
Texture re-rendering tool for re-mixing indoor scene images
Tongyang Liu a; Chun-Jung Tai a; Fengqing Zhu a; Judy Bagchi b; Jan P. Allebach a

aPurdue University, West Lafayette, IN, U.S.A.; bDzine Steps, Spring, TX, U.S.A.

Abstract
We propose a novel tool for re-rendering objects in indoor

scene images with new textures. It aims to address the problem of
too much manual work of positioning and alignment when apply-
ing new texture onto an object surface in an indoor scene image.
The algorithm of the tool is based on establishing 2D projective
transformation between texture images and planar object surfaces
in scene images. In order to find the transformation, we use a sam-
pled rectangular texture pattern from a large synthesized planar
texture and a planar quadrangle corresponding to object surface
orientation estimation, which is generated by a geometric orien-
tation hypothesis framework. The tool also puts effort in adjust-
ing the scaling and reducing artifacts for re-rendered textures. We
present the re-rendering results for ceilings, walls, floors, etc. that
naturally correspond to room geometry layout.

1. Introduction
Digital imaging and rendering technology has brought us

tremendous amount of benefits, one of which is the privilege
of creating variable media contents through user customizations.
One case that is receiving increasing interest these days, is in the
application of customizing images on websites. Specifically, users
can replace some part of images that is already on websites with
new textures that they prefer, and then create new images by mix-
ing up the replaced texture with original images. This kind of cus-
tomization is known as image personalization [1]. The specific in-
stance of image personalization to which our tool is targeted is the
virtual customization of images taken from indoor scenes of resi-
dential structures, such as kitchen, living room or bedroom. This
kind of customization lets users replace the original textures from
object surfaces in the scene with preferred new textures, which is
called texture re-rendering and image re-mixing. Figure 1 shows
examples of texture re-rendering and image re-mixing. In the fig-
ure, the original floor textures and/or side wall textures from the
indoor bathroom image are replaced with new types of textures,
and then a re-mixed scene image is created. Figure 1b and Fig-
ure 1d separately show us that original appearance of floor and/or
side wall is replaced by wooden and brick like textures. The high-
lighted green lines in Figure 1a illustrate the orientation of paral-
lel lines within original floor texture. And the highlighted yellow
lines in Figure 1b illustrate the orientation of parallel lines within
replaced wooden-like texture. The brick-like texture in Figure 1d
is clearly showing the orientation of parallel lines. By comparing
the parallel line orientations in the re-rendered texture in Figure
1b and Figure 1d, we are able to see that the re-rendering result in
Figure 1d looks more natural than that in Figure 1b, with respect
to the room spatial layout. The position and orientation of the
re-rendered texture in Figure 1b apparently needs to be manually
adjusted before it appears to natrually corresponds to room spatial
layout. Figure 1c shows a different type of texture replacement,

(a) (b)

(c) (d)

Figure 1. Examples of texture re-rendering for the indoor bathroom image.

Highlighted lines show the orientation of parallel lines in floor texture. (a)

Original scene image taken from bathroom (b) Re-rendered floor and side

wall with wooden texture. (c) Re-rendered side-wall with pure color texture.

(d) Re-rendered floor with brick texture that naturally corresponds to geome-

try layout of the room.

where the surface of side walls is replaced with pure color tex-
tures. This type of texture re-render, however, can only be suitable
to the situation where original textures of the object surface have
no complicated texture patterns. Currently, several commercial
websites has been devoted to developing web-based interfaces for
indoor scene image re-texturing, among which [6]-[9] are quite
noticeable. [7] and [8] provide a functionality that is similar to
the one shown in Figure 1c. [7] and [9] let users apply preferred
textures in a virtual design environment. Although the visualiza-
tion tool provides quite reasonable rendering result, it is hard to
see the effect of newly applied texture in original scene images.
As for [6], which provides a functionality as shown in Figure 1b,
even though their tools are able to let users select various types of
textures and render them in the original scene images, the result
does not look as if it is naturally corresponding to the geometry
orientation of the scene, thus an amount of manual adjustment
afterwards is needed. In addition, the zoomed-in view of their
rendered texture has poor quality. As a result, a tool is desired
that has the following properties: firstly, it supports various types
of textures; secondly, it is able to allow the re-rendered texture
be directly mixed with the original scene image; thirdly, the re-
rendering result natrually corresponds to room layout; finally, it is
able to allow high-resolution rendering. Our proposed tool aims
at these targets. In [1], the authors proposed a method for insert-
ing text in images based on pinhole camera model with camera

