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Abstract 

A relatively recent thrust in IQA research has focused on 

estimating the quality of a distorted image without access to the 

original (reference) image. Algorithms for this so-called no-

reference IQA (NR IQA) have made great strides over the last 

several years, with some NR algorithms rivaling full-reference 

algorithms in terms of prediction accuracy. However, there still 

remains a large gap in terms of runtime performance; NR 

algorithms remain significantly slower than FR algorithms, owing 

largely to their reliance on natural-scene statistics and other 

ensemble-based computations. To address this issue, this paper 

presents a GPGPU implementation, using NVidia’s CUDA 

platform, of the popular Blind Image Integrity Notator using DCT 

Statistics (BLIINDS-II) algorithm [8], a state of the art NR-IQA 

algorithm. We copied the image over to the GPU and performed 

the DCT and the statistical modeling using the GPU. These 

operations, for each 5x5 pixel window, are executed in parallel. 

We evaluated the implementation by using NVidia Visual Profiler, 

and we compared the implementation to a previously optimized 

CPU C++ implementation. By employing suitable optimizations 

on code, we were able to reduce the runtime for each 512x512 

image from approximately 270 ms down to approximately 9 ms, 

which includes the time for all data transfers across PCIe bus.  We 

discuss our unique implementation of BLIINDS-II designed 

specifically for use on the GPU, the insights gained from the 

runtime analyses, and how the GPGPU techniques developed here 

can be adapted for use in other NR IQA algorithms. 

Introduction 
Effective and efficient quality assessment of visual content 

finds application in a plenty of areas ranging from quality 

monitoring of video delivery systems, comparison of compression 

techniques to image reconstruction. Unfortunately, the benefits of 

recent advances in IQA and VQA have not carried over to real 

world systems owing largely to long execution time of these 

algorithms even for a single frame of image as has been pointed 

out in multiple publications [1][2][3][9] in the past. GPGPU based 

implementation for three different Full Reference IQA algorithms 

have been presented in [4], [5] and [6] with varying success. In 

time sensitive applications like quality of service monitoring in 

live broadcasting and video conferencing, a fast performing No 

Reference IQA is very essential. Addressing this strong need [7] 

for real time No Reference IQA, we apply GPGPU techniques to a 

high performing No Reference IQA algorithm, BLIINDS-II. 

The objective of our project is to utilize the data parallelism in 

BLIINDS-II NR-IQA by implementing it using a GPGPU. We aim 

to study the compute resources and the memory bandwidth needed 

along with latency issues following the data access pattern of the 

algorithm and propose suitable optimization techniques. 

Overview of BLIINDS-II algorithm 

BLIINDS-II is a Non Distortion Specific Natural Scene 

Statistics (NSS) based NR-IQA. NSS models are the statistical 

models that represent undistorted images of natural scenes. The 

algorithm seeks to predict the quality score of a distorted image by 

estimating the deviation of a distorted image from NSS models. 

The algorithm first learns how the NSS model parameters vary 

with varying levels various types of image distortion. Later this 

learning is applied for the prediction of quality scores using the 

features extracted from the distorted image. It has been 

demonstrated to correlate well with human subjective image 

quality score and compares very well with other high performing 

FR IQA algorithms in literature. 

Next we describe the overall framework of the BLIINDS-II 

algorithm as shown in Figure 1. First the 2-D DCT coefficients of 

the input image are computed. These DCT coefficients are 

computed for each 5x5 pixel block of the image, with an overlap of 

one pixel width between two successive 5x5 blocks. 

The second step of the BLIINDS-II pipeline builds a 

parametric model of the extracted local DCT coefficients. Four 

parameters are computed for each 5x5 DCT block by applying a 

univariate generalized Gaussian density model to the non-DC 

coefficients of each block. These four parameters are described 

further below. 

In the third step, a feature vector is populated from the DCT 

coefficient parameters obtained in the previous step. There are two 

features extracted for each parameter. The obtained parameter 

values across all the 5x5 DCT blocks are averaged over the top 10 

percentiles and top 100 percentiles. These two averages are the two 

features for each parameter. At this point we have 8 features 

extracted at input image resolution (512x512). 

The features are extracted across three spatial scales, so the 

input image is down sampled two times and steps number one to 

three are repeated to obtain a features vector of length 24, 8 for 

each spatial scale. 

In the final step, a Bayesian inference approach is used to 

predict the image quality score from the extracted features. This 

involves computation of the posterior probability of each possible 

quality score given the extracted set of features using a 

multivariate generalized Gaussian density model trained on a 

subset of LIVE IQA image database. 

