

GPGPU based implementation of a high performing No

Reference (NR) - IQA algorithm, BLIINDS-II

Aman Yadav1, Sohum Sohoni1, Damon Chandler2; 1Arizona State University (USA) and 2Shizuoka University (Japan)

Abstract

A relatively recent thrust in IQA research has focused on

estimating the quality of a distorted image without access to the

original (reference) image. Algorithms for this so-called no-

reference IQA (NR IQA) have made great strides over the last

several years, with some NR algorithms rivaling full-reference

algorithms in terms of prediction accuracy. However, there still

remains a large gap in terms of runtime performance; NR

algorithms remain significantly slower than FR algorithms, owing

largely to their reliance on natural-scene statistics and other

ensemble-based computations. To address this issue, this paper

presents a GPGPU implementation, using NVidia’s CUDA

platform, of the popular Blind Image Integrity Notator using DCT

Statistics (BLIINDS-II) algorithm [8], a state of the art NR-IQA

algorithm. We copied the image over to the GPU and performed

the DCT and the statistical modeling using the GPU. These

operations, for each 5x5 pixel window, are executed in parallel.

We evaluated the implementation by using NVidia Visual Profiler,

and we compared the implementation to a previously optimized

CPU C++ implementation. By employing suitable optimizations

on code, we were able to reduce the runtime for each 512x512

image from approximately 270 ms down to approximately 9 ms,

which includes the time for all data transfers across PCIe bus. We

discuss our unique implementation of BLIINDS-II designed

specifically for use on the GPU, the insights gained from the

runtime analyses, and how the GPGPU techniques developed here

can be adapted for use in other NR IQA algorithms.

Introduction
Effective and efficient quality assessment of visual content

finds application in a plenty of areas ranging from quality

monitoring of video delivery systems, comparison of compression

techniques to image reconstruction. Unfortunately, the benefits of

recent advances in IQA and VQA have not carried over to real

world systems owing largely to long execution time of these

algorithms even for a single frame of image as has been pointed

out in multiple publications [1][2][3][9] in the past. GPGPU based

implementation for three different Full Reference IQA algorithms

have been presented in [4], [5] and [6] with varying success. In

time sensitive applications like quality of service monitoring in

live broadcasting and video conferencing, a fast performing No

Reference IQA is very essential. Addressing this strong need [7]

for real time No Reference IQA, we apply GPGPU techniques to a

high performing No Reference IQA algorithm, BLIINDS-II.

The objective of our project is to utilize the data parallelism in

BLIINDS-II NR-IQA by implementing it using a GPGPU. We aim

to study the compute resources and the memory bandwidth needed

along with latency issues following the data access pattern of the

algorithm and propose suitable optimization techniques.

Overview of BLIINDS-II algorithm

BLIINDS-II is a Non Distortion Specific Natural Scene

Statistics (NSS) based NR-IQA. NSS models are the statistical

models that represent undistorted images of natural scenes. The

algorithm seeks to predict the quality score of a distorted image by

estimating the deviation of a distorted image from NSS models.

The algorithm first learns how the NSS model parameters vary

with varying levels various types of image distortion. Later this

learning is applied for the prediction of quality scores using the

features extracted from the distorted image. It has been

demonstrated to correlate well with human subjective image

quality score and compares very well with other high performing

FR IQA algorithms in literature.

Next we describe the overall framework of the BLIINDS-II

algorithm as shown in Figure 1. First the 2-D DCT coefficients of

the input image are computed. These DCT coefficients are

computed for each 5x5 pixel block of the image, with an overlap of

one pixel width between two successive 5x5 blocks.

The second step of the BLIINDS-II pipeline builds a

parametric model of the extracted local DCT coefficients. Four

parameters are computed for each 5x5 DCT block by applying a

univariate generalized Gaussian density model to the non-DC

coefficients of each block. These four parameters are described

further below.

In the third step, a feature vector is populated from the DCT

coefficient parameters obtained in the previous step. There are two

features extracted for each parameter. The obtained parameter

values across all the 5x5 DCT blocks are averaged over the top 10

percentiles and top 100 percentiles. These two averages are the two

features for each parameter. At this point we have 8 features

extracted at input image resolution (512x512).

The features are extracted across three spatial scales, so the

input image is down sampled two times and steps number one to

three are repeated to obtain a features vector of length 24, 8 for

each spatial scale.

