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Abstract

In this paper, we train independent linear decoder models
to estimate the perceived quality of images. More specifically,
we calculate the responses of individual non-overlapping image
patches to each of the decoders and scale these responses based
on the sharpness characteristics of filter set. We use multiple lin-
ear decoders to capture different abstraction levels of the image
patches. Training each model is carried out on 100,000 image
patches from the ImageNet database in an unsupervised fash-
ion. Color space selection and ZCA Whitening are performed
over these patches to enhance the descriptiveness of the data.
The proposed quality estimator is tested on the LIVE and the
TID 2013 image quality assessment databases. Performance of
the proposed method is compared against eleven other state of
the art methods in terms of accuracy, consistency, linearity, and
monotonic behavior. Based on experimental results, the proposed
method is generally among the top performing quality estimators
in all categories.

Introduction

‘With the advent of social media and faster wireless networks,
high quality digital images are one of the most popular forms of
multimedia being shared online. Infact, on an average day, bil-
lions of photos are shared through dedicated platforms. It is es-
sential for these platforms to maintain high standards in acquir-
ing, compressing, transmitting, and displaying these images with-
out compromising it’s visual quality to the end user. Such a task
cannot be manually performed due to it’s mechanical and time
consuming nature and the sheer volume of data involved. The
goal of image quality assessment (IQA) is to automate this pro-
cess by developing objective quality estimators that can predict
subjective scores. In other words, the perceived quality of im-
ages is measured objectively. Based on the availability of orig-
inal distortion free images, image quality assessment algorithms
are classified into three categories. Full-Reference (FR) metrics
require the original image for predicting the quality of distorted
image [4, 10, 11, 12, 13, 14, 15, 16]. No-Reference (NR) met-
rics estimate the quality of a distorted image without requiring
access to the corresponding original image [18, 19, 20]. Reduced-
Reference metrics require a few feature sets extracted from the
original image for quality prediction of the distorted image. In
the proposed work, we focus on extending a FR model that we
proposed in [1] which was based on a data driven approach.

Data driven approaches are not uncommon in IQA litera-
ture. The authors in [17] propose MLIQM, a metric that bene-
fits from the already present IQA theory to construct features, and
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apply SVM classification to understand the quality class. Then
a SVM regression is used to estimate the quality of a distorted
image within that quality class. The authors in [18] apply a pre-
training step in which they distort high quality images and feed
them into their deep network to train a model that predicts the
subjective score. The authors in [19] propose an image quality as-
sessment approach based on learning a set of filters through Sup-
port Vector Regression. The weights of SVR are learnt through
a Stochastic gradient descent algorithm and their responses are
used to estimate quality. In [20], the authors propose an unsu-
pervised learning approach to obtain quality-aware filters using
distorted images. These filters are used to extract features that
are then regressed using a random forest to obtain quality esti-
mates. However, the common thread in all these algorithms, is
the requirement of distorted images and subjective scores during
training.

In this paper, we explore the combination of unsupervised
learning and hand-crafting to extend learning networks to assess
quality of images. In [1] we had proposed UNIQUE, a shal-
low learning architecture to estimate quality. It had one hid-
den layer which was trained using a sparsity criterion where the
weights and bias were considered a domain transformation on
non-overlapping patches of images. This technique outperforms
majority of the existing methods in LIVE [8] and TID 2013 [9]
databases. It is an unsupervised architecture since it does not re-
quire any target labels during the neural network training. Also,
there is no need for either subjective scores or distorted images
during training. Keeping all these advantages intact, we extend
UNIQUE and improve it’s performance by analyzing the weights
which we learnt, utilizing existing IQA literature that stresses the
importance of sharpness in measuring quality [7]. We also learn
multiple self-contained and reversible representations of undis-
torted data and use these representations to estimate quality of im-
ages. We propose MS-UNIQUE which is a full reference image
quality assessment algorithm based on an unsupervised learning
approach through distortion-free images.

Methodology

We propose learning a set of weights and bias from a linear
decoder. Before using the learning framework, we preprocess the
data to make it more descriptive. The learnt weights from a linear
decoder are considered as a filter set which are used to estimate
the quality of an image. And if linear decoder models with differ-
ent number of neurons in the hidden layer are trained, we obtain
a number of filter sets all learning to model the same input using
multiple representations. The filters are also made structure aware
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by differentiating the ones that capture edges from the ones that
capture color.