 

 

Figure 1. High-Level Overview of the BLIINDS-II Framework 
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Model based DCT Domain NSS Parameters 
The univariate generalized Gaussian density model is applied 

to the non-DC coefficients of each 5x5 local DCT block for 

obtaining the model parameters. It is given by: 

𝑓(𝑥|𝛼, 𝛽, 𝛾) = 𝛼𝑒−(𝛽|𝑥−𝜇|)𝛾
 (1) 

where 𝜇 is the mean, 𝛾 is the shape parameter, 𝛼 and 𝛽 are the 

normalizing and the scale parameters. 

Generalized Gaussian Model Shape Parameter (𝜸) 
The shape parameter 𝛾 is estimated using the following: 

 
Γ(1/𝛾)Γ(3/𝛾)

Γ2(2/𝛾)
=

𝜎𝑋
2

𝜇|𝑋|
2  (2) 

where Γ denotes the gamma function. We compute the right 

hand side of equation (2) and use a look up table to obtain the 

value of the shape parameter 𝛾. The CPU function and the GPU 

kernel to do this is called gama_dct. 

 

Coefficient of Frequency Variation (𝛇) 
The coefficient of frequency variation (𝜁) is obtained using: 

𝜁 =
𝜎|𝑋|

𝜇|𝑋|
 (3) 

The CPU function and the GPU kernel to do this is called 

rho_dct. 

Energy Subband Ratio Measure 
Each 5x5 DCT block is grouped into three radial subbands. 

The energy contained within each is referred to as 𝐸𝑛 where 𝑛 can 

be 1, 2 or 3. The energy subband ratio is computed using: 

𝑅𝑛 =
|𝐸𝑛− 

1

𝑛−1
∑ 𝐸𝑗|𝑗<𝑛

𝐸𝑛+ 
1

𝑛−1
∑ 𝐸𝑗𝑗<𝑛

 𝜎𝑛
2 (4) 

where 𝑛 can be 2 or 3. The energy subband ratio measure is 

the mean of 𝑅2 and 𝑅3. 

Orientation Model-Based Parameter 
Similarly, each 5x5 DCT block is grouped into three orients. 

The 𝜁 value for each orient is calculated and the variance of the 

three values is reported as Oriented Model-Based Parameter. 

Experimental Methodology 
Figure 1 shows a diagram of the flow of our CUDA 

implementation of BLIINDS-II algorithm. The distorted image is 

first read and cast as an array of floats, and then sent to the GPU 

across PCIe. Both the transform and the ensuing statistical 

operations in the algorithm are data parallel between 5x5 blocks of 

pixel. On the GPU, we execute all of these 5x5 blocks in parallel. 

After the features are extracted, the function that maps from 

feature space to quality score space is executed on the CPU. This 

CPU function is referred to as “Predict Score”. 

We implement the BLIINDS-II algorithm on an NVidia Tesla 

K40c with GK110 microarchitecture using CUDA/C++ for the 

GPU and the CPU codes. The performance analysis of our 

application was done using NVidia Visual Profiler (nvvp) and 

nvprof. Metrics related to compute utilization, achieved memory 

bandwidth and latency were analyzed to achieve better runtime 

performance across various images of natural scenes with various 

distortions and varying levels of each. For all time comparisons, 

between the C++ implementation and the CUDA implementation 

of the algorithm, we have used the results reported in [3] for C++ 

and our own observations for CUDA. Table 1 provides technical 

specifications of our test system. 

Table 1. Test System Specifications. 

CPU 

Intel® Xeon® Processor E5-1620 @ 
3.70 GHz 
Cores: 4 cores (8 threads) 
Cache: L1: 256KB, L2: 1 MB, L3: 10 
MB 

RAM 
24GB DDR3@1866 MHz(dual 
channel) 

OS Windows 7 Enterprise 64-bit 

Compiler Visual Studio 2013 64-bit; CUDA 7.5 

GPU1 NVidia Tesla K40(PCIe 3.0) 

GPU2 NVidia NVS 310 (PCIe 3.0) 

Results and Discussion 
The previous C++ implementation of the BLIINDS-II 

algorithm was reported to take almost 8.0 seconds for 30 iterations 

for one 512x512 image (approx.. 270 ms for one iteration of one 

512x512 image). This average run time was reported across images 

of various different natural scenes and across multiple distortion 

types with varying levels of distortion. These images are contained 

in the CSIQ database. 

As seen in the Table 2, from the performance comparison of 

C++ version of BLIINDS-II, the two most time consuming 

functions are local 5x5 DCT computation and gamma_dct. Our 

CUDA implementation also has similar trends but both of these 

functions have been modified in their flow to better suit the GPU 

architecture, while preserving their output. 

By employing suitable optimizations on code, we were able to 

reduce the runtime for each 512x512 image from approximately 

270 ms down to approximately 9 ms, which is well within the rate 

for real-time performance (assumed to be a 30 fps video rate). The 

reported times for CUDA version include the time spent on 

transferring data across the PCIe bus. The following subsections 

provide details of our preliminary results. 

