementation to collect global
data

int global_idx = (threadIdx.x + blockIdx.x * blockDim.x);
int global_idy = (threadIdx.y + blockIdx.y * blockDim.y);
shared_memory[threadIdx.x][threadIdx.y]=
global_memory[global_idx* N + global_idy];

Note: N = 512

In shared memory implementation, a thread is launched for each
individual pixel. Every thread accesses four locations from global
memory and stores in the shared memory as seen as colored blocks
in Figure 4. As soon as all the threads bring in the data, a 2D
sliding window of 16 * 16 size iterates over the shared memory to
calculate the mean using nested for loops.

Optimization:
The nested loop for calculating the sum is very inefficient with the
implementation taking 1.6ms. Hence, instead of nested ​loop to
calculate the sum of the sliding window, the inner loop is unrolled
manually. This is done by exploiting the fact that the window
comprises of 16 x 16 elements. The runtime of the kernel has
dropped down to 0.9 ms from 1.0ms.

figure 4​. ​ Shared memory implementation

Bank conflict​ :
Theoretically, shared memory access is 20-30x faster than global
memory. Hence, speed up of only 10% prompts the need for
further analysis into the shared memory implementation. The
on-chip memory is partitioned into equal sized memory modules
called banks which can be accessed concurrently at the same time.
However, if multiple threads accesses the same bank, the requests
get serialized decreasing the memory bandwidth. There are 32
banks in Tesla K40. The bandwidth of shared memory is 32 bits
per clock cycle per bank.

Shared memory bank conflicts in the current implementation can
be visualized in Figure 5. Unlike global memory where typical
memory access is made by coalescence, shared memory access is

request - delivery type i.e. if a 4-byte access to shared memory is
made, a 4-byte data chunk should be returned. Ideally 1 shared
memory request =1 shared memory transaction.

In Figure 5, 1 shared memory request = 4 shared memory
transactions. This indicates conflict in shared memory access.
Threads within a warp are numbered in the equivalent of column
major order. Hence using
shared_memory[threadIdx.x][threadIdx.y] causes threads in a warp
reading from the same column which interprets to reading from the
same memory bank resulting in bank conflicts. Typically, bank
conflict is resolved by using
shared_memory[threadIdx.y][threadIdx.x] instead of
shared_memory[threadIdx.x][threadIdx.y]. After resolving bank
conflicts, the run time is improved and it is reduced to 757.984 us.
25 % improvement over the original implementation.

figure 5.​ ​Shared memory implementation with bank conflict

Experimental Results
The following microarchitectural analysis is for the shared memory
implementation with bank conflict resolved.

Memory statistics: Global:

figure 6​. ​Memory Statistics - Global

From Figure 6, It can be observed that the number of requests to
global memory has reduced drastically (40,960 vs 129,024)
improving the runtime. Figure 7 shows effective use of shared
memory showing 1 to 1 correspondence between load and store.

IS&T International Symposium on Electronic Imaging 2017
Image Quality and System Performance XIV 39

Memory statistics: Shared:

figure 7​. ​Shared Memory Bank Conflict Resolved

Table 5​: ​Results

Original implementation 1.000512ms

Shared memory implementation without
nested for loop

0.928031ms

Shared memory implementation without
nested for loop, bank conflict resolved.

0.757984ms

Closing and Future Work
General purpose GPU based solution to accelerate the algorithm is
a niche area of research and development with respect to IQA
algorithms. Still, they do not provide enough speedup to use the
algorithms in real-time environment. That is why, it is essential to
understand the underlying microarchitecture to map complex
algorithms effectively onto the GPU. In this paper, the
microarchitectural analysis of an implementation of the most
apparent distortion (MAD) image quality assessment (IQA)
algorithm is done, a bottleneck is strategically analyzed, and a
solution is offered. Microarchitectural profiling of MAD
implementation has showed that the local statistics computation is
memory bandwidth limited. Hence, in order to improve memory
bandwidth, frequent access to the global memory had to be
reduced by exploiting the on-chip memory which offers low
latency access.
In the original inefficient implementation, every thread runs nested
for loops to bring in the data from global memory and store in
local memory for local statistics computation. In the shared
memory implementation, every thread brings in data from global
memory corresponding to global id and stores in shared memory
location corresponding to local thread id. The conclusion is, by
increasing the amount of data reuse by the threads and by reducing
high latency memory access to global memory, performance can
be improved. We have demonstrated a promising shared memory
implementation of the most problematic kernel with 25%
improvement in the runtime. Individual kernel execution showed
1.33x speedup over the original implementation and since the
kernel is called 40 times as part of the local statistics computation
makes the speedup prominent thus improving the overall
algorithmic runtime.

