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Abstract

In the last years, the ductility and easiness of usage
of unmanned aerial vehicles (UAV) and their affordable cost
have increased the drones use by industry and private users.
However, drones carry the potential of many illegal activities
from smuggling illicit material, unauthorized reconnaissance and
surveillance of targets and individuals, to electronic and kinetic
attacks in the worse threatening scenarios. As a consequence, it
has become important to develop effective and affordable coun-
termeasures to report of a drone flying over critical areas. In this
context, our research chooses different short term parametrization
in time and frequency domain of environmental audio data to
develop a machine learning based UAV warning system which
employs the support vector machines to understand and recognize
the drone audio fingerprint. Preliminary experimental results
have shown the effectiveness of the proposed approach.

Introduction

Nowadays commercial-grade and consumer-grade drones
are a market product since the technology to control and operate
unmanned aircraft is cheap, widely available and fast developing.
The drones applications range from hobby and amusement to
aerial surveillance and lastly for illegal and criminal activities[1].
The increasing drone efficiency, the installation of GPS con-
trol systems and autopilot allow drones to fly programmed
routes without a pilot for several miles[2]. This multiplies the
risk of airspace exposition of sensitive buildings, facilities and
personals[3]. So in various contexts the necessity of detecting and
restricting the illegal use of drones emerges. However, the speed
and varying shape of drones make the discovery of flying drones
a complex and difficult task especially when the unmanned aerial
vehicles (UAVs) have small size and a single detection method,
using RF or optical sensors, is employed.
On the other end the typical acoustic signature of most commer-
cial drones suggest the opportunity to detect or boost the existing
monitoring system by using a UAV sound recognition system
[4, 5, 6].

Specifically, Mezei proposed a drone sound detection based
on the correlation technique of audio fingerprinting [7].
Besides, Souli presented an environmental sound spectrogram
SVM classification approach built on the reassignment of spectral
patches [8]. This research proposes a cheap and portable drone
detection system, that extracts and classifies the temporal and
spectral features of the recorded environmental sounds to figure
out if there is or not a drone near. The proposed system is indepen-
dent but integrable with other common detection approaches as
multi-sensor drone trackers that can use optical, thermal, infrared
and RF array of sensors.
This work generalizes the application context of Mezei approach
developing an acoustic signature identification framework that
applies the bag of frames [9] with machine learning techniques.

In addition, it exploited audio analysis both in temporal and
frequency domain [10, 11] to obtain an higher accuracy.
The paper is organized as it follows. The first section describes
the drone acoustic detection framework. The second section
presents the selected audio descriptors.The third section discusses
the automatic identification of drone sounds by using SVM. The
forth session presents the result. Finally, concluding remarks are
given in section six.

Proposed framework

In this paper, a drone detector engine is modelled as an
intelligent system able to perceive the context in which it is
deployed by monitoring the environmental sound. When a drone
sound is recognized an alert is triggered by the system.
The proposed framework for the identification of the drone
acoustic signature is shown in Fig. (1). Its schema is constituted
by five main modules that perform the tasks detailed in the
following.

• Audio acquisition
The sounds produced by the surrounding environment are
picked up by an audio sensor and converted in a digital
format by a sound card. To maintain a good time resolution
and a wide frequency bandwidth, it is assumed a sampling
rate of 48 kHz and a linear encoding with 16 bits for sample.

• Preprocessing
Each digital sound segment, recorded in a buffer memory, is
broken into consecutive frames of predetermined duration
(5 seconds); then the frames are normalized in the range
[-1,1].

• Short term analysis
To reduce the amount of data and identify discriminative
meaningful information, each input frame is further
segmented into sub-frames of 20ms using a moving
Hamming window with overlap of 10ms. The sub-frames
are processed by a bank of filters to compute the so called
short term feature in both temporal and frequency domains.