Performance Comparison of C++ and CUDA 
Implementations 

Table 2 shows the timing comparison of the C++ 

implementation and the CUDA implementation on the test system. 

Please note that these times are the total times for 30 runs of the 

algorithm. The C++ implementation required 8 seconds for the 30 

runs, whereas the CUDA implementation required 0.27 seconds for 

the 30 runs. For the C++ implementation, the DCT stage required 

approximately half of the runtime. For the CUDA implementation, 

the Sort, took up half of the application run time. We have used 

sort from thrust library, included in CUDA toolkit. 
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Table 2. Performance Comparison of C++ and CUDA 

implementations of BLIINDS-II for 30 iterations. 

Implementation C++ CUDA 

 Time (ms) % time Time (ms) % time 

All 8032 100 266.31 100 

DCT 3811 47.44 8.15 3.06 

Gama_dct 1882 23.44 6.53 2.45 

Rho_dct 297 3.69 4.38 1.64 

Convolve 292 3.64 1.97 0.74 

Sort 265 3.31 117.72 44.21 

Other 1485 18.48 127.56 47.90 

 

Individual Execution Times of Hardware 
Transactions 

Table 3 shows the timings of each individual hardware-

transaction stage of the CUDA implementation. The GPU kernels 

required nearly 60% of the runtime, and the CPU cores require 

approximately the remaining 40%. Due to the minimal amount of 

the data that needs to be transferred between the CPU and GPU, 

the PCI Express memory transfer requires a negligible runtime. 

Similarly, only a very small percentage of the runtime is required 

for Predict Score, the CPU function which maps from feature 

space to quality score space. 

Table 3. Performance Evaluation of CUDA implementation of 

BLIINDS-II for 30 iterations 

 
Execution time 
(ms) 

% of total time 

Program time 266.31 100 

GPU kernel execution 156.79 58.87 

CPU 
execution 

Total 109.52 39.38 

Predict 
Score 

8.17 3.07 

PCIe memory transfer 4.65 1.75 

Performance Comparison of gama_dct 
Implementations 

Table 4 shows the runtime spent on the function gama_dct 

both in the original C++ implementation and in our CUDA 

implementation. We compare the execution time between three 

versions of the function we implemented in CUDA. The first 

version traverses a lookup table stored in global memory, while the 

second version copies data into shared memory. In the third 

version, we split gama_dct into three smaller functions, the first 

split performs computation, the second a sort. Only the third split 

of the function traverses the lookup table, which we stored in 

constant memory of the GPU, thereby we could specialize each of 

the split functions. 

The first version, we tried to read from a look up table stored 

in global memory. The table comprised of 9970 float values, and 

needed to be looked up for each 5x5 DCT block computed from 

the distorted image. For a 512x512 image, that results in 29241 

DCT blocks, with a worst case of linear traversal of the entire 

table. Not surprisingly, this version takes up longer than the CPU 

version of gama_dct function. 

In the second version, we copied the lookup table into shared 

memory, so as to reduce the access time for read. The size of a 

lookup table was around 40kB, and able to fit in a shared memory 

of 48 kB. Though there would still be some conflict because we 

have only one shared memory of 48 kB on a streaming 

multiprocessor (SM), but we have multiple threadblocks that map 

on to each SM. Each threadblock will try to put its own copy of the 

lookup table in shared memory and the shared memory won’t fit 

that. Still, we see a huge gain in performance over the first version 

of the CUDA gama_dct kernel. 

In the third version, we split the gama_dct kernel into three 

parts. The first split performed all the computations related to each 

5x5 DCT block up until the lookup table was to be accessed. 

Instead of accessing the look up table, it stored its result for each 

DCT block in a global memory array. The lookup table was stored 

in constant cache. The reads to this memory are fast if an entire 

half warp accesses the same address in it. To suit this, the second 

split sorted the recently populated global memory array with the 

intermediate results. Finally the third split performed the look up 

for each entry in the global array. This lookup was executed as a 

binary search instead of linear search as in the previous versions. 

The time comparisons of each version is shown in Table 4. 

Table 4. Performance Comparison of gama_dct computation 

methods for 30 iterations. 

gama_dct C++ 

CUDA 
Method 1 
(Global 
Memory) 

CUDA 
Method 2 
(Shared 
Memory) 

CUDA 
Method 3 
(Split in 
three 
kernels) 

Run time 
(ms)  

1882 9215.73 781.84 6.53 

 

Rearrange Image 
Like many other IQA algorithms, there is local block based 

processing of image data in BLIINDS-II. Each of these local 5x5 

blocks was laid out in memory sequentially, to create a data 

parallel path of execution of the algorithm. This rearrangement 

causes some pixel data duplication, owing to the overlap in local 
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DCT blocks. The new image array size turned to 171*171*32 

elements as opposed to 512*512 elements in the original image, an 

increase in memory requirement by a factor of 3.6. 

