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Abstract 

This paper presents an effective noise reduction method for 

both RTS noise and photon shot noise based on a multi-camera 

configuration composed of multi-aperture optics and a semi-

photon-counting-level CMOS image sensor. We model noise 

characteristics of the CMOS image sensor with a probability 

distribution based on measured read noise including RTS noise and 

shot noise. We estimate the average number of photons by the 

maximum likelihood estimation with all corresponding pixels in the 

multi-aperture optics. We compared the noise reduction 

performance of several schemes when the incident photon number 

was assumed to be 2 for each aperture. 2 out of 9 apertures showed 

RTS noise. Simple averaging gave effective noise of 0.68 e-
RMS, 

where RTS noise still exist. Selective averaging, which minimizes 

synthetic sensor noise, gave that of 0.60 e-
RMS. Although RTS noise 

was removed, photon shot noise was less suppressed because only 7 

apertures were considered in averaging. On the other hand, with the 

maximum likelihood estimation, the effective noise became 0.48e-

RMS, and both RTS noise and photon shot noise were reduced. 

Introduction 
Low light imaging is required in various fields such as bio-

imaging, surveillance cameras, and astronomical measurement, 

where fast optics and ultra-low-noise image sensors are inevitable. 

Recently, semi-photon-counting-level CMOS image sensors based 

on high conversion gain floating diffusions have emerged [1-3]. 

However, extremely large noise called random telegraph signal 

(RTS) noise is becoming more fatal as the source-follower transistor 

scales down [4,5]. In the low light imaging, RTS noise becomes 

more visible and degrades the image quality because a large digital 

gain that enhances visibility of noise is necessary. In addition, fast 

optics with an F-number much smaller than unity makes physical 

embodiment very hard. Because, not only it becomes extremely 

huge and heavy, also spatial resolution decreases due to aberration. 

Moreover, a depth of field becomes shallow. In our previous 

research, we proposed a selective averaging method based on the 

redundancy of the multi-aperture optical system to eliminate the 

RTS noise and demonstrated its effectiveness [6]. However, this 

method suffers from photon shot noise when semi-photon-counting-

level CMOS image sensors are used. Because the number of pixels 

used in averaging is smaller than that of the apertures, photon shot 

noise can be relatively larger than in the simple averaging where all 

the apertures are considered. Reduction of both RTS noise and 

photon shot noise is necessary. 

 In this work, we use a multi-aperture optical system in order to 

realize a fast lens which is much smaller than F/1. Moreover, we 

model the sensor noise of each pixel as a probability distribution of 

read noise based on measurement, where RTS noise is included. By 

using the maximum likelihood estimation [7], we attempt to 

decrease both RTS noise and photon shot noise. In the simulation, 

we confirmed that maximum likelihood estimation shows the best 

noise reduction capability compared with simple averaging and 

selective averaging. 

Semi-photon-counting-level CMOS image 
Sensor 

The fast lens and low-noise image sensors are essential for low 

light imaging. In general, in the CMOS image sensors, 4-transistor 

pixels with the pinned photodiode is used for high image quality. In 

this pixel structure, the parasitic capacitances generated between the 

floating diffusion (FD) and a transfer gate (TG) node and between 

the FD and a reset gate (RG) node are added to the capacitance of 

the FD. It is necessary to reduce these parasitic capacitances around 

the FD node to achieve ultra-high sensitivity. However, it is difficult 

in most cases. Figure 1 shows a cross-sectional view of the high 

conversion gain (HCG) pixel structure which is developed in our 

laboratory. 

 

 
Figure 1. High conversion gain pixel structure. 

 

This pixel structure enables to drastically reduce the parasitic 

capacitance using two in-pixel technologies. The first method 

reduces the influence of the parasitic capacitance between the FD 

and TG node [8]. By inserting p+ layer at the boundary between the 

FD and TG node and making it fully depleted, the parasitic 

capacitance between the FD and TG nodes can be minimized. The 

second method completely removes the parasitic capacitance 

between the FD and RG node because this HCG pixel structure does 

not use a reset transistor [3]. The pixel reset operation is 

implemented by an implanted n+ layer located close to the FD node. 

We call this implanted n+ Reset-Generating-Implant (RGI). When a 

high voltage is applied, a barrier between the FD node and RGI is 

lowered by punch-through. Then, the FD is soft-reset. As a result, 
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the effective capacitance of the FD drastically decreased and high 

conversion gain of 220μV/e- was achieved using 0.11μm CIS 

process [3]. Furthermore, by combining this pixel with correlated 

multiple sampling (CMS) [9], we realized extremely low read noise 

of 0.27 e-
RMS of semi-photon-counting-level. 