The application that is demonstrated does not involve any
communication among the threads. If data must be communicated
between the threads, necessary care must be taken to ensure race
conditions do not occur. In this paper, only the mean calculation is
taken into account and the performance is improved. It can be
extended to kurtosis, standard deviation and skewness. It is
expected to lead to much higher performance gains. Other
performance limiters like compute resources, latency can be
explored in detail not only for A5 but also with other kernels in the
CUDA MAD implementation.

References
[1] Harris, Mark. "Optimizing parallel reduction in CUDA."

NVIDIA Developer Technology 2, no. 4 (2007).

[2] Mohammadi, Pedram, Abbas Ebrahimi-Moghadam, and
Shahram Shirani. "Subjective and objective quality assessment
of image: A survey." arXiv preprint arXiv:1406.7799 (2014).

[3] Chandler, Damon M. "Seven challenges in image quality
assessment: past, present, and future research." ISRN Signal
Processing 2013 (2013).3.

[4] Phan, Thien D., Siddharth K. Shah, Damon M. Chandler, and
Sohum Sohoni. "Microarchitectural analysis of image quality
assessment algorithms." Journal of Electronic Imaging 23, no. 1
(2014): 013030-013030.

[5] Moorthy, Anush Krishna, and Alan Conrad Bovik. "Visual
quality assessment algorithms: what does the future hold?."
Multimedia Tools and Applications 51, no. 2 (2011): 675-696.

[6] Okarma, Krzysztof, and Przemysław Mazurek. "GPGPU based
estimation of the combined video quality metric." In Image
Processing and Communications Challenges 3, pp. 285-292.
Springer Berlin Heidelberg, 2011.

[7] Holloway, J., Kannan, V., Chandler, D. M., & Sohoni, S. On the
computational performance of single-GPU and Multi-GPU
CUDA implementations of the MAD IQA Algorithm. Image
Media Quality and its Applications 2016

[8] Wang, Zhou, Alan C. Bovik, Hamid R. Sheikh, and Eero P.
Simoncelli. "Image quality assessment: from error visibility to
structural similarity." IEEE transactions on image processing
13, no. 4 (2004): 600-612..

[9] Larson, Eric C., and Damon M. Chandler. "Most apparent
distortion: full-reference image quality assessment and the role
of strategy." Journal of Electronic Imaging 19, no. 1 (2010):
011006-011006.

[10] Nsight, N. V. I. D. I. A., and Visual Studio Edition. "3.0 User
Guide." NVIDIA Corporation (2013).

[11] Lindholm, Erik, John Nickolls, Stuart Oberman, and John
Montrym. "NVIDIA Tesla: A unified graphics and computing
architecture." IEEE micro 28, no. 2 (2008): 39-55.

[12] Che, Shuai, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W. Sheaffer, and Kevin Skadron. "A performance study
of general-purpose applications on graphics processors using
CUDA." Journal of parallel and distributed computing 68, no.
10 (2008): 1370-1380.

[13] Kirk, David B., and W. Hwu Wen-mei. Programming massively
parallel processors: a hands-on approach. Newnes, 2012.

40
IS&T International Symposium on Electronic Imaging 2017

Image Quality and System Performance XIV

[14] Ryoo, Shane, Christopher I. Rodrigues, Sara S. Baghsorkhi,
Sam S. Stone, David B. Kirk, and Wen-mei W. Hwu.
"Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA." In
Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, pp. 73-82.
ACM, 2008.

[15] Ryoo, Shane, Christopher I. Rodrigues, Sara S. Baghsorkhi,
Sam S. Stone, David B. Kirk, and Wen-mei W. Hwu.
"Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA." In
Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, pp. 73-82.
ACM, 2008.

[16] Hong, Sunpyo, and Hyesoon Kim. "An analytical model for a
GPU architecture with memory-level and thread-level
parallelism awareness." In ACM SIGARCH Computer
Architecture News, vol. 37, no. 3, pp. 152-163. ACM, 2009.

