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Abstract 
Due to the massive popularity of digital images and videos over           
the past several decades, the need for automated quality         
assessment (QA) is greater than ever. Accordingly, the impetus on          
QA research has focused on improving prediction accuracy.        
However, for many application areas, such as consumer        
electronics, the runtime performance and related computational       
considerations are equally as important as the accuracy. Most         
modern QA algorithms exhibit a large computational complexity.        
However, the large complexity of these algorithms does not         
necessarily prohibit their ability of achieving low runtimes if         
hardware resources are used appropriately. GPUs, which offer a         
large amount of parallelism and a specialized memory hierarchy,         
should be well-suited for QA algorithm deployment.  
 
In this paper, we analyze a massively parallel GPU         
implementation of the most apparent distortion (MAD)       
full-reference image QA algorithm with optimizations guided by a         
microarchitectural analysis. A shared memory based      
implementation of the local statistics computation has yielded 25%         
speedup over its original implementation. We describe the        
optimizations that produce the best results. We also justify our          
optimization recommendations with descriptions of the      
microarchitectural underpinnings. Although our study focuses on a        
single algorithm, the image-processing primitives used in this        
algorithm are fundamentally similar to those used in most modern          
QA algorithms. 

Introduction 
Image quality simply is how good the image appears to          

an observer. It is a measure of how accurate the image of a subject              
represents the subject. Digital images are rapidly becoming part of          
our daily lives in the form of photos and videos of different            
resolution[18]. Right from the acquisition of an image, whether it          
is transmitted over the internet or stored on a disk, image           
processing is done as part of the standard. It is not always possible             
to use lossless compression because of its bad compression ratio          
and lossless compression techniques cannot guarantee compression       
for all input datasets[19]. Lossy compression schemes introduce        
blurring and ringing effects, leading to quality degradation [2].         
Hence, it is critical to analyze the impact of the effects caused by             
distortion on image’s visual quality bringing in the need for Image           
quality assessment algorithms.  

 
In applications where the end-users are humans, the default method         
of quantifying image quality is through evaluation by the subject,          
which is usually expensive, inconvenient, subject-biased, and       
time-consuming [8]. This introduces a need for automated quality         
prediction. In order and to fulfil this requirement, objective image          

quality assessment was introduced to develop methods that can         
predict perceived image quality automatically.  

 
Until 2010, research on IQA algorithms were focusing only on          
prediction fidelity with very less importance to practical        
constraints such as algorithmic, runtime and microarchitectural       
complexities [3] [4] [5]. When IQA algorithms march into       
production scenarios, the runtime performance and related       
computational considerations become as important as the       
prediction accuracy. There has been very little research on         
accelerating IQA algorithms using hardware techniques such as        
GPU or FPGA. GPU implementations of SSIM[24], MSSIM[23]        
and MAD[9] yielded 150x, 35x and 24x speedups over their          
corresponding CPU versions [6][7].  

 
In this paper, we perform microarchitectural analysis of a CUDA          
[25] implementation of MAD algorithm to identify a CUDA         
portion of code with the largest bottleneck. Then, we exploit          
shared memory[11] feature provided by the NVIDIA GPU to         
resolve the bottleneck and improve performance. By exploiting the         
microarchitectural features of the GPU, it is possible to achieve a           
better match between the what the algorithm requires and what the           
underlying hardware can offer thus utilizing the GPU to its full           
potential. Most Apparent Distortion IQA algorithm is selected        
because it is currently the best predictive performance IQA         
algorithm. 

Related Work 
It is crucial to have knowledge of the underlying GPU hardware           
for efficient programming. Programmers can improve the       
efficiency by tailoring their algorithm specifically for parallel        
execution. Che et al. [12] explored the GPU bottlenecks on         
different applications in terms of memory overhead, shared        
memory bank conflict and control flow overhead setting the stage          
for further research on GPU bottlenecks. Harris[1] discussed        
different strategies for doing parallel reduction such as interleaved         
addressing with divergent branches, interleaved addressing with       
bank conflicts, sequential addressing and optimal method of doing         
computation while loading the data from global memory. This         
paper[1] proposed the idea of using a sliding window across the           
shared memory as well as the need to avoid bank conflicts showing            
a speeding up 30X over the naive implementation. Our research          
takes inspiration from the shared memory implementation[1] to        
resolve the memory bottleneck as described in Experiment 1.  