Multi-aperture camera 
No matter how the image sensor becomes high sensitivity, if 

signal amount is small, it suffers from large shot noise. Therefore, 

ultra-high sensitivity low noise cameras require a fast lens with an 

F-number much smaller than unity. However, such cameras will be 

huge and heavy because a small F-number lens has an extremely 

large pupil. Furthermore, it is required to correct huge aberration. 

Therefore, it is almost impossible to embody with single-aperture 

optics. Figure 2 shows a multi-aperture camera system structure. 

Multi-aperture cameras have some lenses and corresponding CMOS 

image sensors. The synthetic F-number (FM) in the multi-aperture 

camera system is represented by the following equation. 

 

𝐹𝑀  =  𝐹0/√𝑀                                       (1) 

 

Where F0 is the F-number of the elemental lens and M is the number 

of the apertures. Therefore, we can realize a fast lens whose F-

number is smaller than 1 by using multiple moderately fast lens. In 

addition, the multi-aperture camera has functionality such as 

estimating a three-dimensional shape from disparity information 

[10], increasing signal amount, and reducing noise by merging 

redundant images obtained from multiple apertures. It is difficult to 

reduce the influence of RTS noise with the image sensor alone. 

However, in this study, if there are pixels which generate RTS noise, 

we can remove the noise by use of the correlation among the 

corresponding pixels.  

 
Figure 2. Structure of multi-aperture camera system. 

Modeling of RTS noise and  
maximum likelihood estimation 

In the CMOS image sensors, there are pixels that generate RTS 

noise. Since RTS noise appears as very large noise at low 

frequencies, simple averaging has a less noise reduction effect. 

Previously, we proposed an averaging method that we call selective 

averaging. This method adaptively removes pixels that generate 

RTS noise due to minimizing synthetic sensor noise. Here, synthetic 

sensor noise is calculated by using variance of the each pixel value 

in many frames. Although this method has a large noise reduction 

effect for RTS noise, the number of apertures that is used for 

averaging decreases, so that the noise reduction effect for photon 

shot noise becomes impaired.  

On the other hand, by applying maximum likelihood estimation to 

multi-aperture camera, we can expect a reduction effect for both of 

them. Maximum likelihood estimation is a method that estimates 

parameters based on statistics. In this study, we consider that the 

pixel outputs of each pixel obtained from the image sensors are the 

result that gives the maximum probability. Maximum likelihood 

estimation is performed in three steps. Step-1) we model sensor 

noise for each pixel as a conditional probability density distribution 

p(x|λ), where x is observed value and λ is the number of electrons 

that we want to find. Step-2) we calculate the likelihood function 

from the modeled probability density function. The likelihood 

function is the product of the probability density for each pixel 

output. Step-3) step-2 is repeated by changing λ to find the optimal 

λ that gives the maximum likelihood. Figure 3 shows the flow chart 

of the proposed method. Firstly, we capture the dark images of many 

frames with a multi-aperture camera. The sensor noise of each pixel 

is modeled as a probability density distribution of the dark read 

noise based on measurement, where RTS noise is included. Photon 

shot noise is modeled as a Poisson distribution, and convolved with 

the read noise distribution. We fitted pixel by pixel of each aperture 

with the probability density function expressed the following 

equation.  

 

𝑝(𝑥|𝜆) = ∑ ∑ 𝛼𝑠 ∙
𝜆𝑘

𝑘!
𝑒𝑥𝑝 (−𝜆) ∙

1

√2𝜋𝜎
𝑒𝑥𝑝 {−

(𝑥−𝑘−𝑟𝑠)2

2𝜎2 }𝑛
𝑘=0

𝑚
𝑠=0      

      (2) 

 

L(𝜆) = ∏ 𝑝(𝑥|𝜆)𝑁
𝑗=1                              (3) 

 

Where s is number of levels of RTS noise, αs is the peak value of the 

noise histogram at each noise level, λ is average number of incident 

photons, σ is standard deviation of the sensor’s read noise without 

RTS noise and photon shot noise, x is the pixel output of the semi-

photon-counting-level CMOS image sensor, which is a measured 

value at the time of shooting, and rs is the position of each noise 

level of RTS noise. We assume that the same amount of photons are 

incident in average to the corresponding pixels of the multi-aperture 

image. Eq. 2 can represent the basic sensor noise without RTS noise, 

RTS noise, and photon shot noise. After shooting, we change the 

value of λ in Eq. 2 within a certain range and calculate the likelihood 

function L(λ) by the Eq. 3. Then, λ which maximizes the likelihood 

function L(λ) becomes the estimated value of the pixel in the 

reconstructed image. 
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Figure 3. Flow chart of the proposed method. 

