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Abstract

We present a click-based interactive segmentation for indoor
scenes, which allows the user to select an object or region within
the scene in a few clicks. The goal for the click-based approach
is to provide the user with a simple method to reduce the amount
of input required for segmentation. We first present an effective
global segmentation strategy, which provides a rough separation
of different textures. The user, then, places a few clicks to seg-
ment the target. A novel Trimap assignment strategy is proposed
to utilize the click information. To study the performance of our
method, psychophysical experiments were conducted to compare
our click-based approach with other existing methods.

1. Introduction

Interactive segmentation has been widely implemented in

the image editing tools. It allows the user to edit a segmenta-
tion through some user inputs. An ideal interactive segmentation
method allows a user to alter and edit the result as close as possi-
ble to their needs.
The early approaches of the interactive segmentation utilize con-
tour tracking in a constraint region [1][2][3]. These algorithms
choose a path with the strongest boundary. The users interact with
the system by indicating a rough path. This approach, usually,
only considers the intensity of contours. To incorporate the color
cues, most of the interactive segmentation algorithms utilize the
Graph-Cut approach which was proposed by Boykov[4]. In this
approaches, the algorithm requires the user to place a hard con-
straint on the foreground and the background areas, and it treats
the user inputs as the empirical cues for segmentation. The cost
of cut is then defined as a soft constraint that considers both color
cues as well as boundary cues discussed in [5]. Among these kind
of strategies, [6] proposes to simplify user inputs by putting a box
around the object. A paint-based approach is proposed in [7], in
which a user paints both the foreground and the background. An
improvement similar to Adobe Photoshop Quick Selection Tool
is presented by Liu [8]. It only requires a user to paint the fore-
ground area. Veksler [9] proposed to add a star shape prior to
Graph-Cut implementation. Gulshan[10] extended the use of star
shape prior to using shape constraint. Grady[11] proposed using
Random Walk to solve the graph partition with some known fore-
ground and background information. Bagon [12] proposed to use
only one seed point to find the visually meaningful object for na-
ture images. Arvekaez [13] proposed the use of multiple points to
label different groups in an image. After this, the segmentation is
performed by finding the strongest boundary between two groups
using the Ultrametric Contour Map.

Most of these interactive segmentation methods employ dif-
ferent ways to interact with the user. Some commonly seen user
operations are placing points along the boundary, placing a box
around the objects, clicking on the target, and drawing strokes on
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the targets and the background. Because of the wide varieties of
interactive methods, a new user is expected to go through some
tutorials to learn how to use the tool.

(b) Segmetation result after two clicks are made.

Figure 1. An Example of Click-based Segmentation. (a) The user places
two clicks marked as the plus signs. (b) The highlighted green color shows
the segmentation result with our proposed method.

When we move the image segmentation tool to an online ser-
vice and switch our targeted users to general users, the users have
very low patience to learn how to use the segmentation tool. When
we deliver a software-as-a-service (Saas) model [14], the interac-
tive platform must deliver an effective and intuitive segmentation
tool. In the internet advertising and feeds ranking community, the
time spent by a user on an advertisement is commonly evaluated
by a click-through rate[15] and dwell time[16]. We argue that for
an online segmentation tool, it is also crucial to attract the users’
interests by providing them a good user experience, in order to
keep them on the web service. In the other words, the evaluation
factors that being used mostly for web advertisement are also rel-
evant to an online interactive segmentation tool. We argue that
it is important for an interactive segmentation tool to provide a
simple and effective segmentation method with accurate results.
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In this paper, we propose to use only clicks to complete the
segmentation. This provides the users a very simple instruction
of what they are expected to do. The users are allowed to use two
types of click, add or remove. A possible operation on a computer
is that the users use left clicks to add more selections and use the
right clicks to remove the selected regions. To make them to be
more patient on the segmentation process, we propose a novel
segmentation algorithm that gives a very quick selection for an
indoor picture with a specific finishing within a few clicks.