 
Tuning strategies to improve performance, such as coalescing,        
prefetching, unrolling, and occupancy maximization are 
introduced in classical CUDA textbooks[13]. Ryoo, S. et        
al. [14][15] discussed different tuning strategies and also show how         
optimum usage of hardware resources is critical for occupancy and          
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performance. However, the entire study focused on a pre-Fermi         
architecture. An analytical performance model discussed by Hong        
.S [16] provided details of the number of parallel memory requests           
by using details about currently running threads and memory         
bandwidth consumption. Performance analysis via profiling can       
yield invaluable information in understanding the behavior of        
GPUs[17], which is the model adopted in this paper for          
microarchitectural analysis. 
 
It is common to observe irregular memory accesses on the GPU.           
Wu, B.et al. [20] discussed reorganizing data to minimize        
non-coalesced memory access. Brodtkorb et al. [21] gave a         
detailed picture on profile driven development, stressing the        
importance of iterative programming and optimization. The       
authors[21] got into detail about using the NVIDIA profiler to          
profile the implementation and by using the data, improving a local           
search. Micikevicius[22] asserted the importance of increasing the        
memory bandwidth, optimum utilization of compute resources,       
instruction, and memory latency by discussing about profiler        
driven analysis and optimization. The author[22] provided a note         
on the essential profiling parameters to consider and possible         
conclusions to be drawn from the data, which is the model applied            
in the experiment section of this paper. 
 
There is no prior research on microarchitectural analysis of image          
quality assessment algorithms on a GPU and this document         
provides first of its kind microarchitectural analysis of a GPGPU          
implementation of an image quality assessment algorithm,       
specifically the most apparent distortion (MAD) algorithm. While        
this analysis is specific to a CUDA implementation of MAD, it can            
provide insight into other related algorithms, which can reuse the          
concepts discussed in this document.  

Experimental Setup (Apparatus and Stimulus) 
 
The GPU version of MAD was developed using NVIDIA’s CUDA        
API and the CPU portion of the code uses C++. GPU Profiling of             
the implementation is performed by NVIDIA Nsight[10] and      
Visual Profiler. The apparatus consists of a modern desktop         
computer with Intel I7 processor and two NVIDIA GPUs. For this           
experiment, we are using NVIDIA Tesla K40.  
 

Table 1: Details of The Test System 
CPU  Intel® Xeon® Processor E5-1620 @ 3.70 GHz  

Cores: 4 cores (8 threads)  
Cache: L1: 256 KB, L2: 1 MB, L3: 8 MB 

RAM  RAM: 24GB DDR3@1866MHz(dual channel)  
OS  Windows 7 64-bit  

Compiler
  

Visual Studio 2013 64-bit;   

GPU1  NVIDIA Tesla K40(PCIe3.0)  
GPU2  NVIDIA NVS 310 (PCIe3.0)  

 
The application entail two experiments.   

1. Microarchitectural analysis of the statistical     
computations of the CUDA MAD implementation which       
take the worst running time and least occupancy to         
identify the bottleneck. 

2. By using the microarchitectural information about the       
underlying GPU - shared memory, the bottleneck       
identified in Experiment 1 is resolved. 

EXPERIMENT 1: Microarchitectural analysis of 
CUDA-MAD 

Using NVIDIA Visual Profiler, local statistics component of the         
current MAD implementation has been identified as the code with          
highest bottleneck. Every thread running an instance of the local          
statistics computation does the following operations.  

IN: 512 x 512 image OUT: Three 128x128 arrays corresponding to           
local statistics (standard deviation, skewness and kurtosis).   

1. Declare a 1D array of 256 elements.  
2. Gather 16x16 data from global memory [11] and store         

into its own local memory from step 1.  
3. Sum all the elements of its local array through a 1D           

traversal. Using the sum, calculate the mean. 
4. Using the mean value, calculate standard deviation,       

skewness and kurtosis.  
5. Scatter the calculated values across the corresponding       

memory locations in global memory.  

In order to evaluate the development process guided by the profiler           
[22], in this study, the current MAD implementation is profiled in           
terms of Memory bandwidth, Compute resources, Instruction and        
memory latency. Figure 1 identifies Memory bottleneck to be the          
primary performance limiter. Hence, we will focus on Memory         
bandwidth. Compute resources and Latency are not covered as part          
of this paper.  

 

figure 1.  Stall Reasons 

Memory Bandwidth :  

Memory Bandwidth is the rate at which data is read or written            
from the memory. On a GPU, bandwidth depends on efficient          
usage of memory subsystem, which involves L1/shared memory,        
L2 cache, Device memory and System memory (via PCIe). Since          
there are many components in the memory subsystem, separate         
profiling is done to collect data from the corresponding subsystem.          
Memory statistics are collected from Global, Local, Shared, Buffer         
and Caches.  
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● Global: Performs profiling on memory operations to the        
global memory. Specifically focuses on the      
communication between streaming multiprocessors (SM)     
and L2 cache.  