86
IS&T International Symposium on Electronic Imaging 2017

Imaging and Multimedia Analytics in a Web and Mobile World 2017

https://doi.org/10.2352/ISSN.2470-1173.2017.10.IMAWM-177
© 2017, Society for Imaging Science and Technology



parameter estimation. However, text-insertion usually happens
within a limited spatial range, thus the error for parameter estima-
tion is not going to greatly affect the alignment and orientation of
inserted text. In addition, their approach is based on straight line
detection where the lines are either perpendicular or parallel with
each other. This is not applicable to indoor scene images since
straight lines in these images do not have to be aligned either hor-
izontally or vertically to each other.

In this paper, we propose a texture re-rendering tool that is
based on 2D projective geometry [3], and we are specially fo-
cused on establishing the 2D projective transformation from tex-
ture images to scene images. To begin with, we adopt a room
layout estimation framework proposed in [2], which is based on
line sweeping algorithm and convex edge detection to generate
layout hypothesis. And then we apply Direct Linear Transform
(DLT) algorithm to calculate the transformation matrix for tex-
ture mapping. The details are discussed in the rest of the paper.

2. Projective Geometry
In this section, we briefly introduce projective geometry,

which is the study of 2D planar geometry, as the starting point
for our texture re-rendering method. And in the following discus-
sions, we denote 2D plane as P2.

2.1 Homogeneous representation for 2D points
The coordinate pair (x,y) can represent a point in 2D plane.

Therefore we identify a plane asR2, and the coordinate pair (x,y)
is then identified as a 2D vector, thus a plane can be considered
as a vector space. A point (x,y) ∈R2 lies on line (a,b,c) if and
only if ax + by+ 1 = 0, which, in matrix form, can be written
as (x,y,1) · (a,b,c)> = 1. Here we can see that (x,y) ∈ R2 is
represented as a 3D vector (x,y,1). And since it is also true that
k(x,y,z) · (a,b,c)> = 0, we are able to draw the conclusion that
(kx,ky,k) and (x,y,1) represents the same point (x,y) in P2, thus
the 3-vector representative of the form (x1,x2,x3), where x3 6=
0, is the homogeneous representation for points (x1/x3,x2/x3) in
R2.

Now we discuss the case when x3 = 0. The homogeneous
representation for points in R2 with the form of (x1,x2,0) is
known as ideal points, representing the points at infinity. If there
are two parallel lines (a,b,c) and (a,b,c′) in R3, the ideal point
(−b,a,0) then lies on both of the two lines. Therefore, we can
actually consider ideal point (x1,x2,0) as the intersection of two
parallel lines in 3D world, which apparently extends to infinity.
Based on the above discussions, we are now able to introduce the
concept of vanishing points, as illustrated in Figure 2. Note that
vanishing points are indeed the projection of ideal points on P2.

2.2 Projective transformation between texture im-
age and scene image

The core idea for our texture re-rendering tool is to estimate
the transformation between pixels in the texture image and pixels
in the scene image, which is called texture mapping. And it is
actually a projective planar transformation that maps one set of
points in P2 to another set of points in P2. Figure 3 shows one
instance of planar transformation from plane π to plane π ′, and
as is shown, point x is mapped to point x′. Now we are going to
check the linearity of this transformation. As in Figure 3, ABB′A′

is a plane in 3D world that passes through center of projection

Figure 2. An illustration for projective geometry. Lines A1B1, A2B2, C1D1

and C2D2 are lines in 3D world space. A1B1 is parallel to C1D1 while A2B2

is parallel to C2D2, also A1B1 is perpendicular to A2B2. A′1B′1, C′1D′1, A′2B′2
and C′2D′2 are respective projections on plane π. Note that A′1B′1 and C′1D′1
intersect at point E ′1, while A′2B′2 and C′2D′2 intersect at point E ′2. E ′1 and E ′2
are vanishing points in plane π. And these vanishing points correspond to

orientations of lines in 3D world space.

