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Abstract
No-reference image quality metrics are of fundamental inter-

est as they can be embedded in practical applications. The main
goal of this paper is to define a new selection process of attributes
in no-reference learning-based image quality algorithms. To per-
form this selection, attributes of seven well known no-reference
image quality algorithms are analyzed and compared with respect
to degradations present into the image. To assess the performance
of these algorithms, the Spearman Rank Ordered Correlation Co-
efficient (SROCC) is computed between the predicted values and
the MOS of three public databases. In addition, an hypothesis
test is conducted to evaluate the statistical significance of perfor-
mance of each tested algorithm.

Introduction
Lossy image compression techniques such as JPEG2000 al-

low high compression rates, but only at the cost of some perceived
degradation in image quality. The way to evaluate the perfor-
mance of any compression scheme is a crucial step, and more
precisely available ways to measure the quality of compressed
images. There is a very rich literature on image quality criteria,
generally dedicated to specific applications (optics, detector, com-
pression, restoration, . . . ). From several years, a number of re-
searches have been conducted to design robust No-Reference Im-
age Quality Assessment (NR-IQA) algorithms, claiming to have
made headway in their respective domains. NR-IQA algorithms
generally follow one of three trends. 1) Distortion-specific ap-
proaches: These employ a specific distortion model to drive an
objective algorithm to predict a subjective quality score. These
algorithms quantify one or more distortions such as blockiness
[1, 2], blur [3, 4] or ringing [5, 6] and score the image accordingly.
2) Training-based approaches: these train a model to predict the
image quality score based on a number of features extracted from
the image [7, 8, 9, 10, 11]. 3) Natural scene statistics (NSS) ap-
proaches: these rely on the hypothesis that images of the natural
world (i.e. distortion free images) occupy a small subspace of the
space of all possible images and seek to find a distance between
the test image and the subspace of natural images [11, 12, 13].

Yet, all existing algorithms fail for at least one to correctly
predict the quality of an image when degradation has not been
learned. Degradation is not necessarily the same for the trial algo-
rithms. Taking into account those failure cases will help to design
a robust NR-image quality assessment algorithm.
In this paper, we develop a NR-image quality assessment al-
gorithm based on an attribute selection approach. All the at-
tributes are extracted from usually used and well-known NR-IQA

training-based algorithms. The trial NR-IQA algorithms used are
the following: 1) BIQ-An [12], 2) BIQI [11], 3) DIIVINE [14], 4)
BLIINDS [15], 5) BLIINDS-2 [16], 6) BRISQUE [17], 7) NIQE
[18]. The implementations of the algorithms were either publicly
available on the Internet or obtained from the authors. A features
vector is constructed from all attributes and a attribute selection
process is designed to only keep descriptors that have been identi-
fied as meaningful with respect to the image. The rest of paper is
organized as follows. Section II presents the used databases. The
proposed new NR-IQA is given in Section III. The performance
is evaluated in Section IV and a conclusion is made in Section V.

NR-IQA algorithms and image databases
Trial NR-IQA schemes

All attributes considered in this paper are extracted from NR-
IQA learning-based metrics summarized in Table 1. This table
also gives the number of attributes used by each algorithm.

NR-IQA algo-
rithm

comments # at-
tributes

BIQI Machine learning-based ap-
proach (SVM).

18

DIIVINE Classification (SVM) and Re-
gression (SVR)

88

BLIINDS Machine learning-based ap-
proach (Probabilistic model)

12

BLIINDS-II Machine learning-based ap-
proach (Probabilistic model)

12

BIQ-An Renyi entropy measure along
various orientations

6

NIQE Space domain natural scene
statistic model

18

BRISQUE Natural scene statistic-based
distortion-generic

18

Table 1: NR-IQA trial Algorithms

Databases description
To provide comparison of NR-IQA algorithms, three pub-

licly available databases are used: 1) LIVE database [19], 2)
TID2008 database [20] and 3) CSIQ image database [21]. The
LIVE database contains 29 original images on which five kinds
of distortions have been applied to generate 770 degraded im-
ages. The TID2008 database contains 1700 distorted versions of
25 original images (from Kodak Lossless True Color Image Suite)
applying 17 distortion types. The CSIQ database consists of 30
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Figure 1. General scheme of the proposed NR-IQA algorithm based on

combination of features.

original images, each distorted using six types of distortions at
four to five different levels as detailed above.