[17] Rui, Ran, Hao Li, and Yi-Cheng Tu. "Join algorithms on GPUs:
A revisit after seven years." In Big Data (Big Data), 2015 IEEE
International Conference on, pp. 2541-2550. IEEE, 2015.

[18] Silverstein, D. Amnon, and Joyce E. Farrell. "The relationship
between image fidelity and image quality." In Image
Processing, 1996. Proceedings., International Conference on,
vol. 1, pp. 881-884. IEEE, 1996.

[19] Said, Amir, and William A. Pearlman. "An image
multiresolution representation for lossless and lossy
compression." IEEE Transactions on image processing 5, no. 9
(1996): 1303-1310.

[20] Wu, Bo, Zhijia Zhao, Eddy Zheng Zhang, Yunlian Jiang, and
Xipeng Shen. "Complexity analysis and algorithm design for
reorganizing data to minimize non-coalesced memory accesses
on GPU." In ACM SIGPLAN Notices, vol. 48, no. 8, pp. 57-68.
ACM, 2013.

[21] Brodtkorb, André R., Trond R. Hagen, Christian Schulz, and
Geir Hasle. "GPU computing in discrete optimization. Part I:
Introduction to the GPU." EURO journal on transportation and
logistics 2, no. 1-2 (2013): 129-157.

[22] Micikevicius, Paulius. "Analysis-driven optimization." In GPU
technology conference, pp. 1-55. 2010.

[23] Wang, Zhou, Eero P. Simoncelli, and Alan C. Bovik.
"Multiscale structural similarity for image quality assessment."
In Signals, Systems and Computers, 2004. Conference Record
of the Thirty-Seventh Asilomar Conference on, vol. 2, pp.
1398-1402. Ieee, 2003.

[24] Wang, Zhou, Alan C. Bovik, Hamid R. Sheikh, and Eero P.
Simoncelli. "Image quality assessment: from error visibility to
structural similarity." IEEE transactions on image processing
13, no. 4 (2004): 600-612.

[25] Documentation, CUDA Toolkit. "v6. 0." Santa Clara (CA,
USA): NVIDIA Corporation (2014).

Author Biography
Vignesh Kannan ​ received the Bachelors in Electronics and

Communication engineering from SASTRA University, India (2010). He
has 4 years of industrial experience working on 4G technology. Currently,
he is a Masters student in Software Engineering at the Arizona State
University, Tempe, USA. His interests are in GPGPU programming and
Computer Architecture.

Joshua Holloway​ received his B.S. in Electrical Engineering
from Oklahoma State University (2013). Joshua is currently a member of
the Parallel Systems and Computing Laboratory at Arizona State
University where he is pursuing a PhD in Computer Engineering in the
School of Computing, Informatics, and Decision Systems Engineering. His
research interests include digital signal and image processing, computer
vision, heterogeneous parallel programming, and has recently begun
working on efficient hardware mapping of complex algorithms.

Sohum Sohoni ​ received the B.E. degree in Electrical
Engineering from Pune University, India, in 1998 and a PhD in Computer
Engineering from the University of Cincinnati, Cincinnati, Ohio, in 2004.
He is currently an Assistant Professor in The Polytechnic School in the Ira
A. Fulton Schools of Engineering at Arizona State University. Prior to
joining ASU, he was an Assistant Professor at Oklahoma State University.
His research interests are broadly in the areas of engineering and
computer science education, and computer architecture. He has published
in the International Journal of Engineering Education, Advances in
Engineering Education, and in ACM SIGMETRICS and IEEE Transactions
on Computers.

Damon M. Chandler​ received the B.S. in Biomedical
Engineering from The Johns Hopkins University (1998); and the M.Eng.,
M.S., and Ph.D. in Electrical Engineering from Cornell University (2000,
2004, 2005). From 2005-2006, he was a postdoc in the Department of
Psychology at Cornell. From 2006-2015, he was on the faculty at
Oklahoma State University. He is currently an Associate Professor at
Shizuoka University, where his research focuses on modeling properties of
human vision. He is as an Associate Editor for the IEEE TIP and the
Journal of Electronic Imaging.

IS&T International Symposium on Electronic Imaging 2017
Image Quality and System Performance XIV 41

