
Fast, Low-Complex, Non-Contact Motion Encoder based on the
NSIP Concept

Åström Anders1 and Forchheimer Robert2

1Combitech AB, Universitetsvägen 14, 583 31 Linköping, Sweden
2Div. of Information Coding, Linköping University, 581 83 Linköping, Sweden

Abstract

We describe the implementation of a non-contact motion
encoder based on the Near-Sensor Image Processing (NSIP)
concept. Rather than computing image displacements between
frames we search for “LEP stability” as used successfully in a
previously published Time-to-Impact detector. A LEP is a single
pixel feature that is tracked during its motion. It is found that this
results in a non-complex and fast implementation. As with other
NSIP-based solutions, high dynamic range is obtained as the
sensor adapts itself to the lighting conditions.

Background

We have previously [1][2][3][5] presented a sensor/processor for
Time-to-impact (TTI) estimation based on the Near-Sensor Image
Processing (NSIP) concept. From a sequence of images, TTI aims
at estimating the time when a possible collision may occur between
a forward-moving camera and an object seen by the camera.
It is a well-known fact that the image processing required to
perform real-time TTI estimation requires a fair amount of
hardware resources. The dynamic range of the camera needs to be
high, particularly for outdoor applications. To compute spatial
motion within the images, optical flow is typically estimated. To
do this in real time requires fast computing hardware and data
storage that can hold one or more frames.
The solution used in [1] was based on estimating the “inverse” of
the motion (how long an image feature stays at the same pixel
position). It was shown that this approach drastically reduces the
computational load and also lends itself naturally to the NSIP
smart sensor architecture [4][7].
In this paper we describe how the same approach can be used to
obtain a low-complex and fast non-contact motion encoder. Such
an encoder can be used to find for example the speed of a conveyor
belt.
Normally a mechanical encoder connected to the conveyer motor
would be used. However, if for some reason the encoder should
not be in physical contact, optical techniques can be used. One
solution is to use a Doppler laser, which is accurate but expensive.
Another solution is to use a camera, which is relatively less
expensive but requires more processing.

The NSIP architecture

The NSIP architecture can be viewed as a parallel (SIMD)
processor integrated with the optical sensor. The number of
processors equals the number of pixels in the sensor. In the 1-
dimensional case, each such "pixel processor" has a bit-slice

architecture containing a one-bit accumulator, a register file of R
bits and a simple ALU. Neighboring pixel processors are able to
communicate with each other so that a bit can easily be transferred
between them. Due to the SIMD type of programming control all
pixel processors will perform the same operation. Thus, if a bit is
moved from one processor to a left neighbor, the corresponding bit
in all processors will be moved. The pixel processor view is
particularly useful to understand the interaction between the light
sensor and the readout circuit. The CMOS sensor element and its
corresponding readout circuit have the principle design shown in
Figure 1.

Figure 1, Sensor Processing Element (SPE)

Each pixel consists of a photo diode (c) which is precharged
(through switch a) in its reverse direction (thus acting as a
capacitor, b) to a fixed level U0 and then allowed to discharge
when illuminated by light. For each photon hitting the diode, there
is a possibility of an electron-hole pair formation. When this
happens the charged particles are separated and a current pulse is
generated that partially discharge the photo diode. The total
discharge after a certain exposure time is thus proportional to the
amount of light that has fallen on the sensor during this time. To a
first approximation the voltage over the photo diode is proportional
to the remaining charge (assuming that the diode capacitance is
constant). Thus, the relationship between the light intensity I and
the voltage U over the photo diode during exposure can be
approximated by the linear function

where t is the exposure time and k is a proportionality constant, see
Figure 2.

d

cb

a

f

e

g

fLeft

fRight

IS&T International Symposium on Electronic Imaging 2017
Image Sensors and Imaging Systems 2017 91

https://doi.org/10.2352/ISSN.2470-1173.2017.11.IMSE-194
© 2017, Society for Imaging Science and Technology

Figure 2, Discharge of photodiode

In a conventional CMOS camera the exposure time, t, is the same
for all the pixels and the resulting voltage, U(t), reflects the light
intensity at each pixel. This requires that analog levels can be read
out from the sensor chip and A/D-converted to allow for further
digital processing. However, for an NSIP device the A/D converter
will need to be incorporated on the sensor chip otherwise only very
rudimentary analog pre-processing can be done on the picture.
Although it is commonplace nowadays to integrate an A/D-
converter with CMOS sensors, such a device will take up silicon
space and also consume substantial power, at least if high
performance is required. The NSIP concept solves this problem in
software instead of hardware. Typically, a fix threshold voltage,
Uref, is set (on pin e in figure 1), against which U(t) is compared
(using comparator d) and the time for each photo diode to reach the
threshold value is measured. This will lead to an inversely
proportional relation between the measurement and the light
intensity. Various ways to linearize this relationship exist, see[6].
In many cases the non-linear relationship does not cause any
problems and in some cases, such as with scenes containing high-
dynamic range of intensities, the non-linearity will even become an
advantage.