O, plane π and plane π ′, which intersects plane π at line AB and
plane π ′ at line A′B′. Furthermore, line A′B′ is the mapping of
line AB from plane π to plane π ′, thus lines in P2 are mapped
to lines in P2. Therefore, the projective transformation between
two lines in P2 is a linear transformation on homogeneous 3D
vectors, and it indeed can be represented by a non-singular 3 by
3 homogeneous matrix H [3]. In texture mapping, plane π in
Figure 3 is the texture image, and xxx represents one pixel in the
texture image. Meanwhile, plane π ′ is the scene image that is to
be re-rendered, and xxx′′′ represents one pixel in the scene image.
Note that although xxx and xxx′′′ are both points in P2, we are using
homogeneous representations. Therefore xxx and xxx′′′ are both 3D
vectors. As a result, we denote xxx as (x1,x2,x3)

> and vector xxx′′′

as (x′1,x
′
2,x
′
3)
>. Then the transformation between vector xxx and xxx′′′

can be expressed as: x′1
x′2
x′3

=

h11 h12 h13
h21 h22 h23
h31 h32 h33

 x1
x2
x3

 (1)

Here we use hi j to represent ith row and jth column element of
homogeneous matrix H.

2.3 Calculating entries of homogeneous transfor-
mation matrix H

In Section 2.2, we discussed the homogeneous transforma-
tion matrix for mapping points between P2. The next step is how
we calculate the elements in homogeneous matrix H. As is in-
dicated in previous sections, we are given a set of points xxx rep-
resented by homogeneous 3D vectors in P2, and another set of
points xxx′′′ in P2, which are also represented by homogeneous 3D
vectors. The homogeneous matrix H between P2 is then estab-
lished such that xxx′′′ = Hxxx.

The first question is how many coordinate sets (xxx,xxx′′′) are
needed for H calculation. We notice that matrix H has 9 entries,
but the number of degrees of freedom for projective transforma-
tion between P2, is indeed 8 [3]. The reason is that suppose we

IS&T International Symposium on Electronic Imaging 2017
Imaging and Multimedia Analytics in a Web and Mobile World 2017 87



Figure 3. Projective transformation between two planes. x0y0z0 is world

coordinate frame, and its origin O is the center of projection. xxx is a point in

plane π, and xxx′′′ is a point in plane π ′. The mapping from plane π to π ′ is a

linear mapping H between homogeneous coordinates such that xxx′′′ = Hxxx.

have two homogeneous matrices H1 and H2, where H2 = aH1 and
a is a scalar, and then we apply projective transformation on same
homogeneous 3D vector xxx. According to Equation 1, we will get
xxx′′′111 = H1xxx and xxx′′′222 = H2xxx. Since H2 = aH1, we have xxx′′′222 = axxx′′′111.
According to Section 2.1, we already know the fact that homoge-
neous 3D vectors xxx′′′222 and xxx′′′111 correspond to the same point in P2.
Therefore, we can draw the conclusion that homogeneous ma-
trices H1 and H2 indeed are the same projective transformation
between points in P2. Finally, we are able to draw the conclusion
that homogeneous matrix H is defined up to a scalar, thus the 2D
projective homogeneous transformation has 8 degrees of freedom.

Now we consider the way of calculating the entries’ val-
ues for homogeneous transformation matrix H using Direct Lin-
ear Transformation (DLT) algorithm [3]. Actually, we can in-
fer the fact from Section 2.1 that 3D homogeneous representation
(x1,x2,x3) for a point in P2 has 2 degrees of freedom. This is be-
cause x3 just stands for an arbitrary none-zero ratio. Furthermore,
we also infer from Section 2.2 that the degrees of freedom for
point xxx must correspond to the degrees of freedom for its mapped
point Hxxx. As a result, one coordinate mapping pair (xxx,Hxxx) ac-
tually reduces the total degrees of freedom of the transform by
2. Therefore, in order to get efficient estimation for the entries
of homogeneous transformation matrix H, it is necessary that we
obtain 4 pairs of corresponding coordinate points to fully specify
the matrix H. Now we set out to solve homogeneous matrix for
our texture mapping method whereby it denotes the transforma-
tion from pixels ofP2 in texture image to corresponding pixels of
P2 in scene image. Note that here we are using homogeneous 3-
vectors for pixels inP2, as is explained in Section 2.1. Therefore,
pixel (x1,x2) in texture image is represented as:

xxx = (x1,x2,1)>

Similarly, pixel (x′1,x
′
2) in scene image is represented as:

xxx′′′ = (x′1,x
′
2,1)