Color Space Selection

We use luminance (Y channel) as part of our input data. The
human visual system is more sensitive towards changes in inten-
sity domain rather than chroma [2]. The authors in [4] claim that
structural information can be gleaned from the normalized luma
domain. In addition to the Y channel, we use the green channel
from RGB color space. Green channel is selected since it contains
a large part of the information from R and B color channels. This
is verified by measuring the cross correlation between channels of
RGB representations - the cross correlation rgg between R and G
color channels is 0.98 and rgp, between G and B color channels is
0.94 [3]. We augment the Y and the G channels with the Cr chan-
nel after a transformation into YCbCr colorspace. This is done
to include chroma information as part of our data. The specific
plane Cr is chosen over Cb based on experimental results. The
three planes are combined to obtain a descriptive YGCr image.

Data Matrix Preparation

From the ImageNet 2013 test database, 1,000 images are
randomly selected during training. We do not use any annotated
metadata associated with the images. Each image is first trans-
formed into YGCr colorspace. From each image, we extract 100
patches of size 8x8x3 randomly. Each patch is then reshaped into
a 192x1 column vector. The patch vectors from all images are
stacked together to get a 192x100000 input patch matrix. The data
matrix is then passed through a Zero Component Analysis (ZCA)
Whitening algorithm. Whitening is performed to decorrelate ad-
jacent pixels in raw data so as to lessen redundancy. The authors
in [6] show that the HVS performs whitening. Essentially, this
converts the input data with a zero mean covariance matrix into
whitened data with an identity covariance matrix. The adjacent
features in the input matrix are decorrelated and the variance of
each is one. ZCA also satisfies the property that the whitening
matrix is orthogonal. Note that whitening is not performed on
the 100,000 patches but on the 192 input features in each patch
feature vector. Hence, individual pixels inside a patch are decor-
related from other pixels in the same patch. This happens over
all 100,000 patches hence lowering the redundancy fed into the
learning architecture from each feature vector [5]. We summarize
the data matrix preparation in Figure 1.
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Figure 1: Data matrix preparation.
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Linear Decoder

A linear decoder is an unsupervised neural network frame-
work used to represent data in different dimensions. In this work,

IS&T Infernational Symposium on Electronic Imaging 2017
Image Quality and System Performance XIV

we use a framework with only one hidden layer. It can be used
to sparsify data or learn a compact representation by changing
the number of neurons in the hidden layer. The framework func-
tions by transforming the input into hidden layer activations or
responses and then reconstructing back the input using these re-
sponses. Transformation occurs through a set of weights and bias
that are randomly initialized and then adjusted iteratively based
on the reconstruction error using backpropagation. The hidden
layer responses are obtained as

s = sigmoid(W{ P+ by), (1)

where s is the response, W) and b; are the forward weights and
bias. Each column in W is a 192x1 vector that filters each patch
from the data. Sigmoid is the non-linear layer used in our frame-
work. These hidden layer responses are filtered using another set
of backward weights W, and bias b, to obtain back a reconstructed
version of the input P as

P=W]s+b, 6)

Note that there is no sigmoid layer after reconstruction. The ob-
jective function for backpropagation J(Wy, W5, by, b;) is given by

N
J(W,b)=||(W) s+b2) —P|3+B Y KL(p||p;) +AIW|3, 3)
j=1

where the first term is the reconstructed L2 norm error, the second
term is the sparsity penalty term and the third is the weight decay
or regularization term. N is the total number of patches, which
amounts to 100,000. Sparsity penalty is included to constrain the
average activation of neurons to be close to zero and this penalty
is obtained using KL-Divergence over all training patches. p is
the desired average activation which is set to 0.035. The sparse
penalty term goes to 0 when the actual average activation p comes
close to p. It is weighted by B which is set to 5. The weight decay
term A, which is set to 3e~3 acts as a regularization term by de-
creasing the magnitude of weights thereby preventing overfitting.
We show the architecture of a linear decoder in Figure 2 in which

Figure 2: Linear decoder architecture

h corresponds to the number of neurons in the hidden layers. We
change the number of neurons 4 to obtain models that can either
sparsely or compactly represent the input data. We visualize the
weight sets corresponding to different values of 4 in Figure 3.
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Figure 3: Weight Visualizations. In each set, each square can be used to infer input patches that maximally activate it. Each individual
square in all sets is of size 8x8x3 and is scaled here for visualization purposes.

(a) Edge Filters (b) Color Filters
Figure 4: Result Visualization of differentiating a 625 filter model
into edge and color aware filters.

Multi-model training

The data matrix is fed into a linear decoder model with i =
81 and trained for 400 epochs. The trained forward weights and
bias are stored. This step is repeated to obtain weights and bias
for h = 121,169,400, 625 separately. The sparsity parameter dur-
ing training ensures that none of the filters from any model get
activated abnormally over the others. This multi-model approach
ensures that we represent an image patch both sparsely and com-
pactly and learn multiple filter sets that combine non-linearly to
reconstruct it. Also, a sparse filter set learns more localized fea-
tures while a compact set learns global features.