The NSIP algorithm

Typical traditional steps to estimate conveyor belt speed using a
camera is given by the following algorithm:
1. Take two pictures separated slightly in time. Exposure
settings need to be chosen such that some image contrast is
obtained, either from the belt itself or from objects residing on it
2. Match the pictures using different pixel (or sub-pixel)
displacements along the motion direction
3. Find the displacement corresponding to the best matching
4. Map the displacement to a correct metric displacement using
calibration data

The algorithm that we propose is similar to this algorithm.
However, we do not measure the displacement in term of pixels
between two consecutive images, but rather measure the time the
object stays within a pixel distance. This is the same idea as was
used in the former TTI algorithm. As for the TTI algorithm we do
not measure the whole object. Instead we locate single pixel
features which we denote local extreme points (LEPs) and track for
how many frames they stay within the same pixel. This gives the
following basic algorithm:

1. Locate a number of feature points (LEP, Local Extreme
Points)

2. Keep track of how many frames each LEP stays inside the
same pixel (“LEP run”)
3. Compute an average value of the runs of all LEPs
4. Map the average value to a correct metric displacement using
calibration data

We propose a “1.5D” architecture consisting of N columns and n
rows, where N >> n, shown in Figure 3 where n is equal to three.
This means that we have full resolution in one dimension and a
sufficient resolution in the other dimension to obtain a local
neighborhood.

Figure 3, 1.5D Sensor layout

Each pixel processor that handles a pixel at the center line consists
of a photodiode, a comparator, a simple logic unit, and some
memory. The pixels adjacent to the center line do not have a
conventional pixel processor. Each such pixel only consists of a
photodiode and a comparator. The output from these pixels are
processed by the processors along the center line. The LEP’s are
computed from the n pixels in the vertical (motion) direction.
Although this algorithm replaces the traditional image matching
procedure, it is still unsuitable for the NSIP architecture, mainly
because the number of generated runs is image dependent and the
length of each run needs to be stored until the averaging can be
done over all the runs. This is due to the SIMD character of the
NSIP processor. For this reason we introduce a further simplifying
step, namely to retain only the longest run in each of the N pixel
processors after a suitable number of frames. The averaging is then
computed only over the L retained runs.
The resulting average of the LEP runs gives a first estimate of the
motion. However, as the runs have integer length it is necessary to
compensate for the bias that occurs towards longer runs as only the
longest run from each pixel processor is retained. As an example,
if the true motion corresponds to 5.5 frames per pixel, runs of
length 5 and length 6 should occur equally often. But if the number
of runs seen by a pixel processor happens to be e.g. 4, the
probability that a run length of 6 is reported from this processor
will be as high as 1-0.54 = 0.94. With similar behavior from other
pixel processors, the average run length as reported from the NSIP
processor will then be 5*0.06+6*0.94 = 5.94, far from the correct
value of 5.5. It is thus necessary to apply a correction to the
measured value. The correction will be primarily based on the
number of LEPs seen by each pixel processor. This number can be
computed by the NSIP processors during the exposures and used in
the final estimation.
Given the algorithm and the architecture described above we
obtain the following performance figure from a very simple
example system:

Field of view D [m]
Camera resolution N [pixels]
Subpixel resolution M [ratio]
Speed v [m/s]
Pixel form factor F =a/b [ratio]

t

U

U0

Uref

Object motion

92
IS&T International Symposium on Electronic Imaging 2017

Image Sensors and Imaging Systems 2017

Minimum Line rate is given by:

	

Assuming a field of view of 1 m, a subpixel resolution of 5, and a
square shaped pixel (F = 1) we need to achieve the minimum line
rates described in Table 1, for different camera resolutions and
object speeds.