• Mid term analysis and frame modelling
Considering the sequence of the extracted local audio
features, their statistics are computed on a mid-term
window of 200ms. The made assumption is that the
audio signal presents homogeneous physical characteristics
during this temporal segment. Subsequently, the audio
frame of 5s is represented by a signature vector, that is
obtained by the concatenation of the set of feature statistics,
associated with each segment of 200ms in the given frame.
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Figure 1: Drone acoustic signature identification framework

• Decision making
The content of the environmental digital audio segment is
ranked by a set of SVM classifiers, operating on frame
basis. Specifically, there is a set of binary classifiers that
process the audio signature vectors of the input frames. Each
SVM classifier is trained according to the paradigm one
against one to recognize the drone acoustic signature. If the
majority of the frames is labelled with the tag ”drone” into
the given audio segment, it is assumed to recognize a flying
drone in the surrounding environment.

Audio data description

A critical issue in the audio pattern recognition problem is
the choice of features for constructing an accurate identification
system. The audio features should be efficient, robust and
physically interpretable so as to obtain a machine processable data
representation containing the key properties of the audio signal.
In general, the environmental sounds can be generated by variety
of sources under multiple contexts and no assumptions can be
made about their spectral and temporal structure [12]. Besides,
the corresponding audio signal is non-stationary in time, so that
the signal can be assumed locally stationary only on short time
range of 10-30 ms. This implies that the time and spectral
behaviour of the audio signal can be considered practically
homogeneous in a time range of few milliseconds.
Hence, to capture the heterogeneous audio information, two
different temporal scales are considered during the analysis phase
of environmental sound. Specifically, the audio segments are
processed on a short time basis of 20ms to discriminate which
set of temporal and frequency features is effective in the drone
identification problem. Subsequently, to give prominence to
salient audio features discarding the local detail, a mid term time
analysis is performed on 200ms.

Short term analysis

Denoting with x(n) the discrete time representation of
normalized audio frame, the audio data s(n) of each subframe are
given by eq.(1).

s(n) = x(n) ·w(m�n)

w(n) = 0.54� cos
⇣2p(m�n)

L�1

⌘
n 2 [0,L)

(1)

whew w(n) is an Hamming window of length L and m its time
shift. To compute the raw features and locally characterize
the corresponding audio waveform and spectrum shape, each
sub-frame s(n) is processed by a bank of specific filters on the
basis of the feature algorithms detailed below.
In particular, the computed local features are: the Short-Time
Energy (STE), the Zero Crossing Rate (ZCR) and the Temporal
Centroid for time domain; the Spectral Centroid (SC), the Spectral
Roll-Off (SRO), the Mel Frequency Cepstrum Coefficients for
frequency domain.

• Short Time Energy
It is computed according to the expression (2) and provides a
measure of the energy variations of the environmental sound
over time.

ST E =
1
L

L�1

Â
i=0

| s(i) |2 (2)

• Temporal centroid
It is defined as the temporal balancing point of the amplitude
distribution of audio signal. It is expressed as:

C =
ÂL

h=1 h · s(i)
ÂL

h=1 s(i)
(3)

• Zero crossing rate
It counts the average number of times where the audio
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signal changes its sign within the short-time window. This
features is particular useful to identify voiced subframe.

ZCR =
1

2(L�1)
·

L�1

Â
i=0

| sgn(s(i))� sgn(s(i�1)) | (4)

• Spectral Centroid
It represents the balancing point of audio spectrum p( f )
specifying if lower or higher frequencies are contained in
the spectrum.

SC =
Â f f · p( f )

Â f p( f )

p( f ) =|
L�1

Â
i=0

s(i) · e� j2p f/L |2
(5)

• Spectral roll-off
It defines the frequency below which a certain amout b
of the spectral energy is concentrated. In this work, it is
assumed b = 0.9

SRO = argmax
m

m

Â
f=1

p( f ) b ·
F

Â
f=1

p( f ) (6)

• Mel frequency coefficients
Mel frequency cepstral coefficients are the discrete cosine
transform of the mel-scaled log-power spectrum p( f ). The
main steps to compute these M cepstral coefficients are
described below.