>

Consequently, our texture mapping between xxx and xxx′′′ is the homo-
geneous transformation matrix H such that x′1

x′2
1

=

h1 h2 h3
h4 h5 h6
h7 h8 h9

 x1
x2
1

 (2)

where hi, i = 1, ...,9 stands for the entries of matrix H. Now we
use the denotation hhhi to represent row vectors for matrix H, that
is:

hhh1 = (h1,h2,h3)
hhh2 = (h4,h5,h6)
hhh3 = (h7,h8,h9)

Since xxx′′′ = Hxxx, we infer that homogeneous vector xxx′′′ and Hxxx are
indeed in same direction. As a consequence, we know that:

xxx′′′×Hxxx = 000 (3)

where 000 = (0,0,0)>, is the null 3D vector. And actually Hxxx can
be expanded as:

Hxxx =

 hhh1 · xxx
hhh2 · xxx
hhh3 · xxx


Therefore

xxx′′′×Hxxx =

 x′1
x′2
1

×
 hhh1 · xxx

hhh2 · xxx
hhh3 · xxx


=

 x′2hhh3 · xxx−hhh2 · xxx
hhh1 · xxx− x′1hhh3 · xxx

x′1hhh2 · xxx− x′2hhh1 · xxx

= 000

(4)

Since:

hhhi · xxx = xxx> ·hhhi>

expressions in Equation 4 may actually be re-written as:

xxx′′′×Hxxx =

 000> −xxx> x′2xxx>

xxx> 000> −x′1xxx>

−x′2xxx> x′1xxx> 000>

 hhh1>

hhh2>

hhh3>


= Lhhh = 000

(5)

Note that here we have:

hhh = (hhh1,hhh2,hhh3)

is a 9-vector that is constituted by 9 entries of homogeneous ma-
trix H. Furthermore, we notice the fact that if we left multiply
matrix L by two elementary matrices in Equation 5:

L′ =

 1 0 0
0 1 0
x′1 0 1

 1 0 0
0 1 0
0 x′2 1

L

we will end up getting

L′hhh =

 000> −xxx> x′2xxx>

xxx> 000> −x′1xxx>

000> 000> 000>

 hhh1>

hhh2>

hhh3>


= 000

(6)

As a consequence, we are able to reach the conclusion that Equa-
tion 5 actually give rise to 2 linearly-independent constraints for
solving homogeneous transformation matrix H. At the beginning

88
IS&T International Symposium on Electronic Imaging 2017

Imaging and Multimedia Analytics in a Web and Mobile World 2017



of Section 2.3 we explained that in order to efficiently calculate H,
it is necessary that four corresponding coordinate pairs (xxxi,xxx′′′i) are
given, where i = 1,2,3,4. And following the denotations in Sec-
tion 2.3, we have xxx′′′i = (x′1i,x

′
2i,1), where (x′1i,x

′
2i), i = 1,2,3,4

are the pixel values in scene image, and xxxi = (x1i,x2i,1), where
(x1i,x2i), i = 1,2,3,4 are the pixel values in texture image. Con-
sequently we will have 8 linear equations. And based on the result
in Equation 6, the four equation sets for solving texture mapping
matrix H are expressed as:

[
000> −xxx>i x′2ixxx

>
i

xxx>i 000> −x′1ixxx
>
i

] hhh1>

hhh2>

hhh3>

= 000 (7)

where i = 1,2,3,4. Note that matrix H is defined up to a scalar,
and in homogeneous 3D vector (x1,x2,x3), component x3 is ac-
tually the scaling factor, thus without loss of generality, we set
h9 = 1, in other words, hhh3 = (h7,h8,1). Consequently, as denoted
in Equation 2, we are able to calculate the remaining 8 entries h j ,
where j = 1,2, ...,8 in texture mapping matrix H.

3. Methodology
3.1 User selection of 4 coordinates sets

In Section 2, we proved that in order to get the texture map-
ping matrix H, we need four corresponding pixel sets, separately
from the texture image and the indoor scene image. Also we no-
ticed in Figure 2 that different points A, B, C, D on P2 may lead
to different vanishing points, thus corresponding to different ori-
entations in 3D world. As a result, an arbitrary user selection of
the four coordinate sets from images may not lead to a proper
texture mapping matrix that corresponds to indoor room geome-
try layout. Consequently, judging the room layout while selecting
points from images is challenging for normal users, which is not
what we want for a user-friendly interface. Hence in our method,
we introduce a semi-automatic way to make it easy for users to se-
lect the reasonable coordinate sets from scene images and texture
images.