In the final step, a Bayesian inference approach is used to

predict the image quality score from the extracted features. This

involves computation of the posterior probability of each possible

quality score given the extracted set of features using a

multivariate generalized Gaussian density model trained on a

subset of LIVE IQA image database.

Figure 1. High-Level Overview of the BLIINDS-II Framework

IS&T International Symposium on Electronic Imaging 2017
Image Quality and System Performance XIV 21

https://doi.org/10.2352/ISSN.2470-1173.2017.12.IQSP-220
© 2017, Society for Imaging Science and Technology

Model based DCT Domain NSS Parameters
The univariate generalized Gaussian density model is applied

to the non-DC coefficients of each 5x5 local DCT block for

obtaining the model parameters. It is given by:

𝑓(𝑥|𝛼, 𝛽, 𝛾) = 𝛼𝑒−(𝛽|𝑥−𝜇|)𝛾
 (1)

where 𝜇 is the mean, 𝛾 is the shape parameter, 𝛼 and 𝛽 are the

normalizing and the scale parameters.

Generalized Gaussian Model Shape Parameter (𝜸)
The shape parameter 𝛾 is estimated using the following:

Γ(1/𝛾)Γ(3/𝛾)

Γ2(2/𝛾)
=

𝜎𝑋
2

𝜇|𝑋|
2 (2)

where Γ denotes the gamma function. We compute the right

hand side of equation (2) and use a look up table to obtain the

value of the shape parameter 𝛾. The CPU function and the GPU

kernel to do this is called gama_dct.

Coefficient of Frequency Variation (𝛇)
The coefficient of frequency variation (𝜁) is obtained using:

𝜁 =
𝜎|𝑋|

𝜇|𝑋|
 (3)

The CPU function and the GPU kernel to do this is called

rho_dct.

Energy Subband Ratio Measure
Each 5x5 DCT block is grouped into three radial subbands.

The energy contained within each is referred to as 𝐸𝑛 where 𝑛 can

be 1, 2 or 3. The energy subband ratio is computed using:

𝑅𝑛 =
|𝐸𝑛−

1

𝑛−1
∑ 𝐸𝑗|𝑗<𝑛

𝐸𝑛+
1

𝑛−1
∑ 𝐸𝑗𝑗<𝑛

 𝜎𝑛
2 (4)

where 𝑛 can be 2 or 3. The energy subband ratio measure is

the mean of 𝑅2 and 𝑅3.

Orientation Model-Based Parameter
Similarly, each 5x5 DCT block is grouped into three orients.

The 𝜁 value for each orient is calculated and the variance of the

three values is reported as Oriented Model-Based Parameter.

Experimental Methodology
Figure 1 shows a diagram of the flow of our CUDA

implementation of BLIINDS-II algorithm. The distorted image is

first read and cast as an array of floats, and then sent to the GPU

across PCIe. Both the transform and the ensuing statistical

operations in the algorithm are data parallel between 5x5 blocks of

pixel. On the GPU, we execute all of these 5x5 blocks in parallel.

After the features are extracted, the function that maps from

feature space to quality score space is executed on the CPU. This

CPU function is referred to as “Predict Score”.

We implement the BLIINDS-II algorithm on an NVidia Tesla

K40c with GK110 microarchitecture using CUDA/C++ for the

GPU and the CPU codes. The performance analysis of our

application was done using NVidia Visual Profiler (nvvp) and

nvprof. Metrics related to compute utilization, achieved memory

bandwidth and latency were analyzed to achieve better runtime

performance across various images of natural scenes with various

distortions and varying levels of each. For all time comparisons,

between the C++ implementation and the CUDA implementation

of the algorithm, we have used the results reported in [3] for C++

and our own observations for CUDA. Table 1 provides technical

specifications of our test system.

Table 1. Test System Specifications.

CPU

Intel® Xeon® Processor E5-1620 @
3.70 GHz
Cores: 4 cores (8 threads)
Cache: L1: 256KB, L2: 1 MB, L3: 10
MB

RAM
24GB DDR3@1866 MHz(dual
channel)

OS Windows 7 Enterprise 64-bit

Compiler Visual Studio 2013 64-bit; CUDA 7.5

GPU1 NVidia Tesla K40(PCIe 3.0)

GPU2 NVidia NVS 310 (PCIe 3.0)

Results and Discussion
The previous C++ implementation of the BLIINDS-II

algorithm was reported to take almost 8.0 seconds for 30 iterations

for one 512x512 image (approx.. 270 ms for one iteration of one

512x512 image). This average run time was reported across images

of various different natural scenes and across multiple distortion

types with varying levels of distortion. These images are contained

in the CSIQ database.

