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Abstract. This article proposes a new no-reference image quality
assessment method that is able to blindly predict the quality of an
image. The method is based on a machine learning technique that
uses texture descriptors. In the proposed method, texture features
are computed by decomposing images into texture information
using multiscale local binary pattern (MLBP) operators. In particular,
the parameters of local binary pattern operators are varied, which
generates MLBP operators. The features used for training the
prediction algorithm are the histograms of these MLBP channels.
The results show that, when compared with other state-of-the-art
no-reference methods, the proposed method is competitive in terms
of prediction precision and computational complexity. c© 2016
Society for Imaging Science and Technology.

INTRODUCTION
Given the high volume of visual media available, the task
of assessing the visual quality of a content is becoming in-
creasingly important. In particular, image quality assessment
(IQA) methods are often necessary to estimate the perfor-
mance of compression techniques,1 transmission processes,
displays, enhancement and restoration algorithms,2 or any
type of image processing technique.

There are two types of IQA methods: subjective and
objective.3 Subjective quality assessment methods consist
of psychophysical experiments in which human subjects
estimate the quality of a series of stimuli.4 These experiments
are expensive, laborious, time-consuming, and, therefore,
hard to incorporate into an automatic system. On the other
hand, in objective quality assessment methods, computer
algorithms substitute psychophysical experiments, making
it possible to implement fast and cheap procedures for
monitoring and controlling the quality of images.5
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Objective image quality assessment methods are gener-
ally classified into three classes, according to the amount of
reference information required by the algorithm.6 If the full
reference (original image) is required to estimate the image
quality, the algorithm is classified as a full-reference (FR)
method. When only partial information about the reference
(e.g., features extracted from the original image) is used, the
algorithm is classified as a reduced-reference (RR) method.
Since requiring even partial reference information is an
impediment for several multimedia applications, in most
cases the most suitable solution is to use no-reference (NR)
methods, which blindly estimate the quality of a test image
without requiring any information about its reference.

Although a lot of work has been carried out in the area
of IQA, most efforts have been in the development of FR
methods, and there are still many open questions in the area
of no-reference image quality assessment (NR-IQA).7 The
development of fast and accurate NR-IQA methods is still
a challenging problem, with two popular approaches. The
first approach is distortion-specific NR-IQA (DS-NR-IQA),
which estimates the perceived quality of an image using
specific distortion measures.8–10 The second approach is
non-distortion-specific NR-IQA (NDS-NR-IQA). NDS-NR-
IQA methods are generally based on the assumption that
natural images cover a small subset of all possible images
(including distorted images), and, therefore, a statistical
comparison between test images and the subset of natural
images can be used to obtain a quality estimate.11–13

NDS-NR-IQA methods that perform a statistical com-
parison between impaired and non-impaired natural images
are known as ‘‘natural scene statistic’’ (NSS)-based methods.
As mentioned earlier, NSS methods are based on an analysis
of the statistical regularities of non-distorted natural images,
considering a set of features or artifacts. For example, Saad
et al.13 have successfully used Discrete Cosine Transform
(DCT) domain statistics to determine the model parameters
that are sensitive to most commonly perceived artifacts.
Sheikh et al.14 have developed an NR-IQA method using
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Figure 1. Circularly symmetric P neighbors extracted from a distance R.

joint histograms of adjacent wavelet coefficients. More
recently, Liu et al.15 proposed an NR-IQA method that
uses a set of statistical features extracted from the curvelet
representation of an image.

Another way to develop NDS-NR-IQA methods is
to use machine learning (ML) techniques to identify
patterns that characterize different quality levels. While
NSS-based approaches analyze the statistical differences
between impaired and non-impaired images for specific
artifacts, ML approaches delegate to the computer the task
of recognizing which patterns better reflect the changes in
quality caused by the presence of artifacts. Given the complex
non-linear processes that underlie human perception and
contribute to quality perception, we believe that the use of
machine learning and pattern recognition techniques can
lead to NR-IQA methods with good accuracy performance.
Among the several NDS-NR-IQAmethods that use machine
learning, we can mention the works of Ye et al.,16,17
Zhang et al.,18,19 Liu et al.,20 and Freitas et al.21 Although
these ML methods show promising results, they have
limitations, especially in terms of computational complexity
and prediction performance.