Compute Local 5x5 DCT 
Table 5 shows a comparison of execution time of various 

implementations of local DCT computation. In our DCT method 1 

for GPU, we used the cuFFT library to compute 1D Fourier 

transforms and used them to arrive at 2D cosine transforms. This 

method required two invocations of cuFFT 1D transform and two 

invocations of our custom kernel for converting 1D FFT to 1D 

DCT. 

In DCT method 2, we compute DCT by matrix multiplication 

method on each local 5x5 pixel block. The DCT matrix was 

obtained from Matlab dctmtx function.  

Table 5. Performance Comparison of DCT Computation using 

cuFFT (Method 1) and DCT Matrix Multiplication (Method 2). 

 
CPU Matrix 
Multiply DCT 

DCT 
method 1 

DCT 
method 2 

Time 
(ms) 

3811 25.36 7.62 

 

Merge kernels to minimize global memory load 
store 

We merged some kernels together so as to avoid having to 

write intermediate results back to GPU global memory. Tables 6 

and 7 contain the timing results from our efforts at merging 

kernels. The results from merging rearrange image and compute 

local DCT are shown in Table 6. Compute DCT is the logical next 

step after rearrange image and directly uses the results of the latter. 

Oriented_dct feature to be captured from the image for 

BLIINDS-II processes the local DCT blocks in three different 

orients. In the earlier C++ and original Matlab implementation of 

BLIINDS-II algorithm, there were three different function calls, 

each of which processed the DCT block separately. Method 1 (for 

individual orient) in Table 7 followed the same structure by 

executing different kernels for each orient. Method 2 on the other 

hand sought to merge them together and reported significant gains 

in performance. 

Table 6. Performance Comparison of RearrangeAndDCT. 

 
Rearrange 
kernel 

DCT 
kernel 

RearrangeAndDCT 

Run time 
(ms) 

3.42 7.62 8.15 

Table 7. Performance Comparison of oriented_dct kernels. 

oriented_dct 
Method 1 
(For individual orient) 

Method 2 
(Merged kernel) 

Run time (ms) 8.59 3.72 

 

Conclusions 
In this paper, we present a significantly accelerated version of 

the popular BLIINDS-II no-reference (NR) IQA algorithm by 

using the GPU. To the best of our knowledge, this is the first work 

to use GPGPU for NR IQA based on an analysis of the interaction 

of BLIINDS-II with the underlying hardware. Another contribution 

of this work is a unique implementation of BLIINDS-II’s statistical 

operations designed specifically for use on the GPU. As a result, 

we are able to present to a version of BLIINDS-II that is capable of 

real-time performance, significantly improving upon the 

previously reported runtime after CPU optimizations in C++ [3]. A 

high speed of execution is critical in application of IQA to video 

delivery systems, where minimizing the lag is very important. 

The analysis of our CUDA implementation shows the top two 

bottleneck functions to be thrust::sort (44.2%) and thrust::reduce 

(3.8%). Both of these are Nvidia Thrust library functions bundled 

with the CUDA toolkit. It is interesting to note that even though 

the bottleneck functions have changed in the CUDA 

implementation as compared to the C++ implementation, each 

kernel individually is faster than the corresponding function in the 

C++ implementation. Even thrust::sort, the bottleneck kernel for 

CUDA performs 2.3x faster than the sort in C++ implementation. 

We have demonstrated two instances where merging a few 

smaller kernels together led to better performance. This is seen in 

the case of merging rearrange image with compute DCT and 

merging the three oriented_dct kernels together. 

In another instance, we have observed a speedup as we split 

gama_dct into smaller kernels performing a part of the original 

kernel. Such situations are likely to be observed in case of traversal 

through lookup tables. 

Future Work 
The strategies used here should be extended and applied to 

other implement other IQA algorithms. The performance gains 

achieved over here could be used to develop and implement IQA 

algorithms for colored images and/or higher resolution images. To 

further improve the performance, one must look into better 

performing alternatives to Thrust library kernels for both sort and 

reduce. A few options can be cub::DeviceRadixSort and 

ModernGpu MergeSort. Another avenue to look into for 

performance improvement is more opportunities for merging 

smaller kernels together. 

The current CUDA implementation of BLIINDS-II should be 

applied to a real video delivery system, like a live video broadcast 

or video conference, to learn about the image quality degradations 

along the delivery channel. Such data can be used to better 

optimize existing delivery systems. 
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