2. Indoor Scene Segmentation

This section proposes a method to quickly make the global
segmentation as the starting point of the interactive segmentation.
The objective of global segmentation is to replace the clicking
and drawing that were required by other interactive segmentation
methods. Moreover, an accurate indication of the global segmen-
tation can significantly reduce the number of clicks required from
the users. The precise boarder indication is left to the later steps.
The goal for the first step is to compose a rough indication of the
area with the same material. An effective block-based separation
method is proposed in [17]. In the rest of the paper, we will call
this method as the global block-based segmentation and shorten it
as gBb.

To perform gBb, we divide an image into N blocks. If less
blocks are picked, the segmentation would be less accurate. On
the other hand, if we use too many blocks, the overall computa-
tion would be slow. We test different selection of the block num-
ber from 40 images and pick N = 20000 blocks. Figure 2 shows
an example of segmentation with different block sizes by using
the method we proposed in this section. To measure the similarity
between two blocks, we used Kullback-Leibler divergence [18]
as the distance measurement of the similarity between the two
blocks. The Kullback-Leibler divergence measurement is known
as the relative entropy in the information theory, which assumes
one of the probability is the ’true” distribution, and the other prob-
ability is the approximated distribution of the true probability. It
is also used as a type of texture cue [19].

Bi(x
KL(B(B) = ¥ Bi(x)log o) n
xeX J (x)
In Equation 1, B; and B; are the probability mass function (pmf)
of the two regions. In general, Kullback-Leibler divergence is not
symmetric, so KL(x,y) # KL(y,x). We define the distance metric
as,

1

D(Bi|1B)) = 5 (KL(B||B}) + KL(B; | 5:) @

. To enforce the symmetric, we assume each block is a Gaussian
distribution on CIE L*a*b color space with 6 = (u,X), and we
also assume each channel is independent. The estimation of 8 =
(u,X) for each block is,

ﬂ = (ﬂL7ﬁa7ﬁb)7

. 3)
$ = diag(612,6,%,6,?).
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(b) N =20000 blocks.
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(c) N = 5000 blocks. (d) N = 1250 blocks.
Figure 2. An Example of Different Selections of the Block Number. (a) is
the original image which is an indoor scene. (b) shows the the result of gBb
initialized with 20000 blocks. The result is able to separate the carpet, the
wall, the ceiling, and the wooden floor. However, the wooden floor tends to
break into pieces. (c) shows the the result of gBb using 5000 blocks. (d)
shows the the result of gBb using 1250 blocks.
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Equation 1 can be reduced to
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We compute all the distances between two blocks by using equa-
tion 2 with the simplified KL distance by Equation 4.

The next step is to merge the blocks according to the be-
tween blocks distance. We first sort all the between blocks dis-
tances. The merging procedure gradually combines regions with
the smallest distance. After merging two blocks, the distance will
be removed from the sorted list. Then, we take the next small-
est distance and merge the neighboring block again. The pro-
cess stops when the smallest distance exceeds a threshold 7. The
threshold selection should provide enough separation. We set the
threshold as T = max(to, p), where p is the percentile of all the
between block distances, and #; is a constant.

Figure 2 is an example of the block-based segmentation with
different amount of blocks. The number of the blocks decides
how much detail to retain after the separation. In Figure 2, we
observe that when choosing N = 20000 and N = 5000, the amount
of details of the image is retained. It is especially obvious at the
windows area. We can also observe that the blocks do not connect
very well at the piano and the tree area. Most regions which are
located near the piano area and the plants area are separated into
small pieces. On the other hand, the floor and the ceiling are
mostly grouped into one large region. Even though the edge of
each region are blocky, the separation between different indoor
furnishing materials is reasonable.
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3. Main Algorithm
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Figure 3. Flowchart of Clicked-based Interactive Segmentation. The user
has two types of operations — the left click to select and the right click to

Yes. Remove
Selection.

remove.