Tampere Image Database 2008 (TID2008)
The Tampere Image Database 2008 (TID2008) was cre-

ated in 2008, for the evaluation of full-reference image qual-
ity assessment metrics and developed at the Tampere Univer-
sity of Technology, in Finland. The TID2008 contains 25 ref-
erence images and 1700 distorted images corresponding at 17
types of distortions on 4 levels. Reference images are ob-
tained by cropping from Kodak Lossless True Color Image Suite
(http://r0k.us/graphics/kodak/). All images are in BMP format at
384X512 pixels resolution. A software which developed based on
Swiss System is using to conduct the psychophysical experiment.
Mean Opinion Scores (MOS) were calculated from the subjective
data. The MOS were obtained from the results of 838 experiments
carried out by observers from three countries: Finland, Italy, and
Ukraine (251 experiments have been carried out in Finland, 150
in Italy, and 437 in Ukraine). Totally, the 838 observers have per-
formed 256428 comparisons of visual quality of distorted images
or 512856 evaluations of relative visual quality in image pairs.
Subjective evaluations were made in standard PC laboratory or
via the internet. http://www.computervisiononline.com/

dataset/tid2008-tampere-image-database-2008

Categorical Subjective Image Quality (CSIQ) Database
The Categorical Subjective Image Quality (CSIQ) Database

was released by the Computational Perception and Image Qual-
ity Lab, at the Oklahoma state University, in 2010. It con-
sists of 30 original images, each is distorted using six differ-
ent types of distortions at four to five different levels of distor-
tion. CSIQ images are subjectively rated base on a linear dis-
placement of the images across four calibrated LCD monitors
placed side by side with equal viewing distance to the observer.

The database contains 5000 subjective ratings from 35 differ-
ent observers, and ratings are reported in the form of Difference
of Mean Opinion Scores (DMOS). Subjective evaluations were
made on pre-calibrated display and viewing distance is 70cm.
http://vision.okstate.edu/?loc=vqa\_samviq

NR-IQA scheme design
General Scheme

All the trial NR-IQA methods applies the same principle:
after computing a set of different features, a combination of this
set is performed in different ways. In this paper, the design a NR-
IQA algorithm is based on a new selection process of relevant
attributes provided by different common NR-IQA methods. Fig
1 displays the general scheme of the proposed method. From all
trial NR-IQA schemes, all features are computed. This yields to
a set of n features. From this initial set a subset of M attributes
is generated (under the constraint that M ≤ n) in order to keep
the most relevant features with respect to some criteria. Then a
combination of these M features is performed to design a NR-
IQA algorithm scoring with a high correlation level with human
judgments of image quality.

Attributes selection criteria
Given a set of visual attributes describing an image, we use

a Manifold Learning method to project the data on a new low-
dimensional space. Thus, nonlinear new discriminant features of
the input data are yielded. The obtained low dimensional sub-
manifold is used as a new representation that is transmitted to
design the proposed NR-IQA algorithm.

When data objects are described by a large number of fea-
tures (i.e., the data are of high dimension) it is often beneficial
to reduce the dimension of the data. Dimension reduction can
be beneficial not only for reasons of computational efficiency but
also because it can improve the accuracy of the analysis. To deal
with this issue, dimension reduction techniques are often applied
as a data pre-processing step or as part of the data analysis to
simplify the data model. This typically involves the identifica-
tion of a suitable low-dimensional representation for the original
high-dimensional data set. Dimensionality reduction methods can
be divided into two sets whether the transformation is linear or
nonlinear. We detail here the principles of Laplacian Eigenmaps
(LE)[22] that will be used in this study.

Let X = {x1,x2, · · · ,xn} ∈ IRp be n sample vectors. Dimen-
sionality reduction consists in finding a new low-dimensional rep-
resentation in IRp with q� p.

Given a neighborhood graph G associated to the vectors of
X , one considers its adjacency matrix W where weights Wi j are
given by a Gaussian kernel

Wi j = k(xi,x j) = e

(
−
||xi−x j||2

σ2

)
. (1)

Let D denote the diagonal matrix with elements Dii = ∑ j Wi j and
∆ denote the un-normalized Laplacian defined by ∆ = D−W .