- The M banks of Mel filters are used to map the power
spectrum p( f ) onto the mel scale defined by the
eq.(7). The frequency responses of these filter banks
are triangular and equally spaced along the mel-scale.

fMel = 2.595log10

⇣
1+

f
700

⌘
(7)

- The energies Em at the output of mth filter is computed
and then compressed into a logarithmic scale. Let be
Cm the relative log value.

- Given the M log energies Cm, the corresponding
DCT coefficients are computed and constitute the Mel
cepstral coefficients of audio signal s(n).

ci =
M

Â
k=1

Ck · cos
⇣p(2i+1)k

2M

⌘
(8)

To address the drone sound identification problem, 13
MFCCs are extracted because it is found that they lead
discriminative information.

Mid term analysis and features aggregation

After analyzing the subframes into the environmental audio
frame, the relative sequences of low level features are processed
statistically on a mid term time window, as mentioned in the
second section. The goal is to obtain new salient mid term features
with low sensitivity to the small variations of underlying audio
signal. Then, a set of mid term robust features are aggregated in
a global vector that is able to completely describe the perceptual
physical property of the environmental audio frame.

The maximization of the expressive power of the audio descriptor
can be obtained by selecting mid term window with a time length,
that allows to decorrelate the various components of the vector,
i.e. the selected set of mid term features.
Let denote {fi} the generic sequence of low level feature into
an audio frame, and let be N the number of sub-frame contained
into the generic mid term window w j. Then the N local features
{f j+k, k = 0, ..N � 1} relative to w j are processed to compute
the first and second order statistics, written in eq(9).

µ j =
1
N

N�1

Â
k=0

f j+k

s j =
1
N

N�1

Â
k=0

(f j+k �µ j)
2

(9)

Given all mid term windows w j in the environmental audio
frame, it is considered a selection of these statistics for the
various raw features to generate a vector of mid term features
by concatenation. This vector is the global audio descriptor
representing the audio signature vector of the frame. Besides, it is
the basic unit processed by the classifier for the identification of
drone sound.

Classifier for drone sound identification

The drone audio identification problem is addressed at frame
level formulating a multiclass environmental audio recognition
problem. Since the dependency of the mid term feature values
from the properties of environmental sounds properties is not
known a priori, a multiclass SVM based classifier is trained for
estimating the multidimensional audio descriptors.
This projectual choice is based on two main motivations. First,
SVMs are powerful machine learning techniques that are applied
in various pattern recognition problems with excellent results
[14, 15]. Secondly, a labelled training data set is the only
information required to implement an SVM.
In this work, it is adopted the one-against-one strategy [16] to
implement the SVM based classifier with k classes for drone
sound identification.
This leads to H = k(k � 1)/2 binary SV M classifiers, each one
trained on data from two classes. The output class is selected
among those chosen by most classifiers according to the max wins
strategy.
If two classes obtained identical number of votes it is selected
randomly one. Denoting with v the multidimensional audio
descriptor for the input audio frame and with f j(v) the decision
function of the generic classifier SV Mj , j = 1,2, ...H, the output
label can be expressed by eq(10) with H = k(k�1)/2.

label(v) = arg max
1 jH

{ f j(v)} (10)

Given a dataset of elements {v

n

,n = 1,2, ..M} belonging to
two different audio classes A and B, the model of the relative
binary SV Mj classifier is computed exploiting the principle of the
structural risk minimization. This implies minimizing a bound on
the generalization error, rather than minimizing the mean square
error [13]. Hence, the learning problem for the SV Mj can be
formulated as the determination of the optimal separating surface
that maximize the margin between the two classes A and B. This
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margin is given by the perpendicular distance of the closest data
point v

n

to the optimal separating surface. In the mapped space
z = f(v), the optimal separating surface becomes the optimal
decision hyperplane w