Sharpness aware filters

Sharpness is an important determining factor in the percep-
tual quality assessment of images [7]. The HVS is adept at detect-
ing blur and evaluating quality based on sharpness. However, our
learning framework does not use any handcrafted features like in-
corporating edges. Hence we add this feature to the already con-
structed filter set. We make our filters sharpness aware by ana-
lyzing their descriptiveness and then weighing their responses ac-
cordingly. We give higher importance to filters that capture edges
rather than color. Distinguishing filters based on edge charac-
teristics is performed using the bias corrected implementation of
kurtosis. Kurtosis is defined as,

E(x—p)*

k= o

“

Hence, further away a data point is from the mean of the distri-
bution, larger is it’s influence on kurtosis. We theorize that filters
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that capture edge components consist of more data points that are
away from the mean of the overall data making them outliers. The
presence of these outliers gives a higher kurtosis score to edge
filters. The kurtosis of each vectorized, zero centered, and nor-
malized filter is measured against a threshold to capture it’s edge
characteristics. Any filter with a kurtosis greater than 5 is labeled
as an edge filter while filters with kurtosis less than 2 are labeled
as color filters. The results of thresholding on a 625 filter model
set is shown in Figure 4.
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Figure 5: Feature generation

Image Quality Assessment

We preprocess images as described previously and utilize the
formulation in Eq.1 to obtain filter responses. These responses are
weighted based on the sharpness characteristics of corresponding
filters. The edge filter responses are given a higher weightage of
2 while the color responses are lowered by a weight of 0.5. This
is performed for all models to obtain one feature vector per im-
age. The feature generation process is summarized in Figure 5.
The responses in feature vector that are significantly less than the
average activation value set during training are assigned a zero
to mimic the suppression mechanisms in the HVS. We generate

IS&T Infernational Symposium on Electronic Imaging 2017
Image Quality and System Performance XIV




Table 1: Performance of image quality estimators.

PSNR PSNR | PSNR SSIM MS W w SR FSIMc | PerSIM | UNIQUE MS-
Methods HA HMA SSIM | SSIM | SSIM | SIM UNIQUE
[10] [10] [4] [11] [12] [13] [14] [15] [16] [1]
Outlier Ratio
TID13 0725 [ 0615 [ o670 [ 0732 [ 0697 [ 0855 | 0700 [ 0632 | 0727 [ 0655 0.640 0.611
Root Mean Square Error
LIVE 8.61 6.93 6.58 7.52 7.43 112 7.11 7.54 7.20 6.80 6.76 6.61
TID13 0.87 0.65 0.69 0.76 0.68 1.20 0.68 0.61 0.68 0.64 0.60 0.57
Pearson Correlation Coefficient
LIVE 0.928 | 0.953 0.958 0.945 0.946 | 0.872 | 0.951 0.945 | 0.950 0.955 0.956 0.958
TID13 0.705 | 0.850 0.827 0.789 0.832 | 0.227 | 0.831 0.866 | 0.832 0.854 0.870 0.884
Spearman Correlation Coefficient
LIVE 0.909 | 0.937 0.944 0.949 0.951 | 0.902 | 0.960 0.955 | 0.959 0.950 0.952 0.949
TID13 0.700 | 0.847 0.817 0.741 0785 | 0562 | 0.777 0.807 | 0.851 0.853 0.860 0.870
Table 2: Distributional difference between subjective scores and objective quality estimates.
Difference-LIVE Difference-TID13
Metric EMD | KL IS HI L2 EMD | KL JS HI L2
PSNR-HMA 0.226 | 0205 | 0.053 | 0.226 | 0.066 || 0360 | 0.927 | 0.117 | 0.360 | 0.124
IW-SSIM 0.297 | 0325 | 0.072 | 0297 | 0.076 || 0500 | 1.678 | 0.196 | 0.500 | 0.180
UNIQUE 0.236 | 0258 | 0.055 | 0.236 | 0.069 || 0.386 | 0.855 | 0.120 | 0.386 | 0.109
MS-UNIQUE || 0.209 | 0.176 | 0.038 | 0.209 | 0.057 || 0.357 | 0.734 | 0.108 | 0.357 | 0.103

feature vectors for both reference and distorted images. The fea-
ture vectors corresponding to the original and distorted images are
compared using 10" power of Spearman correlation coefficient to
fully utilize quality estimation range.

The proposed method is an extension of the quality estima-
tor UNIQUE [1] as shown in Figure 5. It builds on UNIQUE
by weighing filter responses. We also propose using multiple de-
coders with different number of neurons in the hidden layer to
abstract local and global characteristics in image patches.