As seen in the Table 2, from the performance comparison of

C++ version of BLIINDS-II, the two most time consuming

functions are local 5x5 DCT computation and gamma_dct. Our

CUDA implementation also has similar trends but both of these

functions have been modified in their flow to better suit the GPU

architecture, while preserving their output.

By employing suitable optimizations on code, we were able to

reduce the runtime for each 512x512 image from approximately

270 ms down to approximately 9 ms, which is well within the rate

for real-time performance (assumed to be a 30 fps video rate). The

reported times for CUDA version include the time spent on

transferring data across the PCIe bus. The following subsections

provide details of our preliminary results.

Performance Comparison of C++ and CUDA
Implementations

Table 2 shows the timing comparison of the C++

implementation and the CUDA implementation on the test system.

Please note that these times are the total times for 30 runs of the

algorithm. The C++ implementation required 8 seconds for the 30

runs, whereas the CUDA implementation required 0.27 seconds for

the 30 runs. For the C++ implementation, the DCT stage required

approximately half of the runtime. For the CUDA implementation,

the Sort, took up half of the application run time. We have used

sort from thrust library, included in CUDA toolkit.

22
IS&T International Symposium on Electronic Imaging 2017

Image Quality and System Performance XIV

Table 2. Performance Comparison of C++ and CUDA

implementations of BLIINDS-II for 30 iterations.

Implementation C++ CUDA

 Time (ms) % time Time (ms) % time

All 8032 100 266.31 100

DCT 3811 47.44 8.15 3.06

Gama_dct 1882 23.44 6.53 2.45

Rho_dct 297 3.69 4.38 1.64

Convolve 292 3.64 1.97 0.74

Sort 265 3.31 117.72 44.21

Other 1485 18.48 127.56 47.90

Individual Execution Times of Hardware
Transactions

Table 3 shows the timings of each individual hardware-

transaction stage of the CUDA implementation. The GPU kernels

required nearly 60% of the runtime, and the CPU cores require

approximately the remaining 40%. Due to the minimal amount of

the data that needs to be transferred between the CPU and GPU,

the PCI Express memory transfer requires a negligible runtime.

Similarly, only a very small percentage of the runtime is required

for Predict Score, the CPU function which maps from feature

space to quality score space.

Table 3. Performance Evaluation of CUDA implementation of

BLIINDS-II for 30 iterations

Execution time
(ms)

% of total time

Program time 266.31 100

GPU kernel execution 156.79 58.87

CPU
execution

Total 109.52 39.38

Predict
Score

8.17 3.07

PCIe memory transfer 4.65 1.75

Performance Comparison of gama_dct
Implementations

Table 4 shows the runtime spent on the function gama_dct

both in the original C++ implementation and in our CUDA

implementation. We compare the execution time between three

versions of the function we implemented in CUDA. The first

version traverses a lookup table stored in global memory, while the

second version copies data into shared memory. In the third

version, we split gama_dct into three smaller functions, the first

split performs computation, the second a sort. Only the third split

of the function traverses the lookup table, which we stored in

constant memory of the GPU, thereby we could specialize each of

the split functions.

The first version, we tried to read from a look up table stored

in global memory. The table comprised of 9970 float values, and

needed to be looked up for each 5x5 DCT block computed from

the distorted image. For a 512x512 image, that results in 29241

DCT blocks, with a worst case of linear traversal of the entire

table. Not surprisingly, this version takes up longer than the CPU

version of gama_dct function.

In the second version, we copied the lookup table into shared

memory, so as to reduce the access time for read. The size of a

lookup table was around 40kB, and able to fit in a shared memory

of 48 kB. Though there would still be some conflict because we

have only one shared memory of 48 kB on a streaming

multiprocessor (SM), but we have multiple threadblocks that map

on to each SM. Each threadblock will try to put its own copy of the

lookup table in shared memory and the shared memory won’t fit

that. Still, we see a huge gain in performance over the first version

of the CUDA gama_dct kernel.

In the third version, we split the gama_dct kernel into three

parts. The first split performed all the computations related to each

5x5 DCT block up until the lookup table was to be accessed.