Table 1, Minimum line rate

N v Min Line rate Measurement output
rate (M=5)

500 1 2,5 kHz 40 Hz
500 10 25 kHz 400 Hz
5000 1 25 kHz 400 Hz
5000 10 250 kHz 4 kHz

The program complexity for each loop, which runs for each line is
in the order of 100 cycles. This means that the circuit must be
clocked at least at 25 MHz, which is reasonable based on known
implementations of NSIP sensors [7,8,9].

If we adjust the pixel form factor to 10, i.e. the width of the pixel
along the array is 10 times smaller than its height, the line rate can
be reduced by a factor of 10. However, this requires that the LEPs
are sufficiently separated in the motion direction so that they do
not appear in the same pixel at any time.

Improving noise immunity with a modified
architecture

Based on simulations we have seen that the algorithm works well
and gives good performance. However, when adding noise to the
sensor readout, the performance degrades quickly. This is
consistent with our experience with real implementations of the
TTI algorithm as well. The problem is that LEP runs break up and
tend to be shorter than they should be, which results in a too high
estimate of the speed.
Therefore, we propose the following extension to the NSIP
architecture.

The number of sensor rows is extended to n=5 which will allow to
use larger filters. We will also add, to each pixel, an extra
comparator, the reference level of which can be set externally.
Typically the reference level of the second comparator will be very
close to the main comparator, such as 1% higher depending on the
noise level that needs to be handled. This is shown in Figure 4.
Alternatively, to avoid the problem of accurate matching of the
two comparators, the same comparator could be used twice,
through a quick change of the reference value.

Figure 4, New sensor processing element design

Table 2 considers the effect of using two different voltages for two
neighboring pixels. The table lists all possible states and their
corresponding interpretation. Here, A is the output from the
comparator with the higher voltage reference (V ref * 1.01) from the
center pixel and B is the corresponding output from the comparator
with the lower reference voltage. C is the output from the
comparator, with the higher reference voltage, from neighboring
pixel, and D is the output from the neighboring pixel’s comparator
with the lower reference voltage.

Table 2, Possible states given two neighboring pixels with two
reference voltages
A B C D Interpratation
0 0 0 0 No hit in either pixel
0 0 1 0 A brighter neighbor
0 0 1 1 A much brighter neighbor
1 0 0 0 Brighter than neighbor
1 0 1 0 Equal bright, little difference
1 0 1 1 Brighter neighbor
1 1 0 0 Much brighter than neighbor
1 1 1 0 Brighter than neighbor
1 1 1 1 Both bright

In the original algorithm for LEP-detection, a pixel was assigned to
be a LEP when its two nearest neighbors had lower intensities than
the center pixel. This can be described as

Using the improved architecture we can modify the above
condition to make it more insensitive to noise. Here, P is the output
from the comparator with the lower voltage, Vref * 1 in Figure 4,
and Q is the output from the comparator with the higher voltage,
Vref * 1,01. Thus, we combine the extended neighborhood with the
use of two reference voltages.

This gives much better immunity to noise.

Vref * 1,01
Vref * 1

IS&T International Symposium on Electronic Imaging 2017
Image Sensors and Imaging Systems 2017 93

Simulations

To simulate the performance we used a segment of an image
shown in Figure 5. The sensor architecture used was a 512 by 5
sized sensor array. The processors in the middle row have a
complete architecture as shown in Figure 1. The other four rows
have a simplified design as shown in Figure 4. The speed of the
image along the vertical direction of the sensor array is 1/5.5 pixel
per sample. I.e. after 55 samples the image has moved 10 pixels. It
follows that the 32 image rows in Figure 5 correspond to 176 scan
lines.

Figure 5, Test image

To obtain the LEPs we used the logical function described earlier

based on a 1x5 neighborhood and two reference voltages. The
result from 160 line scans is shown in Figure 6.

Figure 6, LEP image

If we magnify a section of the LEP-image we get Figure 7.

Figure 7, Magnified LEP image

With increasing number of line scans we will have a larger value
of M. This is shown in Figure 8. As mentioned earlier, we keep the
longest run in each column. These runs are then averaged across
the array.

Figure 8, Different values for M depending on the number of
lines scanned (L). Speed is 1/5.5 pixels per scan

We have found empirically that a good value for the averaging
window, L, is 13 times the subpixel ratio, M. This is related to the
previously described bias towards larger runs. The line M = L/13 is
therefore inserted in figure 8 to yield the estimate of M. In Figure 8
we can see that an L-value of 70 gives a good estimate of M.