 
Note: Memory statistics from Local, Shared, Buffer and Caches         
are not taken into consideration in this paper.  

Memory Statistics – Global:  

Global device memory can be accessed in two different data paths;           
Data traffic can go either through (L2 and/or L1), read only global            
memory access can alternatively go through the read-only data         
cache/texture cache. NVCC compiler has control over the behavior         
of caches by setting appropriate compilation flag. In this         
experiment, no explicit setting has been made. In Figure 1, cached           
loads uses the L1 cache or texture cache as well as L2 whereas             
uncached loads uses only the L2 cache.       

  

figure 2. Memory Statistics - Global 

A warp [25] in execution accessing device memory using         
LD or ST assembly instruction coalesces the memory accesses of       
all the 32 threads in a warp into one or more of these memory              
transactions depending on the size of the word accessed by each           
thread. It can be observed that if all the threads within a warp             
performs random stride, coalescing gets disturbed resulting in 32         
different accesses in a warp. Figure 1 shows the average number of            
L1 and L2 transactions required per executed global memory         
instruction, separately for load and store operations. Lower        
numbers are better; It is better to have 1 transaction for a 4-byte             
access (32 threads * 4 byte = one 128 byte cache line), 2             
transactions for a 8-byte access (32 threads * 8 byte = two 128 byte              
cache lines) access. The exact lines of code performing global          
memory access is described in Table 2.  

Table 2: Global memory access in original implementation 

for(x = global_threadIdx_x; x < (x + tile_size) ; ++x)  
       {  
            for(y = global_threadIdx_y; y < (y+ tile_size) ; ++y)  
                 {  
                      local_memory[index] = global_memory[x * 
SIZE_OF_IMAGE + y];  

                      index = index + 1;  
                 } 
        } 

Note: tile_size = 16, SIZE_OF_IMAGE = 512 

A memory "request" is an instruction, which accesses memory,         
and a "transaction" is the movement of a unit of data between two             
regions of memory. In this seemingly benign, otherwise correct         
implementation, 129,024 requests are made resulting in 2,256,000        
transactions. Each of the requests are 4-byte requests (float).         
Hence, there are almost 17 transactions made for each load          
request. This exorbitant number of transactions and global memory         
access latency of 200 - 400 cycles indicate the need to reduce            
access to global memory. Moreover, the current implementation        
does not use the shared memory effectively. 

EXPERIMENT 2: Microarchitectural analysis of     
CUDA-MAD 

Using proposed changes from Experiment 1, the current local         
statistics computation will be modified by exploiting the shared         
memory feature provided by the GPU to reduce global memory          
access and the results will be compared. 

 

figure 3. Global Memory Stride Visualization 

From Figure 3, it can be inferred that there is overlap among the             
elements gathered from global memory by subsequent threads.        
Also, every thread fetches 128 bytes of data in a single request i.e.             
when thread 0 requests data, 128-bytes are provided to the thread           
(coalesced memory access). However, the requester thread utilizes        
only 4-byte, other threads in the warp utilizing only 60 bytes data            
thus discarding rest of the fetched in data. Only the mean           
computation in local statistics calculation takes 1.000512 ms.  

Proposed changes in shared memory implementation:  
In the original implementation, nested for loops are involved in 
fetching the data from global to local memory as seen in Table 2. 
In shared memory implementation, every thread will access a 
memory location based on its global thread id. Every thread copies 
the data from global memory referenced using its global thread id 
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to location in shared memory corresponding to its local thread id. It 
can be calculated as given in Table 4. 
 
Table 4: Shared memory implementation to collect global        
data 
 

int global_idx = (threadIdx.x + blockIdx.x * blockDim.x);  
int global_idy = (threadIdx.y + blockIdx.y * blockDim.y);  
shared_memory[threadIdx.x][threadIdx.y]= 
global_memory[global_idx* N + global_idy]; 

Note: N = 512 
 
In shared memory implementation, a thread is launched for each          
individual pixel. Every thread accesses four locations from global         
memory and stores in the shared memory as seen as colored blocks            
in Figure 4. As soon as all the threads bring in the data, a 2D               
sliding window of 16 * 16 size iterates over the shared memory to             
calculate the mean using nested for loops.  
 