Simulation results by using measured noise 
To confirm the effectiveness, we conducted a simulation with 

5000 dark images measured by a semi-photon-counting-level 

CMOS image sensor. In order to suppress the dark current shot noise, 

the measurement was carried out with cooling the sensor at about -

10℃. We assumed a 3×3 multi-aperture camera, and one pixel per 

aperture was considered for preliminary verification. When the 

quantum efficiency is 100%, an average incident photon number λ 

is equivalent to the number of electrons of the sensor. When the 

photon shot noise with an average incident photon number λ of 2.0 

e - was added to the measured readout noise, we simulated the noise 

which is generated pixel by pixel. 2 out of 9 pixels showed RTS 

noise, and the average read noise for these pixels were 3.41e-
RMS. 

That for the other pixels was 0.31 e-
RMS. Figures 4 (a), (b) show an 

example of the probability density distribution such as with and 

without RTS noise which is real measured by semi-photon-

counting-level CMOS image sensor. Fig. 4 (a) shows pixel output 

which does not include RTS noise and Fig. 4 (b) shows pixel output 

which include RTS noise. Then, some parameters such as σ, αs and 

rs are extracted from these histograms. Figures 4 (c) and (d) are 

probability density distributions modeled by Eq. 2. In order to 

calculate the likelihood, we calculate the probability density for each 

λ. To estimate the pixel value by the maximum likelihood estimation 

(MLE), we changed the average incident photon number λ with a 

search step width Δλ = 0.1 e- in the range of 0 ≤ 𝜆 ≤ 4 to calculate 

the likelihood L. λ that gives the maximum likelihood is the 

estimated value of the pixel of the reconstructed image. Figure 5 

shows the relationship between λ and the likelihood function L(λ) in 

one frame. In the frame without influence of RTS noise (Fig. 5 (a)), 

the result of the maximum likelihood estimation almost agrees with 

the simple averaging. On the other hand, the frame that the influence 

of RTS noise is large (Fig. 5 (b)) differs greatly each other. In the 

simple averaging, the estimated value is largely deviated from 2.0 e- 

because the influence of RTS noise is not negligible. On the other 

hand, in maximum likelihood estimation, the level of RTS noise is 

probabilistically considered. Therefore, the estimated value is little 

affected by the RTS noise. 

Figure 6 shows the results of the same processing for 100 frames. 

With simple averaging, the effective noise became 0.68 e-
RMS. With 

the selective averaging which minimizes only the synthetic sensor’s 

read noise, the effective noise was 0.60 e-
RMS. The maximum 

likelihood estimation showed the smallest noise, 0.48e-
RMS, because 

this method reduced photon shot noise as well as RTS noise. 

Conclusion 
We applied maximum likelihood estimation to multi-aperture 

camera using semi-photon-counting-level CMOS image sensors. 

We modeled the noise of CMOS image sensors as conditional 

probability density distributions and attempted to reduce both of 

RTS and photon shot noise. We assumed a multi-aperture camera 

with 9 apertures and simulated the noise reduction capability using 

measured noise and calculated photon shot noise. In the simulation, 

we confirmed that the maximum likelihood estimation showed 

better noise reduction capability compared with the simple 

averaging and the selective averaging. With the simple averaging, 

the effective noise became 0.68 e-
RMS. With the selective averaging 

method, the effective noise was 0.60 e-
RMS. The maximum likelihood 

estimation showed the smallest noise, 0.48e-
RMS. In the proposed 

method, the noise reduction capability was improved about 29% 

compared with simple averaging. This noise level is approximately 

equal to the theoretical value 0.47 e-
RMS when considering only 

photon shot noise. 

 

 
Figure 4. Probability density distributions of pixel output. 

 Measured pixel outputs of the pixel that (a) does not generate and (b) 
generate RTS noise. The simulated values of the pixel that (c) does not 

generate and (d) generate RTS noise. 

 
Figure 5. Examples of likelihood. (a) A frame without influence of RTS noise.  

(b) A frame strongly affected by RTS noise. 

82
IS&T International Symposium on Electronic Imaging 2017

Image Sensors and Imaging Systems 2017



 

 

 
Figure 6. The noise reduction capability by maximum likelihood estimation 

(MLE). (a) Estimated value. (b) Noise histogram. 
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