To overcome the above-mentioned limitations, we
propose a newMLNDS-NR-IQAmethod. Instead ofmaking
assumptions about specific image artifacts or statistical
differences between impaired and non-impaired images, the
proposed method uses pattern recognition techniques to
analyze texture information and predict image quality. To
the best of our knowledge, the only other methods that have
used a similar approach were proposed by Ye et al.16 and
Freitas et al.21 Ye et al.16 used large codebooks of complex and
computationally expensive Gabor-filter-based features to
perform an analysis of the image textures. To estimate quality,
their algorithm compares distorted and non-distorted image
patches. Freitas et al.21 used an extension of the local binary
pattern (LBP) descriptor, known as local ternary pattern
(LTP), which uses three levels to quantize the differences
between a pixel and its neighbor. The method is fast and
reliable, but it produces poor results for some specific
artifacts.

The method proposed in this article has the goal of
investigating the influence of a multiscale operator on the
sensitivity to image impairments and, therefore, improving
the accuracy performance. Instead of using LTP operators
like Freitas et al.,21 in this work we use fast texture feature
extractors, which are multiscale versions of the local binary
pattern (LBP) operators. More specifically, the multiscale

Figure 2. Calculation of LBP labels.

LBP (MLBP) operator applies the regular LBP operator for
multiple radius and sampling point parameters. The MLBP
operator was proposed by Ojala et al.22 and has been used in
several applications, such as face recognition23 and texture
analysis.24 In this article, we adapt the MLBP operators to
efficiently capture the texture properties that are affected
by quality changes. We use a set of public image databases
to measure the prediction accuracy and computational time
of the proposed method. When compared with current
state-of-the-art NR-IQA methods, the proposed method
has a lower computational complexity and a higher quality
prediction accuracy.

LOCAL BINARY PATTERNOPERATOR
The local binary pattern (LBP) is arguably one of the most
powerful texture descriptors. It was first proposed by Ojala
et al.,25,26 and has since been proven to be an effective feature
extractor for texture-based problems. The traditional LBP
operator22 takes the form

LBPR,P(Ic)=
P−1∑
p=0

S(Ip− Ic)2p, (1)

where

S(t)=

{
1, t ≥ 0,
0, otherwise.

(2)

In Eq. (1), Ic = I(x, y) is an arbitrary central pixel at
the position (x, y) and Ip = I(xp, yp) is a neighboring
pixel surrounding Ic , where xp = x + R cos

(
2π(p/P)

)
and yp = y − R sin

(
2π(p/P)

)
. P is the total number of

neighboring pixels Ip, sampled with a distance R from Ic .
Figure 1 illustrates examples of symmetric samplings with
different numbers of neighboring points (P) and radius (R)
values.

Figure 2 illustrates the steps for applying the LBP
operator on a single pixel (Ic = 8) located in the center of a
3× 3 image block, as shown in the bottom left of this figure.
The numbers in the yellow squares of the block represent the
order in which the operator is computed (counter-clockwise
direction starting from 0). In this figure, we use a unitary
neighborhood radius (R = 1) and eight neighboring pixels
(P = 8). After calculating S(t) (Eq. (2)) for each neighboring
pixel Ip, we obtain a binary output for each Ip (0≤ p≤ 7), as
illustrated in the block in the upper-left position of Fig. 2.
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Figure 3. Reference image and its corresponding local binary pattern (LBP) channels computed using three different radius (R ) values.

In this block, black circles correspond to ‘‘0’’ and white
circles to ‘‘1.’’ These binary outputs are stored in a binary
format, according to their position (yellow squares). Then,
the resulting binary number is converted to the decimal
format. This decimal number is the output generated by the
LBP operator for Ic . After applying the operator for all pixels
in an image, we obtain a set of labels, which is known as the
LBP channel. Figure 3 shows examples of LBP channels for
the image ‘‘Baboon,’’ obtained using different radius values
and numbers of neighboring points.

When an image is rotated, the Ip sampled values
move along the perimeter of the circumference around Ic ,
generating a circular shift in the binary number generated.
As a consequence, a different decimal LBPR,P(Ic) value is
obtained. To remove this effect, we can use the following
rotation-invariant operator:

LBPri
R,P(Ic)=min{ROTR(LBPR,P(Ic), k)}, (3)

where k = {0, 1, 2, · · · , P − 1} and ROTR(x, k) is the
circular bit-wise right shift operator that shifts the tuple x by
k positions.