T · z+ b = 0 and the margin between the
two classes is represented by the minimum distance d

min

of the
closest point v

n

from the bounding plane w

T · z+b = 0.
To model the SV Mj classifier, we search for the optimal

values of the parameters w and b that maximize the minimum
distance d

min

. These values identify the optimal decision
hyperplane and define the SV Mj decision function f j(v) as:

f j(v) = sgn
� M

Â
n=1

antnK(v,v
n

)+b
�

K(v,v
n

) = f(v)T ·f(v
n

)

w =
M

Â
n=1

antnf(v
n

)

(11)

where {tn,n = 1,2, ..M} are the target label for the two classes,
assuming with tn 2 [�1,1].
In general the audio descriptors v

n

represent points linearly
non-separable in the audio descriptor space but which may be
separated in a non-linear way. This corresponds to the adoption of
SV Mj with non-linear kernel function K(v,v

n

). In particular this
work consideres all SV Mj having a Gaussian Radial Basis kernel

function (RBF) [13] expressed as K(v,v
n

) = e�
|v�v

n

|2

2s2 .

Experimental results

To evaluate the performance of the proposed system for
drone sound recognition, we used a dataset containing five
different typologies of environmental sounds corresponding to:
drone flying, nature daytime, street with traffic, train passing,
crowd. The dataset is created starting from background sounds
collected from the web using a specific scraper for audio
files. The selection of a balanced number of elements for the
five main classes are the criteria for the construction of the dataset.

Table 1: Classes of the environmental audio frames

Classes Total

Drone 868

Nature daytime 844

Crowd 840

Train passing 856

Street with traffic 864

Following these criteria, the scraper surfs the web discarding
all digital audio file with sampling rate less than 48 KHz.
The search process ends when a balanced amount of audio
files is downloaded for each class specified in the queering
set. Subsequently, each found audio file is manually validated
to verify if it is correctly associated with the given label. A
specialized software is used to divide each audio segment in frame
of 5s and annotate them with the class label relative to the audio
segment. In table 1 it is reported the class of environmental
sounds and the relative number of audio frames in the dataset
used for the train and test process. Namely, it corresponds to six

hours of environmental sounds. As suggested by the one against
one strategy, ten SVM binary classifiers are trained and tested,
one for each possible couple of class. For each SVM classifier,
several experiments are performed to determine the optimal
discriminative subset of aggregated features in combination with
the optimal SVM kernel among those linear, polynomial, RBF
and sigmoid.
The different choices are compared in terms of accuracy and
precision using the k-fold cross validation procedure (k=5) to
prevent the overfitting problem.
The experiments has revealed that the RBF kernel performed
better than the others with audio descriptor vectors constituted by
the first order statistics of raw features.
After defining the typology of SVM kernel, we have trained
the different binary classifier using specific subset of constructed
dataset. For example in modelling the SVM that classifies drone
frames versus crowd frames, we considered 868 segments labeled
as drone and 840 segments labeled as crowd. Then the 50% of
files of these two classes is used for training while the remaining
for the test.
The obtained performance for the adopted ten SVMs are shown
in Table 2 in terms of accuracy and precision.

Table 2: SVMs Performance

SVM-Classifier Accuracy Precision

Drone/Crowd 0,964 0,984

Drone/Nature daytime 0,992 0,983

Drone/Train passing 0,978 0.983

Drone/Street with traffic 0,964 0,987

Crowd/Nature daytime 0,959 0,919

Crowd/Train passing 1 1

Crowd/Street with traffic 0,8911 0,782

Nature daytime/Street with traffic 0,991 1

Nature daytime/Train passing 0,996 0,991

Street with traffic/Train passing 1 1

To conclude we have tested the overall SVMs based clas-
sifier, giving in input the same test frame to all ten SVM. By
using the max wins strategy, the output label was identified. The
resulting precision of the drone recognition is 98,3 % .

Conclusions

This work investigates the efficacy of machine learning
techniques to face the problem of drone detection in the context
of critical areas protection. To this end an empirical analysis
of the environmental sounds, recorded by the audio sensors in
the critical areas, is performed. The extracted time-frequency
fingerprint is adopted by the warning system to recognize drone
sounds.
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