Validation
Database

The proposed quality estimator is validated on the LIVE
image quality [8] and TID 2013 [9] databases. The databases
have more than 3500 distorted images between them. These
images can be classified into 7 categories based on their dis-
tortion types - compression artifacts, image noise, communica-
tion errors, blur artifacts, color degradations, global, and local
distortions. The compression artifacts category consists of the
JPEG and the JPEG2000 compressions, and lossy compressions
of noisy images. The noise category includes Gaussian noise
and additive noise added in color components, spatially correlated
noise, masked noise, high frequency noise, impulse noise, quanti-
zation noise, image denoising, multiplicative Gaussian noise, and
comfort noise. The communication errors category includes the
JPEG and the JPEG2000 transmission errors of noisy images. The
blur artifacts category consists of Gaussian blur, and sparse sam-
pling and reconstruction. The color degradations category contain
changes in color saturation, image color quantization with dither,
and chromatic aberrations. The global category includes inten-
sity shifts, and contrast changes while the local category contains
non-eccentricity pattern noise, and local blockwise distortions of
different intensities.

IS&T Infernational Symposium on Electronic Imaging 2017
Image Quality and System Performance XIV

Performance Metrics

Validation of MS-UNIQUE and compared algorithms are
carried out in terms of root mean square error, outlier ratio, Pear-
son and Spearman correlation coefficients. In the outlier ratio
calculations, we use those data points that lie two standard de-
viations away from the average subjective scores. Also, outlier
ratio is only reported for TID 2013 database since the standard
deviations of subjective scores are not reported in LIVE database.
The regression formulation from [8] is used to calculate regress
estimates of all methods before comparing. We report the differ-
ence between the normalized histograms of subjective scores and
the regressed quality estimates through common histogram differ-
ence metrics including Earth Movers Distance (EMD), Kullback-
Leibler (KL) divergence, Jensen-Shannon (JS) divergence, his-
togram intersection (HI), and L2 norm.

Results

The proposed quality estimator is compared against eleven
other commonly used or state of the art full reference quality
assessment methods based on fidelity, perceptually-extended fi-
delity, structural similarity, feature similarity, and perceptual sim-
ilarity. The performances of all these metrics are summarized
in Table 1 with the highest performing metric in each category
displayed in bold. PSNR-HMA, IW-SSIM, UNIQUE, and MS-
UNIQUE are among the top performing metrics. MS-UNIQUE
outperforms all these estimators in TID13 database among all per-
formance metrics. In the LIVE database it consistently performs
well in all but two of the metrics. IW-SSIM performs better in
terms of SROCC in this database. However, MS-UNIQUE out-
performs IW-SSIM among all the other categories. Both MS-
UNIQUE and PSNR-HMA provide similar results in terms of
PCC. MS-UNIQUE’s results for RMSE are slightly lesser than
PSNR-HMA. MS-UNIQUE builds on UNIQUE among all cate-
gories except in SROCC in LIVE database.

To better analyze the distribution of subjective scores against
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Figure 6: Scatter plots of top performing quality estimators

the estimated scores, scatter plots of the best performing metrics
are shown in Figure 6. The X-axis corresponds to the estimated
scores while the Y-axis is the ground truth subjective mean opin-
ion scores (MOS) or differential Mean Opinion Scores (DMOS).
For an ideal quality estimator, the scatter plot data should fol-
low a linear curve with low deviation. This is not observed in
PSNR-HMA which shows a parabolic curve in LIVE database.
There is a much sharper drop off in IW-SSIM with most of the
points concentrated on the far end of the curve in LIVE database.
UNIQUE and MS-UNIQUE have a far more linear curve with
scores extending throughout the range. To numerically differenti-
ate between MS-UNIQUE and other metrics in terms of regressed
quality estimates, we present the difference between the normal-
ized histograms of ground truths and regressed results, in Table
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2. The best results are highlighted in bold and MS-UNIQUE con-
sistently performs well in both the databases among all compared
metrics. Overall, MS-UNIQUE is the best performing metric in
15 out of 17 compared metrics over both databases.

Conclusion

We proposed an extension to the quality estimator UNIQUE,
by analyzing the learning network used and handcrafting a weigh-
ing scheme that captures sharpness. This is done in the prepro-
cessing and postprocessing blocks by enhancing information ac-
quired from the data, analyzing the edge characteristics of learnt
filters so that their responses are weighed based on quality as-
sessment theory. Multiple models of linear decoders, where the
number of hidden layer neurons represent the local or global char-
acteristics captured, are used to obtain different levels of abstrac-
tion. The performance of MS-UNIQUE shows that performance
of metrics that use a data driven approach can be enhanced by
handcrafting features.
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