Due to the crude quantization of the angular space
and the occurrence of specific frequencies in individual
patterns,26,27LBPR,P and LBPri

R,P operators do not always
provide a good discrimination.27 To improve the discrim-
inability, Ojala et al.22 proposed an improved operator that
captures fundamental pattern properties. These fundamental
patterns are called ‘‘uniform’’ and are computed as follows:

LBPu
R,P(Ic)=


P−1∑
p=0

S(Ip− Ic), U (LBPri
R,P)≤ 2,

P + 1, otherwise,

(4)

where U (LBPP,R) = 1(IP−1, I0) +
∑P−1

p=1 1(Ip, Ip−1), and
1(Ix , Iy)= |S(Ix − Ic)− S(Iy − Ic)|. In addition to a better
discriminability, the uniform LBP operator described in
Eq. (4) has the advantage of generating fewer distinct LBP
labels. While the ‘‘non-uniform’’ operator (Eq. (1)) produces
2P different output values, the uniform operator produces
only P + 2 distinct output values.

IMAGE QUALITY ASSESSMENTMETHOD
The proposed method is based on the assumption that
visual impairments alter image textures and their statis-
tics. In other words, images with similar impairments, at
similar strengths, have textures that share similar statistical
properties. Therefore, features extracted by the proposed
method are basically statistics of texture descriptors that

(a)

(b)

Figure 4. Feature extraction steps.

capture changes in quality. The proposed algorithm has two
main stages: (1) feature extraction and (2) image quality
prediction.

An illustration of the feature extraction stage is depicted
in Figure 4. Using the methods described in the previous
section, we compute several LBP channels by varying the
parametersR and P and performing a symmetrical sampling.
For the smallest possible radius, R= 1, there are two possible
P values that produce rotational symmetrical sampling
(P = 4 and P = 8). When R= 2, there are three possible P
values (P = 4, P = 8, and P = 16). In general, for a given
radius R, there are a total of R+ 1 distinct LBP channels.

Fig. 4(a) depicts the feature extraction for R = 1.
The unitary radius generates only two distinct symmetrical
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Figure 5. Feature extraction using multiscale LBP histograms.

patterns (P = 4 and P = 8). Each pattern generates a distinct
LBP channel (see Fig. 3). From these LBP channels, a
texture feature is obtained by computing the histogram of the
operator outputs. For a radius R, LBP maps are generated:

LR = {LBPu
R,4, LBP

u
R,8, LBP

u
R,16, . . . , LBP

u
R,8R}, (5)

where LBPu
R,P is computed according to Eq. (4) and LR

contains R + 1 elements. Then, the histogram of each
member of LR is created:

HR,P =
[
hR,P(l1), hR,P(l2), · · · , hR,P(lP+2)

]
, (6)

where
hR,P(li)=

∑
x,y
δ(LBPu

R,P(x, y)i), (7)

and

δ(s, t)=

{
1, s= t,
0, otherwise.

(8)

In the above equations, (x, y) indicates the position of a given
point of LBPu

R,P and li is the ith LBP label. Notice that we are
using uniform LBP operators (Eq. (4)) since their histograms
provide a better discrimination of the texture properties.

To obtain the feature vector, we vary the radius, and
compute all possible symmetric LBP patterns and their
histograms. This process is illustrated in Fig. 4(b). For a
radiusR, we generate a vector of histograms by concatenating
all individual LBP histograms:

HR =HR,4⊕HR,8⊕HR,16⊕ · · ·⊕HR,8R, (9)

where⊕ denotes the concatenation operator.
The steps for computing the multiscale LBP histogram

are summarized in Figure 5. For R = N , the final feature
vector is generated by concatenating the histograms of the
LBP channels with radius values smaller than N :

x = xN =H1⊕H2⊕H3⊕ · · ·⊕HN , (10)

where R = N is the maximum radius value and xN is the
feature vector used to compute the histogram.

The feature vector x , composed of the concatenated
histograms, is used as input to the support vector regression
(SVR) algorithm. Since we compute the histogram of all

LBP operators with radius values less than or equal to N to
obtain x , we name this operator multiscale LBP (MLBP). A
support vector regression algorithm is used to predict the
image quality from the feature vector x . The SVR has been
shown to be a very robust algorithm for high-dimensional
feature spaces.28 To train the quality model with SVR, the
feature vectors are mapped to subjective quality scores in a
training stage:

Qpredicted(I)= SVR(x, �), (11)

where� is the trainedmodel andQpredicted(I) is the objective
quality score predicted using the model.