The flow chart in Figure 4a illustrates an instance of how the
user selects four pixels from the scene image. Firstly, the user

(a)

(b)

Figure 4. Flow charts that illustrate how the user selects four correspond-

ing pixels from the scene image and the texture image. (a) From left to

right: A click-based segmentation framework [4], a geometry layout estima-

tion framework [2], a generated cubic hypothesis from scene image and a

user-selected cuboid surface. (b) From left to right: A non-parametric texture

synthesis framework [5] and a rectangular window in texture image.

Figure 5. Generating texture mapping matrix H, given four corresponding

points in a texture image and a scene image. Through H, pixels at xxxi are

mapped to pixels at xxx′′′i , for i = 1,2,3,4.

interacts with our tool through a click-based segmentation frame-
work for indoor scene images [4], which is capable of generating
a mask for the components in indoor scene images onto which
users would like to re-render new textures. In this case, a floor
plane is picked out. Secondly, an embedded geometry layout es-
timation framework [2] is able to autonomously generate spatial
estimation of room layout by presenting users parametrized cubic
hypotheses that correspond to 3 primary orthogonal orientations
of the room scene, as shown in Figure 4. In addition, each of the
cuboid surfaces has the same orientation as a rectangular plane in
world scene. In next step, the users is able to interact with our tool
by selecting one of the surfaces from the generated cubic. Note
that in Figure 4, the bottom surface of the cubic is selected, since
it is corresponding to z axis in room scene configuration, which
matches the orientation of the selected floor plane. Once the cu-
bic surface is selected, acquiring the four coordinates from scene
image is straight-forward. They are indeed the pixel values on the
four corners of the selected cuboid surface.

Next we are going to discuss how the user selects four pixels
from the texture image. We already know that four pixels selected
from the scene image corresponds to the orientation of a rectangu-
lar plane in the world scene. Thus it is quite straight-forward that
a rectangular window on a texture image can be used to determine
four pixels on the texture image. The flow chart in Figure 4b illus-
trates an instance of selecting four pixels from a texture image. In
the backend, an embedded texture synthesis framework [5] takes
a small texture pattern as input and presents the user with a syn-
thesized large texture pattern. Then the user is able to choose a
rectangular window on the synthesized texture. Finally, the pixel
values on the four corners of the rectangular window act as the
four coordinates from texture image. After all four corresponding
coordinate sets

(xxxi, xxx′′′i), i = 1,2,3,4

where xxxi is the homogeneous 3-vector representing pixels in the
texture image and xxx′′′i is the homogeneous 3-vector representing
pixels in the scene image, are picked, by using Equation 7, we are
able to generate texture mapping matrix H (as shown in Figure 5).
And then the tool is able to re-render the selected component (as
in Figure 4a) with the new texture (as in Figure 4b).

IS&T International Symposium on Electronic Imaging 2017
Imaging and Multimedia Analytics in a Web and Mobile World 2017 89



(a) (b)

Figure 6. Proposed methods for refining texture re-rendering results: (a)

Cuboid surface shifting, the green surface is before shifting, and the purple

surface is after shifting. The shifting direction, in this case, is along −x axis.

(b) Rectangular sampling window re-sizing, three yellow rectangular shapes

corresponds to three sampling windows in texture image with different sizes.

In this case, the window is expanding.

3.2 Re-rendering adjustments
In this section, we talk about adjusting re-rendering result.

Using the texture mapping matrix generated from Section 3.1 can
be useful enough if we only consider the re-rendering result cor-
respondence with the indoor scene (room) geometry layout. Nev-
ertheless, some re-rendering results may be visually over-sized
and thus unfitted for some certain scene configurations (as shown
in Figure 8b). Thus, there is necessity for our tool to propose
approaches to refine texture re-rendering results through user-
interactions. And Figure 6 shows our proposed two methods,
which include cubic surface shifting in the scene image and sam-
pling window re-sizing in the texture image. As is seen in Figure
6a, the cubic surface before and after shifting has the same orien-
tation (both perpendicular to x axis). Meanwhile, the sampling
windows with different sizes obviously have same orientation,
since the texture image itself is a plane. Consequently, through
the adjustment, the scaling of the re-rendering result is changing,
while the orientation of the re-rendered texture, with respect to
room geometry layout, is not changing. Hence users can interact
with our texture re-rendering tool in either of the two ways to get
a satisfying scaling effect for the re-rendering result.