Below follows the result at a slower speed. In this case the speed is
reduced from 1/5.5 pixels per scan to 1/9.5 pixels per scan. In
Figure 9 it is seen that the LEPs have grown larger.

94
IS&T International Symposium on Electronic Imaging 2017

Image Sensors and Imaging Systems 2017

Figure 9, Magnified LEP image with size 9.5

From Figure 10 it is seen that an averaging window of 13*9.5
again gives a good estimate of M.

Figure 10, Different values for M depending on the number of
lines scanned (L). Speed is 1/9.5 pixels per scan

Applications

We have used the conveyor belt encoder as an example of a typical
application of the described motion encoder. There are of course
many other applications where the features of the sensor are useful,
such as in a paper mill, in the textile industry or as skid sensors for
cars.

Conclusions

We have shown that the “inverse” computation of object motion
based on stability of LEPs within pixels results in a non-complex
solution suitable for the NSIP smart sensor architecture. This opens
up for fast and compact implementations that include both the
optical sensor and processing unit. The concept is general and has
earlier been demonstrated in a time-to-impact sensor. A suggestion
for improving the noise immunity is presented based on two
simultaneous readings of the sensor data with slightly different
reference levels.

References

[1] Åström A, Forchheimer R., “Low-complexity, high-speed, and high-
dynamic range time-to-impact algorithm” Journal of Electronic
Imaging 21(4), 043025 (2012)

[2] Åström A, Forchheimer R, “Time-to-impact sensors in robot vision
applications based on the near sensor image processing concept,”
Proc. SPIE 8298, 829808 (2012).

[3] Åström A, Forchheimer R, “A High Speed 2D Time-to-Impact
Algorithm Targeted for Smart Image Sensors.” Proc. SPIE 9022,
90220Q (2014).

[4] Åström A, Forchheimer R., “Near-Sensor image Processing”
Advances in Imaging and Electron Physics, Vol 105, (1999)

[5] Åström A, Forchheimer R., “Impact time from image sensing” Patent
pending, WO 2013/107525, (2012)

[6] Åström A, Forchheimer R., Danielsson P-E, “Intensity Mappings
within the Context of Near-Sensor image Processing,” IEEE Trans.
Image Processing, 7, 12, December, (1998).

[7] Forchheimer R, Åström A, “Near-Sensor Image Processing. A New
paradigm.” IEEE Trans Image Processing, 3, 6, 735-746 (1994).

[8] Eklund J-E, Svensson C, and Åström A, “Implementation of a Focal
Plane Processor. A realization of the Near-Sensor Image Processing
Concept” IEEE Trans. VLSI Systems, 4, (1996).

[9] El Gamal A., “Trends in CMOS Image Sensor Technology and
Design,” International Electron Devices Meeting Digest of Technical
Papers, pp. 805-808 (2002).

[10] Guilvard A., et al., “A Digital High Dynamic Range CMOS Image
Sensor with Multi-Integration and Pixel Readout Request”, in Proc.
of SPIE-IS&T Electronic Imaging, 6501, (2007).

Author Biography

Anders Astrom was born in 1964. He received the M.S. degree in computer
engineering in 1988 and the Ph.D. degree in 1993, both from Linkoping
University, Sweden. His research areas cover SIMD architecture for image
and radar signal processing and architecture and algorithms for smart
image sensors. He was an associated professor at Linkoping University
until 1999. He is vice president of Combitech AB, head of Industry, which
is a subsidiary to Saab AB. He is responsible for the image processing at
Combitech. He holds several patents.

Robert Forchheimer received the M.S. degree in electrical engineering
from the Royal Institute of Technology, Stockholm (KTH) in 1972 and the
Ph.D. degree from Linköping University in 1979. During the academic
year 1979 to 1980, he was a visiting research scientist at University of
Southern California where he worked in the areas of image coding,
computer architectures for image processing and optical computing.
Forchheimer’s research areas have involved data security, packet radio
communication, smart vision sensors, image coding, optical networks and
organic electronics. He has authored and coauthored papers in all of these
areas and also holds numerous patents. He is the cofounder of several
companies within the University science park. Forchheimer is currently
Professor Emeritus at Linköping University. His current work concerns
computer networks and organic electronics.

IS&T International Symposium on Electronic Imaging 2017
Image Sensors and Imaging Systems 2017 95