Optimization:  
The nested loop for calculating the sum is very inefficient with the            
implementation taking 1.6ms. Hence, instead of nested loop to         
calculate the sum of the sliding window, the inner loop is unrolled            
manually. This is done by exploiting the fact that the window           
comprises of 16 x 16 elements. The runtime of the kernel has            
dropped down to 0.9 ms from 1.0ms.  
 

 
figure 4.  Shared memory implementation 
 
Bank conflict : 
Theoretically, shared memory access is 20-30x faster than global         
memory. Hence, speed up of only 10% prompts the need for           
further analysis into the shared memory implementation. The        
on-chip memory is partitioned into equal sized memory modules         
called banks which can be accessed concurrently at the same time.           
However, if multiple threads accesses the same bank, the requests          
get serialized decreasing the memory bandwidth. There are 32         
banks in Tesla K40. The bandwidth of shared memory is 32 bits            
per clock cycle per bank.  
 
Shared memory bank conflicts in the current implementation can         
be visualized in Figure 5. Unlike global memory where typical          
memory access is made by coalescence, shared memory access is          

request - delivery type i.e. if a 4-byte access to shared memory is             
made, a 4-byte data chunk should be returned. Ideally 1 shared           
memory request =1 shared memory transaction.  
 
In Figure 5, 1 shared memory request = 4 shared memory           
transactions. This indicates conflict in shared memory access.        
Threads within a warp are numbered in the equivalent of column           
major order. Hence using    
shared_memory[threadIdx.x][threadIdx.y] causes threads in a warp      
reading from the same column which interprets to reading from the           
same memory bank resulting in bank conflicts. Typically, bank         
conflict is resolved by using     
shared_memory[threadIdx.y][threadIdx.x] instead of   
shared_memory[threadIdx.x][threadIdx.y]. After resolving bank    
conflicts, the run time is improved and it is reduced to 757.984 us.             
25 % improvement over the original implementation.  
 

 
figure 5. Shared memory implementation with bank conflict 
 

Experimental Results 
The following microarchitectural analysis is for the shared memory         
implementation with bank conflict resolved.  
 
Memory statistics: Global:  

  
figure 6. Memory Statistics - Global   
  
From Figure 6, It can be observed that the number of requests to             
global memory has reduced drastically (40,960 vs 129,024)        
improving the runtime. Figure 7 shows effective use of shared          
memory showing 1 to 1 correspondence between load and store. 
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Memory statistics: Shared:  

  
figure 7. Shared Memory Bank Conflict Resolved  
 
Table 5: Results 

Original implementation  1.000512ms  

Shared memory implementation without 
nested for loop  

0.928031ms  

Shared memory implementation without 
nested for loop, bank conflict resolved.  

0.757984ms  

 

Closing and Future Work 
General purpose GPU based solution to accelerate the algorithm is          
a niche area of research and development with respect to IQA           
algorithms. Still, they do not provide enough speedup to use the           
algorithms in real-time environment. That is why, it is essential to           
understand the underlying microarchitecture to map complex       
algorithms effectively onto the GPU. In this paper, the         
microarchitectural analysis of an implementation of the most        
apparent distortion (MAD) image quality assessment (IQA)       
algorithm is done, a bottleneck is strategically analyzed, and a          
solution is offered. Microarchitectural profiling of MAD       
implementation has showed that the local statistics computation is         
memory bandwidth limited. Hence, in order to improve memory         
bandwidth, frequent access to the global memory had to be          
reduced by exploiting the on-chip memory which offers low         
latency access.  
In the original inefficient implementation, every thread runs nested         
for loops to bring in the data from global memory and store in             
local memory for local statistics computation. In the shared         
memory implementation, every thread brings in data from global         
memory corresponding to global id and stores in shared memory          
location corresponding to local thread id. The conclusion is, by          
increasing the amount of data reuse by the threads and by reducing            
high latency memory access to global memory, performance can         
be improved. We have demonstrated a promising shared memory         
implementation of the most problematic kernel with 25%        
improvement in the runtime. Individual kernel execution showed        
1.33x speedup over the original implementation and since the         
kernel is called 40 times as part of the local statistics computation            
makes the speedup prominent thus improving the overall        
algorithmic runtime.  

The application that is demonstrated does not involve any         
communication among the threads. If data must be communicated         
between the threads, necessary care must be taken to ensure race           
conditions do not occur. In this paper, only the mean calculation is            
taken into account and the performance is improved. It can be           
extended to kurtosis, standard deviation and skewness. It is         
expected to lead to much higher performance gains. Other         
performance limiters like compute resources, latency can be        
explored in detail not only for A5 but also with other kernels in the              
CUDA MAD implementation.  
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