3.3 High-resolution rendering
A critical case that we are especially interested in is to in-

crease the re-rendering quality, while not increasing time con-
sumption too much. Before our method, the contradictory point
is that on one hand, for low resolution images, it is fast to gen-
erate cubic hypothesis (see Table 1), but the rendering quality is
poor. The re-rendered texture may come with a bundle of artifacts
which are certainly unwelcome by users. On the other hand, for
high-resolution images, although it is time-consuming to generate
cubic hypothesis (see Table 1), the rendering quality is satisfying.
In practical cases, users can neither accept that it takes too long to
get a result, nor that the rendering quality is of low-quality. Thus
we propose a matrix scaling method that enables high-resolution
images to utilize the texture mapping matrices generated from
low-resolution images, for the purpose of re-rendering textures on
high-resolution images while reduce time consumption for matri-
ces generation.

Let us now think of a pair of two images. One image has
a resolution m× n pixels and the other image has a higher reso-
lution am× an pixels (a>1). Therefore, one pixel (x0,y0) in the

low-resolution image corresponds to a pixel (ax0,ay0) in the high-
resolution image. According to Section 2.1, the 3-vector homo-
geneous representations for (x0,y0) and (ax0,ay0) are xxx′′′Low Res =
(x0,y0,1) and xxx′′′High Res = (ax0,ay0,1), respectively. It is easy to
see that the transformation between these 2 points is ax0

ay0
1

=

a 0 0
0 a 0
0 0 1

 x0
y0
1

 (8)

Now, our method takes the low resolution image as input,
and then follows the routine described in Section 3.1 to gener-
ate the texture mapping matrix from a texture image to the low-
resolution image, which is denoted as HLow Res. Then, in order
to get the texture mapping matrix from the same texture image
to the high-resolution image, denoted as HHigh Res, we follow the
discussion in Section 2.2:

xxx′′′Low Res = HLow Resxxx

and

xxx′′′High Res = HHigh Resxxx

where xxx is 3-vector homogeneous representation for pixels in tex-
ture image. By comparing Equation 8 and the above two relation-
ships, we have

HHigh Resxxx =

a 0 0
0 a 0
0 0 1

HLow Resxxx (9)

We know that xxx actually corresponds to a pixel in texture image,
thus it cannot be a null vector. Thus, a straight-forward solution
for Equation 9 is

HHigh Res =

a 0 0
0 a 0
0 0 1

HLow Res (10)

From Equation 10 we know that HHigh Res can actually be ac-
quired from HLow Res, just by left-multiplying HLow Res with a
scaling matrix. In this way, we can avoid estimating HHigh Res
in a time-consuming way.

4. Experimental Results
In order to test the efficiency of our texture re-rendering tool,

we firstly did texture re-rendering on different room configura-
tions to check whether the newly applied texture corresponds to
room spatial layout. And then we tested the efficiency of our tool
with respect to re-rendering adjustment. Finally, we compared the
results between low-resolution and high-resolution images.

Figure 7 shows the indoor scene image re-mixing results for
different room configurations. The appearance of re-rendered tex-
tures in Figures 7a, 7b, 7c, 7e, 7g and 7i look plausible, because
they not only visually correspond to room spatial layout, but also
present a harmonious visual effect when their scaling in sizes are
compared with the objects nearby. The appearance of re-rendered
textures in Figures 7d, 7f, 7h look reasonable in the sense of corre-
spondence with room geometry orientation. However, the results
in these figures are basically generated from raw texture mapping

90
IS&T International Symposium on Electronic Imaging 2017

Imaging and Multimedia Analytics in a Web and Mobile World 2017



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Texture re-rendering and indoor scene image re-mixing results

in various room layout configurations. (a) re-rendered floor with bricks tex-

ture. (b) re-rendered side wall with bricks texture. (c) re-rendered floor with

carpet-like texture. (d) re-rendered floor with stone texture. (e) re-rendered

accent wall with bricks texture. (f) re-rendered ceiling with tiles texture. (g)

re-rendered accent wall with bricks texture. (h) re-rendered floor with tile

texture. (i) re-rendered side wall with bricks texture.

matrix with less refinement and user adjustments. Therefore they
present us an inharmonious visual effect when their sizes are com-
pared with that of nearby objects. Nevertheless, scaling can be
refined and adjusted through our user-interface that is introduced
in Section 3.2.