Instead of accessing the look up table, it stored its result for each

DCT block in a global memory array. The lookup table was stored

in constant cache. The reads to this memory are fast if an entire

half warp accesses the same address in it. To suit this, the second

split sorted the recently populated global memory array with the

intermediate results. Finally the third split performed the look up

for each entry in the global array. This lookup was executed as a

binary search instead of linear search as in the previous versions.

The time comparisons of each version is shown in Table 4.

Table 4. Performance Comparison of gama_dct computation

methods for 30 iterations.

gama_dct C++

CUDA
Method 1
(Global
Memory)

CUDA
Method 2
(Shared
Memory)

CUDA
Method 3
(Split in
three
kernels)

Run time
(ms)

1882 9215.73 781.84 6.53

Rearrange Image
Like many other IQA algorithms, there is local block based

processing of image data in BLIINDS-II. Each of these local 5x5

blocks was laid out in memory sequentially, to create a data

parallel path of execution of the algorithm. This rearrangement

causes some pixel data duplication, owing to the overlap in local

IS&T International Symposium on Electronic Imaging 2017
Image Quality and System Performance XIV 23

DCT blocks. The new image array size turned to 171*171*32

elements as opposed to 512*512 elements in the original image, an

increase in memory requirement by a factor of 3.6.

Compute Local 5x5 DCT
Table 5 shows a comparison of execution time of various

implementations of local DCT computation. In our DCT method 1

for GPU, we used the cuFFT library to compute 1D Fourier

transforms and used them to arrive at 2D cosine transforms. This

method required two invocations of cuFFT 1D transform and two

invocations of our custom kernel for converting 1D FFT to 1D

DCT.

In DCT method 2, we compute DCT by matrix multiplication

method on each local 5x5 pixel block. The DCT matrix was

obtained from Matlab dctmtx function.

Table 5. Performance Comparison of DCT Computation using

cuFFT (Method 1) and DCT Matrix Multiplication (Method 2).

CPU Matrix
Multiply DCT

DCT
method 1

DCT
method 2

Time
(ms)

3811 25.36 7.62

Merge kernels to minimize global memory load
store

We merged some kernels together so as to avoid having to

write intermediate results back to GPU global memory. Tables 6

and 7 contain the timing results from our efforts at merging

kernels. The results from merging rearrange image and compute

local DCT are shown in Table 6. Compute DCT is the logical next

step after rearrange image and directly uses the results of the latter.

Oriented_dct feature to be captured from the image for

BLIINDS-II processes the local DCT blocks in three different

orients. In the earlier C++ and original Matlab implementation of

BLIINDS-II algorithm, there were three different function calls,

each of which processed the DCT block separately. Method 1 (for

individual orient) in Table 7 followed the same structure by

executing different kernels for each orient. Method 2 on the other

hand sought to merge them together and reported significant gains

in performance.

Table 6. Performance Comparison of RearrangeAndDCT.

Rearrange
kernel

DCT
kernel

RearrangeAndDCT

Run time
(ms)

3.42 7.62 8.15

Table 7. Performance Comparison of oriented_dct kernels.

oriented_dct
Method 1
(For individual orient)

Method 2
(Merged kernel)

Run time (ms) 8.59 3.72

Conclusions
In this paper, we present a significantly accelerated version of

the popular BLIINDS-II no-reference (NR) IQA algorithm by

using the GPU. To the best of our knowledge, this is the first work

to use GPGPU for NR IQA based on an analysis of the interaction

of BLIINDS-II with the underlying hardware. Another contribution

of this work is a unique implementation of BLIINDS-II’s statistical

operations designed specifically for use on the GPU. As a result,

we are able to present to a version of BLIINDS-II that is capable of

real-time performance, significantly improving upon the

previously reported runtime after CPU optimizations in C++ [3]. A

high speed of execution is critical in application of IQA to video

delivery systems, where minimizing the lag is very important.

The analysis of our CUDA implementation shows the top two

bottleneck functions to be thrust::sort (44.2%) and thrust::reduce

(3.8%). Both of these are Nvidia Thrust library functions bundled

with the CUDA toolkit. It is interesting to note that even though

the bottleneck functions have changed in the CUDA

implementation as compared to the C++ implementation, each

kernel individually is faster than the corresponding function in the

C++ implementation. Even thrust::sort, the bottleneck kernel for

CUDA performs 2.3x faster than the sort in C++ implementation.

We have demonstrated two instances where merging a few

smaller kernels together led to better performance. This is seen in

the case of merging rearrange image with compute DCT and

merging the three oriented_dct kernels together.