Laplacian Eigenmaps dimensionality reduction con-
sists in searching for a new representation {y1,y2, · · · ,yn}
with yi ∈ IRn, obtained by minimizing 1

2 ∑
i j

∥∥yi−y j
∥∥

2 Wi j =

Tr(YT
∆Y) with Y = [y1,y2, · · · ,yn]. This cost function encour-

ages nearby sample vectors to be mapped to nearby outputs.
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CSIQ subset BIQI DIIVINE BLIINDS BLIINDS-II BIQ-An NIQE BRISQUE FSIQI
JP2k 0.708 0.830 0.575 0.895 0.460 0.906 0.866 0.901
JPEG 0.867 0.799 0.264 0.901 0.012 0.883 0.903 0.902

Gaussian Noise 0.324 0.176 0.293 0.379 0.091 0.299 0.252 0.402
Add. Gaussian Pink Noise 0.879 0.866 0.555 0.801 0.303 0.810 0.925 0.917

Gaussian Blur 0.771 0.871 0.774 0.891 0.739 0.892 0.903 0.894
Global Contrast Decrement 0.585 0.396 0.078 0.012 0.767 0.232 0.029 0.156

Cumulative subsets 0.619 0.596 0.170 0.577 0.286 0.628 0.566 0.699
Table 2: SROCC values computed between predicted scores and MOS values for the CSIQ Images database.

TID2008 subset BIQI DIIVINE BLIINDS BLIINDS-II BIQ-An NIQE BRISQUE FSIQI
Additive noise in color compo-
nents is more intensive than addi-
tive noise in the luminance com-
ponent

0.46 0.366 0.441 0.778 0.117 0.742 0.495 0.781

Spatially correlated noise 0.589 0.722 0.245 0.446 0.311 0.758 0.584 0.746
Masked noise 0.897 0.872 0.688 0.866 0.175 0.854 0.623 0.895
High frequency noise 0.787 0.864 0.583 0.586 0.016 0.687 0.582 0.855
Impulse noise 0.406 0.188 0.039 0.719 0.110 0.812 0.723 0.788
Quantization noise 0.747 0.824 0.663 0.839 0.570 0.817 0.799 0.772
Image denoising 0.306 0.759 0.509 0.760 0.481 0.605 0.570 0.796
JPEG2000 transmission errors 0.367 0.021 0.211 0.606 0.262 0.493 0.260 0.489
Non eccentricity pattern noise 0.010 0.032 0.033 0.142 0.067 0.016 0.163 0.131
Local blockwise distortions of
different intensity

0.022 0.060 0.150 0.457 0.124 0.183 0.175 0.421

Mean shift (intensity shift) 0.024 0.050 0.355 0.057 0.384 0.138 0.091 0.312

Cumulative subsets 0.282 0.145 0.072 0.342 0.037 0.134 0.225 0.451
Table 3: SROCC values computed between predicted scores and MOS values for the TID Images database subsets for which
associated degradations are not common with LIVE database subsets.

This is achieved by finding the eigenvectors y1,y2, · · · ,yn of
matrix ∆. Dimensionality reduction is obtained by consid-
ering the q lowest eigenvectors (the first eigenvector being
discarded) with q� p and is defined by the following operator
hLE : xi → (y2(i), · · · ,yq(i)) where yk(i) is the ith coordinate of
eigenvector yk.

Final quality score calculation
Once the laplacian eigenmaps is performed on initial data,

all generated eigenvectors are descending ordered by their associ-
ated eigenvalues. Then data are projected on this eignespace. Let
f̃i) be the i-th projected data. The final quality score based on a
selection process, namely Feature Selection-based Image Quality
Index (FSIQI) can be expressed as a M-parameters function :

FSIQI =
M

∏
i=1

( f̃i)αi (2)

where αi is a weight factor applied to the i-th projected data f̃i)
and M is the number of considered attributes. The main objective
is to find optimal exponent values of (2).

The associated error function
From (2), the search for the exponent values seeks to mini-

mize the error function

E(αi; i = 1, · · · ,M) = (3)

min
(

∑
K
j=1(DMOS j−FSIQI j(αi))

2
)

where K is the number of tested images for which the DMOS
values are provided, and FSIQI j(.) are the quality computed rates
obtained following a logistic regression as depicted in [23].

In other words, the goal is to estimate the M exponent values
that minimize the error function E(.). Since the error function is
non-convex and may contain numerous local optima, the choice
of search strategy to optimize it is important.

Search strategy
The Genetic Algorithm (GA) is a population-based stochas-

tic search procedure that finds exact or approximate solutions to
optimization and search problems. Modeled on the mechanisms
of evolution and natural genetics, genetic algorithms uses directed
random searches to locate optimal solutions in multimodal land-
scapes. Their basic principles were first introduced by Holland in
1975 [24].