EXPERIMENTAL SECTION
The proposed algorithmwas compared with the fastest state-
of-the-art NR-IQA methods. The chosen algorithms are
BRISQUE,29 CORNIA,17 CQA,15 SSEQ,30 and LTP.21 Addi-
tionally, we also compared the proposed algorithm with two
well-established FR-IQAmetrics, namely PSNR and SSIM.31
The performance of the methods was measured using
three established correlation coefficients: Spearman’s rank
ordered correlation (SROCC), Pearson (linear) correlation
coefficient (LCC), and Kendall’s rank correlation coefficient
(KRCC). The correlation coefficients are computed between
the scores predicted using the IQA methods and the corre-
sponding subjective scores are provided in the video quality
databases. The databases used in this work are as follows.

• CSIQ:32 This database has a total of 866 test images,
consisting of 30 originals and six different categories of
distortions.
• LIVE2:33 This database has 982 test images, including

29 originals and five categories of distortions. The
distortions include JPEG, JPEG 2000 (JPEG2k), white
noise (WN), Gaussian blur (GB), fast fading (FF), global
contrast decrements (CD), and additive Gaussian pink
noise (PN).
• TID2013:34 This database contains 25 reference im-

ages with the following distortions: additive Gaussian
noise (AGN), additive noise in color components
(AGC), spatially correlated noise (SCN), masked noise
(MN), high frequency noise (HFN), impulse noise
(IN), quantization noise (QN), Gaussian blur (GB),
image denoising (ID), JPEG, JPEG2k, JPEG trans-
mission errors (JPEGTE), JPEG2k transmission errors
(JPEG2kTE), non-eccentricity pattern noise (NEPN),
local block-wise distortions (LBD), intensity shift (IS),
contrast change (CC), change of color saturation (CCS),
multiplicative Gaussian noise (MGN), comfort noise
(CN), lossy compression (LC), image color quantization
with dither (ICQ), chromatic aberration (CA), and
sparse sampling and reconstruction (SSR).

Since all chosen NR methods are SVR-based methods,
all simulations were performed following the same proce-
dure. After the feature extraction stage of each method,
the SVR algorithm is used to map the features into the
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Figure 6. Box plot of SROCC, LCC, and KRCC distributions of NR algorithms from 100 runs of simulations using the TID2013 (a–c), LIVE (d–f), and
CSIQ (g–i) databases.

subjective scores provided in the video quality databases. We
use an SVR implementation provided by LibSVM, which
has a Python interface supported by the Scikit library.35 To
perform the simulations and obtain the best performance
for all methods, we use ν-SVR with a radial basis function
(RBF) kernel. The optimal metaparameters (C , γ , ν, etc.) are
automatically found using exhaustive grid search methods
provided by Sklearn’s API.

To train the machine learning NR-IQA methods, the
databases are split into training and testing subsets. For
each simulation, the subsets are randomly selected, with
80% of data used for training and 20% for testing. The
reported results correspond to the median values obtained
for 100 simulations with random combinations of training
and testing subsets. Figure 6 depicts the box plots of the
correlation coefficients for all tested NR-IQA methods. In
this figure, the proposed method is indicated as ‘‘MLBP,’’
followed by the radius R used as parameter.

From Fig. 6, we notice that the proposed method
presents a higher performance in the TID2013 database
for all cases where R > 1. The SROCC values (Fig. 6(a))
reveal that the proposedmethod presents better performance
when R= 2, but the LCC and KRCC values indicate that a
better performance is achieved when R = 3. For the LIVE
database (Fig. 6(d)–(f)), we can notice that the proposed
method outperforms most of the tested NR-IQA methods.

Nevertheless, the proposed method and CORNIA present
similar performance. It is worth pointing out that CORNIA
is the most computationally expensive method tested in our
work, as depicted in Table II. Interestingly, the unitary radius
(R= 1) provides the best performance in the LIVE database,
which is different from the results obtained for the TID2013
database. For the CSIQ database, the performance of the
proposedmethod is (statistically) similar to the performance
of CORNIA. Considering SROCC (Fig. 6(g)), the proposed
method (for R ∈ {1, 2, 3}) outperforms all methods with
the exception of SSEQ. In terms of LCC (Fig. 6(h)), the
proposed method performs worse than CORNIA and SSEQ.
However, when KRCC (Fig. 6(i)) is considered, the results of
the proposed method are similar to the results of CORNIA.