In another instance, we have observed a speedup as we split

gama_dct into smaller kernels performing a part of the original

kernel. Such situations are likely to be observed in case of traversal

through lookup tables.

Future Work
The strategies used here should be extended and applied to

other implement other IQA algorithms. The performance gains

achieved over here could be used to develop and implement IQA

algorithms for colored images and/or higher resolution images. To

further improve the performance, one must look into better

performing alternatives to Thrust library kernels for both sort and

reduce. A few options can be cub::DeviceRadixSort and

ModernGpu MergeSort. Another avenue to look into for

performance improvement is more opportunities for merging

smaller kernels together.

The current CUDA implementation of BLIINDS-II should be

applied to a real video delivery system, like a live video broadcast

or video conference, to learn about the image quality degradations

along the delivery channel. Such data can be used to better

optimize existing delivery systems.

References
[1] Wang, Zhou. "Objective Image Quality Assessment: Facing The

Real-World Challenges." Electronic Imaging 2016.13 (2016): 1-6.

[2] Chandler, D. M. “Seven challenges in image quality assessment: Past,

present, and future research," ISRN Signal Processing, vol. 2013, no.

905685, 2013.

[3] Phan, T., Sohoni, S., Chandler, D. M. and Larson, E. C. “Performance

analysis-based acceleration of image quality assessment,” in

Proceedings of the IEEE Southwest Symposium on Image Analysis

and Interpretation, April 2012.

[4] B. Gordon, S. Sohoni, and D. Chandler, “Data handling inefficiencies

between CUDA, 3D rendering, and system memory,” Workload

24
IS&T International Symposium on Electronic Imaging 2017

Image Quality and System Performance XIV

Characterization (IISWC), 2010 IEEE International Symposium on,

pp.1–10, IEEE, 2010.

[5] Okarma, K., and Mazurek, P. "GPGPU based estimation of the

combined video quality metric." Image Processing and

Communications Challenges 3. Springer Berlin Heidelberg, 2011.

285-292.

[6] J. Holloway, V. Kannan, D. M. Chandler, and S. Sohoni, “On the

Computational Performance of Single-GPU and Multi-GPU CUDA

Implementations of the MAD IQA Algorithm”, International

Workshop on Image Media Quality (IMQA) 2016.

[7] Manap, Redzuan Abdul, and Ling Shao. "Non-distortion-specific no-

reference image quality assessment: A survey." Information Sciences

301 (2015): 141-160.

[8] Saad, Michele A., Alan C. Bovik, and Christophe Charrier. "Blind

image quality assessment: A natural scene statistics approach in the

DCT domain." IEEE Transactions on Image Processing 21.8 (2012):

3339-3352.

[9] Phan, Thien D., et al. "Microarchitectural analysis of image quality

assessment algorithms." Journal of Electronic Imaging 23.1 (2014):

013030-013030.

Author Biography
Aman Yadav received his B. Tech degree in Mechanical Engineering from

Indian Institute of Technology (BHU), Varanasi (2014) and an MS degree

in Engineering from Arizona State University (2016). He currently works

as a Software Engineer at AMD in Radeon Technology Group. He works to

capture GPU performance metrics in graphics applications and enhance

the execution speed.

Sohum Sohoni received the B.E. degree in Electrical Engineering from

Pune University, India, in 1998 and a PhD in Computer Engineering from

the University of Cincinnati, Cincinnati, Ohio, in 2004. He is currently an

Assistant Professor in The Polytechnic School in the Ira A. Fulton Schools

of Engineering at Arizona State University. Prior to joining ASU, he was

an Assistant Professor at Oklahoma State University. His research

interests are broadly in the areas of engineering and computer science

education, and computer architecture. He has published in the

International Journal of Engineering Education, Advances in Engineering

Education, and in ACM SIGMETRICS and IEEE Transactions on

Computers.

Damon M. Chandler received the B.S. in Biomedical Engineering from The

Johns Hopkins University (1998); and the M.Eng., M.S., and Ph.D. in

Electrical Engineering from Cornell University (2000, 2004, 2005). From

2005-2006, he was a postdoc in the Department of Psychology at Cornell.

From 2006-2015, he was on the faculty at Oklahoma State University. He

is currently an Associate Professor at Shizuoka University, where his

research focuses on modeling properties of human vision. He is as an

Associate Editor for the IEEE TIP and the Journal of Electronic Imaging.

IS&T International Symposium on Electronic Imaging 2017
Image Quality and System Performance XIV 25