Figure 8 actually shows how user interaction affects the scal-
ing of re-rendering results. As the highlighted brick tiles sug-

Table I: Time consumption comparison for different ap-
proaches to generate texture mapping matrix, experiment per-
formed in MATLABr

Image in
Figure 9

Image size
(in pixels
× pixels)

Approach
for gen-
erating
texture
mapping
matrix

Time con-
sumed for
generating
texture
mapping
matrix

a 1024 ×
683

Geometry
layout
estimation
[2]

~5 secs

b 3861 ×
2574

Geometry
layout
estimation
[2]

>20 mins

c 3861 ×
2574

Our pro-
posed
matrix
scaling
method

~5 secs

(a) (b)

(c) (d)

Figure 8. Illustration of re-rendering adjustment, the adjustments are intro-

duced in Figure 6. We denote cuboid surface shifting distance as d in pixel,

and sampling window size as win size in pixels × pixels. Green blocks are

highlighted brick tiles. (a) User-selected component to be re-rendered. (b)

Re-rendering result when d = 100 and win size = 800×800. (c) Re-rendering

result when d = 100 and win size = 1400×1400. (d) Re-rendering result when

d = 120 and win size = 1800×1800.

gest, re-rendering result in Figure 8b is visually inharmonious be-
cause the brick tiles are oversized when compared with cabinet
top edges. However, as is observed in Figures 8c and 8d, with
the changes in cuboid surface shifting distance and the sampling
window sizes, the scaling of the brick tiles also changes accord-
ingly. We now discuss this in detail. As suggested by highlighted
brick tiles, in Figure 8c, around 4 brick tiles are aligned with cab-
inet top edge. And in Figure 8d, around 6 brick tiles are aligned
with cabinet top edge. So re-rendering results in Figures 8c and
8d are actually showing brick tile with different scaling in size. In
addition, we notice the fact from Figure 8 that all the 3 different
re-rendering results have the same geometry orientation, which
visually corresponds to room layout.

Finally, we discuss the result for our proposed high-
resolution re-rendering method. In the process of generating the
results in Figure 9, we are actually using the same synthesized
texture image with resolution 5000×5000 pixels for both low-
resolution scene images and high-resolution scene images. But
as is shown in Figure 9, the quality of re-rendered texture on the
low-resolution image is poor – a lot of artifacts are visually notice-

(a) (b)

(c)

Figure 9. High-resolution texture re-rendering and Low-resolution re-

rendering with zoomed-in view. (a) Re-rendering result on 1024×683 pixels

scene image. (b) and (c) Re-rendering result on 3861×2574 pixels scene

image. (b) and (c) are different in the way of generating texture mapping

matrix (see Table 1).

IS&T International Symposium on Electronic Imaging 2017
Imaging and Multimedia Analytics in a Web and Mobile World 2017 91



able; while the re-rendering quality on the high-resolution image
is plausible. The critical point here for re-rendering on the high-
resolution image is that, although results in Figures 9b and 9c
look very similar, the time consumed for generating these two re-
sults are quite different. As shown in Table 1, in order to generate
the texture mapping matrix, time consumed for Figure 9b is more
than 20 minutes while for Figure 9c, it is around 5 seconds. The
results indicates that using our proposed matrix scaling method
greatly enhances the efficiency of re-rendering on high-resolution
images.

5. Conclusion
In the paper we propose a novel tool for texture re-rendering

and indoor scene image re-mixing. The tool is able to au-
tonomously align newly rendered texture with room spatial lay-
out. Also it provides users an interface for adjusting the scaling
of the re-rendered texture in order to match with practical object
sizes. In addition, our tool is capable of proving high-quality ren-
dering result efficiently. In the future, we plan to research options
to autonomously enable more realistic outcomes: one is to au-
tonomously adjust the scaling of re-rendered texture, the other is
to add light and shadow effects.