Although Fig. 6 allows a visual comparison of tested
methods, it does not show the individual performance of the
metrics for each database. Table I presents the LCC values
obtained for the sets of images containing each distortion
type. In this table, the numbers in italics represent the best
median correlation for a given distortion type, considering
both NR and FR methods. The numbers in bold correspond
to the best median correlation among the NR-IQAmethods.
We can notice that PSNRproduces the best correlation values
for the TID2013 andCSIQ databases. However, the proposed
method outperforms many of the tested NR-IQA methods.
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Table I. Median SROCC of simulations using the TID2013, LIVE, and CSIQ databases.

For the LIVE database, the proposed method outperforms
the tested methods for almost all distortion types.

Table I also exhibits the standard deviation values of
correlation values of each row. The symbol σall corresponds
to the standard deviation calculated for all methods, while
σprop corresponds to the standard deviation only for the
proposed method. These differences give a measure of the
sensitivity of the methods for different distortions. Higher
values of σall indicate that distinct methods have a higher
difference of prediction efficiency. From these values, we
can observe that the methods are more sensitive to AGN,
CC, CCS, CN, IS, JPEGTE, LBD, LC, MN, NEPN, and CD
distortions. Notice that, for most cases, the proposedmethod
presents smaller standard deviation values.

The higher the values of σprop are, the higher the impact
of the parameter R is on the prediction accuracy of the
proposed method. These values allow us to evaluate the
distortions where more LBP channels are necessary to obtain
a better prediction of the subjective scores. The higher values
indicate the cases where the proposed method outperforms
the other methods significantly (i.e., CCS, JPEGTE, and
NEPN distortions). Furthermore, we can notice that the

higher the radius is, the higher the correlation value is. This
indicates that additional texture information is necessary to
improve the performance of NR-IQA algorithms.

Table II shows the computational complexity of the
tested NR-IQA methods. Notice that the proposed method
has a low computational complexity, being considerably
faster than other NR-IQA algorithms. The average compu-
tational time (measured over all test images in the three
tested databases) is around 0.08 seconds per image for R= 1.
For the tests, we used a PC with an Intel i7-4790 processor
at 3.60 GHz. This result makes the proposed method very
competitive for real-time applications.

DISCUSSION
Although the proposed method outperforms other state-of-
the-art methods, its performance can be further improved
by incorporating additional pattern recognition techniques,
like, for example, a distortion classification algorithm.36
Since quality prediction performance may vary as a function
of the distortion type, determination of the distortion type
can help in choosing the best MLBP setup.
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Table II. Average computational time to perform a single objective quality assessment (in seconds).

PSNR SSIM BRISQUE CORNIA CQA SSEQ LTP LBP
R = 1 R = 2 R = 3 R = 4

Time 0.0055 0.0447 0.1576 1.8964 1.3691 1.8112 0.0392 0.0847 0.2688 0.8864 1.0404

Another issue that can be addressed in future work is the
MLBP sensitivity to contrast change and color impairments.
This is still an open question in the area of image quality,7
and even state-of-the-art IQA methods fail to address this
issue (see Table I). The proposed method exhibits a better
performance when predicting the quality of images with
changes in color saturation, which seem to require a set of
features with higher dimensions. In future work, we plan to
investigate the inclusion of specific contrast features with the
goal of improving prediction accuracy.

Although a great deal of research on IQA has focused
on improving prediction accuracy, little work has addressed
the computational complexity. Chandler et al.7 argue that
improvement of runtime and memory performance is one of
the main challenges in image quality research. The proposed
method, due to the low computational complexity of the
MLBP operators, requires a small memory space and a low
data rate. Moreover, the proposed algorithm can be easily
implemented on dedicated hardware. Furthermore, since
MLBP operations are performed in each pixel independently,
the proposed algorithm has great potential to be imple-
mented in parallel for use in real-time applications.

CONCLUSIONS
In this article, we have presented a machine learning
no-reference image quality assessment method, which uses
a multiscale local binary pattern (MLBP) operator. The
proposed method is simple and effective, and does not
make assumptions about the types of image distortions.
Experimental results on the LIVE database reveal that
the proposed method outperforms other state-of-the-art
no-reference image quality assessment methods. Results on
the TID2013 and CSIQ databases show that the proposed
method has an accuracy performance comparable to state-
of-the-art general-purposemethods of higher computational
complexity. Moreover, the performance of the proposed
method is significantly better for chromatic aberration (CA)
distortions, which are a challenge for most general-purpose
NR-IQA methods. Future works include the investigation of
the bestMLBP parameters for prediction accuracy, especially
considering contrast distortions (CC and CD).
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