Usually, a simple GA is composed of three operations: selec-
tion, genetic operation, and replacement. GAs use a population,
which is composed of a group of chromosomes, to represent the
solutions of the system. Defining the solution representation of
the system is the first task when applying GAs. The solution in
the problem domain can then be encoded into the chromosome in
the GA domain, and vice versa. Initially, a population is randomly
generated. The fitting function then uses values from objective
functions to evaluate the quality of fit of each chromosome. Next,
a particular group of chromosomes is chosen from the popula-
tion to be parents. The offsprings are then generated from these
parents using genetic operations (crossover and mutation). The
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BIQI DIIVINE BLIINDS BLIINDS-II
FSIQI 11-11-111111 1---10-11111 1111111111-1 -1-1-0-0--11

BIQ-An NIQE BRISQUE FSIQI
FSIQI 111111111101 ---1001-1111 1111--110111 ------------

Table 4: Statistical significance matrix of NR-IQA/DMOS on TID database subsets. Each entry in the table is a codeword consisting
of 12 symbols. The position of the symbol represents the tested subsets as mentioned in the first column of Table 3. Each symbol
gives the result of the hypothesis test on the subset: ’1’ means that the algorithm for the row is statistically better that the algorithm
for the column, ’0’ means it is worse, and ’-’ means it is indistinguishable.

BIQI DIIVINE BLIINDS BLIINDS-II BIQ-An NIQE BRISQUE FSIQI
BIQI -------- --0-01- 11---1 100-01- 111-1-1 100-01- 000-010 0000010

DIIVINE --1-10- ------- 111--01 100--0- 111-101 10--00- 00--000 0000-10

BLIINDS 00---00 000--10 ------- 000---0 1-1-10- 000-0-0 000-0-0 00000-1

BLIINDS 2 011-10- 011--1- 111---1 ------- 111-101 ----0-- 0---0-0 0--0-00

BIQ-An 000-0-0 000-010 0-0-01- 000-010 ------- 000-010 000-010 0000010

NIQE 011-10- 01--11- 111-1-1 ----1-- 111-101 ------- 0-----0 --00-1-

BRISQUE 111-101 11--111 111-1-1 1---1-1 111-101 1-----1 ------- --0--00

FSIQI 1111101 1111-01 11111-0 1--1-11 1111101 --11-0- --1--11 -------

Table 5: Statistical significance matrix of NR-IQA/DMOS on CSIQ database subsets. Each entry in the table is a codeword consist-
ing of 7 symbols. The position of the symbol represents the tested subsets: Additive pink Gaussian noise, JP2K, JPEG, Gaussian
noise, Gaussian blur, Global Contrast Decrements, all data. Each symbol gives the result of the hypothesis test on the subset: ’1’
means that the algorithm for the row is statistically better that the algorithm for the column, ’0’ means it is worse, and ’-’ means it
is indistinguishable.

fitness of the offspring is then evaluated and used in replacement
processes in order to replace the chromosomes in the current pop-
ulation by the selected off-spring. The GA cycle is then repeated
until a desired termination criterion is satisfied, or the objective
value is below the threshold.

In this paper, M is the number of features used to com-
pute FSIQI values. In that case, the GA domain represents
a M-dimensional space in which one point is expressed as
(αi, · · · ,αM), and the fitness function is defined by (3).

Performance Evaluation
Apparatus

FSIQI results are compared to results provided by all trial
NR-IQA algorithms. To preform this evaluation, the Spearman
Rank Order Correlation Coefficient (SROCC) is computed be-
tween the DMOS values and the predicted scores obtained from
NR-IQA algorithms. Since the LIVE database has been used
to find optimal αi and M parameters, both TID2008 and CSIQ
databases will serve as test set.

In addition, to ascertain which differences between NR-IQA
schemes performance are statistically significant, we applied an
hypothesis test using the residuals between the DMOS values and
the ratings provided by the IQA algorithms. This test is based on
the t-test that determines whether two population means are equal
or not. This test yields us to take a statistically-based conclusion
of superiority (or not) of an NR-IQA algorithm.

How to choose M value ?
In order to investigate the optimal αi values and the M pa-

rameters needed to design FSIQI algorithm, we used the LIVE
database as training set to compute initial features.

Finding the number M is rely to figure out the dimension i of
the eigenspace. This can be expressed as ∀i ∈ [1, . . . ,n],

argmin
i
(SROCC(FSIQI(i))−SROCC(FSIQI(i+1))< ε) (4)

In this study ε = 0.1, and we found that for eigenspaces of
more than 8 dimensions, corresponding SROCC values are very
close and consecutive differences are lower than ε . This, only
the 8 first eigenvectors are considered to define the eigenspace on
which initial features will be projected on.