References
[1] H. Ding, R. Bala, Z. Fan, R. Eschbach, J. Allebach, and C. Bouman,

“Semi-automatic object geometry estimation for image personaliza-
tion,” in Computational Imaging, SPIE vol. 7533, C. Bouman, I. Pol-
lak, and P. Wolfe, Eds., San Jose, CA, 17-21 January 2010 (2010).

[2] D. C. Lee, A. Gupta, M. Hebert and T. Kanade, “Estimating Spa-
tial Layout of Rooms using Volumetric Reasoning about Objects and
Surfaces,” Advances in Neural Information Processing Systems 23,
1288–1296 (2010).

[3] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, Cambridge University Press, ISBN: 0521540518 (1998).

[4] C. Tai, T. Liu, J. Bagchi, F. Zhu, and J. Allebach, “Click-Based Inter-
active Segmentation with Graph Cut,” Imaging and Multimedia An-
alytics in a Web and Mobile World 2017, (Part of IS&T Electronic
Imaging 2017), J. Allebach, Z. Fan, and Q. Lin, Eds., San Francisco,
CA, 29 January -2 February 2017 (2017).

[5] K. Ziga, J. Bagchi, J. Allebach, and F. Zhu, “Non-Parametric Tex-
ture Synthesis Using Texture Classification,” Computational Imaging
XIV, (Part of IS&T Electronic Imaging 2017), C. Bouman and R.
Stevenson, Eds., San Francisco, CA, 29 January -2 February 2017
(2017).

[6] Dzine Steps: Create, Customize, Collaborate! http://

dzinesteps.com/

[7] Zillow Digs: Find inspiration for your home project. http://www.
zillow.com/digs/

[8] Sherwin-Williams ColorSnap Visualizer https://www.

sherwin-williams.com/visualizer#/active/

default

[9] M S International, Inc. Virtual Kitchen Designer https://www.
msistone.com/virtual-kitchen-designer/#

Author Biographies
Tongyang Liu is currently a PhD student working under Professor

Jan P. Allebach in the School of Electrical and Computer Engineering at
Purdue University. His research is focused on color image processing,
imaging and printing. He obtained his bachelor’s degree from University

of Science and Technology of China (2014).
Chun-Jung Tai received her BS in Electrical and Computer En-

gineering from the National Chiao Tung University, Hsinchiu, Taiwan
(2011). She is currently pursuing her PhD degree in Electrical and Com-
puter Engineering at Purdue University, West Lafayette, IN, USA. She
works with DzineSteps on her current research, where she completed the
work reported in this paper.

Fengqing Zhu is an Assistant Professor of Electrical and Computer
Engineering at Purdue University, West Lafayette, IN. Dr. Zhu received
her Ph.D. in Electrical and Computer Engineering from Purdue Univer-
sity in 2011. Prior to joining Purdue in 2015, she was a Staff Researcher
at Huawei Technologies (USA), where she received a Huawei Certification
of Recognition for Core Technology Contribution in 2012. Her research
interests include Image processing and analysis, video compression, com-
puter vision and computational photography.

Judy Bagchi is founder and CEO of Dzine Steps, a cloud software
provider to home builders and independent design centers nationwide.
Prior to this Judy held Research & Development Management roles at
Hewlett-Packard and Nortel. She is an industry veteran with more than
20 years of experience in the entire business value chain. She has a keen
interest in and has led and participated in various activities supporting
Women in Technology.

Jan P. Allebach is Hewlett-Packard Distinguished Professor of Elec-
trical and Computer Engineering at Purdue University. Allebach is a
Fellow of the IEEE, the National Academy of Inventors, the Society for
Imaging Science and Technology (IS&T), and SPIE. He was named Elec-
tronic Imaging Scientist of the Year by IS&T and SPIE, and was named
Honorary Member of IS&T, the highest award that IS&T bestows. He
has received the IEEE Daniel E. Noble Award, and is a member of the
National Academy of Engineering. Most recently, he received the Ed-
win H. Land Medal from IS&T and the Optical Society of America. He
currently serves as an IEEE Signal Processing Society Distinguished Lec-
turer (2016-2017).

92
IS&T International Symposium on Electronic Imaging 2017

Imaging and Multimedia Analytics in a Web and Mobile World 2017