Comparison results
In order to evaluate the performance of the FSIQI algorithm,

a comparison of SROCC values obtained from all trial NR-IQA
schemes is performed on both TID2008 and CSIQ database. Table
2 presents obtained results when SROCC is computed between
predicted scores and MOS values for the CSIQ Images database
for all trial NR-IQA algorithms and the proposed one. One can
observe that the performance of the trial NR-IQA algorithm vary
according to degradation even if NIQUE and BRISQUE seem to
be better than the remaining ones. However, FSIQI the proposed
method, presents high performance whatever the degradation (ex-
cept for the last one (Global contrast decrement)).

Table 3 presents obtained results when SROCC is computed
between predicted scores and MOS values for the TID Images
database subsets which are not common to the LIVE database
and for all trial NR-IQA algorithms and the proposed one. One
can also notice that the performance of the 7 trial NR-IQA algo-
rithms are highly dependent on the considered degradation. BIQI
performs better for masked noise, DIIVINE for high frequency
noise, BLIINDS-II for additive noise, quantization noise and im-
age denoising and JPEG2000 transmission errors, NIQE for spa-
tially correlated noise and impulse noise. By contrast, FSIQI,
equals or outperforms the best trial NR-IQA algorithm regard-
less of the considered degradation. Moreover, the SROCC value
of FSIQI metric is equal or greater than 0.772 for the first seven
degradations. For a learning-based metric as FSIQI, this perfor-
mance remains very interesting since the training set and the test
set have no common degradations.

Table 4 gives obtained results when a One-sided t-test is
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Algorihm BIQI DIIVINE BLIINDS BLIINDS-II BIQ-An NIQE BRISQUE FSIQI
time 6.95 38.39 509.82 131.25 1.97 0.83 0.75 376.54

Table 6: Comparison of computational time (in second/image)

used to provide statistical significance of NR-IQA/DMOS on TID
database. Each entry in this table is coded using 12 symbols. The
position of each symbol corresponds to one subset of the TID
database as expressed in table 3. Each symbol gives the result
of the hypothesis test on the subset. If the symbol equals ’1’,
the NR-IQA on the row is statistically better than the NR-IQA
on the column (’0’ means worse, ’-’ is used when NR-IQAs are
indistinguishables). On can observe that difference between qual-
ity scores predicted with FSIQI and any trail algorithms is most
of the time significant when the entire database is considered or
when any subset is used. Since the learning process is applied on
LIVE database to design FSIQI, this result illustrates its capabil-
ity to judge well image quality when applied degradations are not
learnt.

Tables 5 shows similar results when CSIQ database is con-
sidered. The position of the symbol represents the tested sub-
sets: Additive pink Gaussian noise, JP2K, JPEG, Gaussian noise,
Gaussian blur, Global Contrast Decrements, all data. Considering
the global performance on all data subsets, FSIQI over performs
all other tested NR-IQA methods, except BLIINDS. Yet for one
particular degradation (Global Contrast Decrements associated to
the 6th digit), FSIQI seems to be less efficient than other trial al-
gorithms to predict quality scores.

Finally, to compare the computational complexity of the pro-
posed algorithm, we measured the average computation time re-
quired to assess an image of size 512× 578 (using a computer
with Intel Core-I7 processor at 2.2GHz). Table 6 reports the mea-
surement results, which are rough estimates only, as no code opti-
mization has been done on our Matlab implementations. It can be
observed that the proposed method is one of the time consuming
method but less than BLIINDS. This is not really surprising, since
FSIQI consists in using all attributes of prior NR-IQA algorithms
(around 180 attributes) to compute final score in another space.

Yet, one can remark that since the dimensionality of the
eigenspace is to be equal 8, this means that the fundamental NR-
IQA problem exists in a space of around 8 attributes.

Conclusion
We have used a selection process of quality attributes based

on manifold to design a new NR-IQA scheme, named FSIQI.
Considering all attributes used by seven trial NR-IQA algorithms,
a high dimensional feature vector is obtained and the reduced ap-
plying laplacian eigenmaps. We have shown the new FSIQI algo-
rithm only needs eight features to performs well in this new rep-
resentation space of features. The method correlates highly with
human perception of quality, and outperforms recent NR-IQA al-
gorithms.
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