In Section 2, we have proposed a global segmentation
method to separate an image into a finite number of regions. With-
out user interaction, the automatic global segmentation cannot
be modified. The potential problem for the global segmentation
without further editing is that a meaningful target is hard to de-
fine. The algorithm tends to (1) over-segment the image into too
many pieces, and each region is not a visually meaningful target,
or (2) under-segment the image into less regions than desired. The
exact definition of what is a correct segmentation is a challenge,
and sometimes varies between individuals and applications. We
propose an interactive segmentation algorithm to allow users to
make further editing. In particular, we propose to reduce the user
inputs from drawing strokes, placing points, and putting bounding
boxes to only use clicks. Hence, we call this method Click-Cut,
shortened as CC.

The steps of system flow are shown in Figure 3. We allow
two types of clicks — a left click or a right click. A left click
indicates the region that the user wants to select. A right click
indicates the region that the user wants to remove from the se-
lection. The first click, by default, is always a left click, from
which the user indicates a seed point to select. If one click is not
enough, user may place more clicks. In this paper, we will call the
left click the foreground click, and the right click the background
click. The foreground area represents the place the user want to
select, and the background area represents the place to discard.

We organize the rest of sections as follows. First, we initial-
ize the segmentation with a three layer image hierarchy described
in Section 3.1. A sequential Trimap assignment is proposed in
Section 3.2. Finally, an iterative optimization is applied to search
for possible neighborhood at Section 3.3. Algorithm 1 summa-
rizes the process of CC at the end of this section.

3.1 Initialization

This section presents a three layer image hierarchy which
preserves different levels of segmentation. The three layers are
arranged from fine to coarse. The first layer denoted as L? is
the original image. The second layer denoted as LS is a super
pixel segmentation which we use SLIC[20] with 1000 regions.
The third layer L83? is a global segmentation map that we have
introduced in Section 2. Figure 4 shows an example of the three
layers hierarchy of an indoor scene.

To represent the three layer of image hierarchy mathemat-
ically, We represent second layer as a set of regions denoted as
RiS , where i = 1,2,...,1000, and the third layer as another set of

regions denoted as RfBb,i =1,2,...,N, where N varied between
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Figure 4.

Three Layer Image Hiearchy. The bottom layer is the original
image. The second layer is the superpixel segmentation using SLIC. The

third layer is the global block-based segmentation.

different images. We use |R| to represent the area of a region R,
where |R| = Y, cr 1. To speed up the implementation, the set of
regions can be stored as an undirected graph, where each region
represents a node and the connected nodes are defined as the re-
gions in its neighborhood.

3.2 Trimap Assignment

This section proposes an algorithm to assign pixels into three
categories, the known foreground, the known background and the
unknown. We call the output the Trimap 7. We represent Trimap
T as follows.

T = {FUBUUY, )

where F, B, and U are three mutually exclusive sets which repre-
sent the foreground, the background and the unknown set respec-
tively. This section first presents the Trimap assignment for the
first click, and extends it to the general case for any clicks.

The First Click

In our application, the first click is default as the selection of
foreground. Every pixel in the initial Trimap is set to the back-
ground. When the user places the first click, we set the point as
a seed point x,, and take the region contains x; from layer L85,
We assume this region is R§Bb. To make sure the first foreground
assignment always includes a good initial size, we also take the
region contains x, from layer L into consideration, where x, guar-
antees a uniform area size. We define the seed region (R;) as,

Ry = max(|RS™|,|RY)). 6)

Equation 6 selects the larger area region from the two layers. The
foreground F of Trimap is

F={x:x€{R;OK}}, @)

where Kj is an erosion kernel. Equation 7 shows the mathematical
form of the foreground set. The foreground set is basically the
eroded seed region. We use two different erosion kernels. If Ry =
R’ we use the kernel Ky

1 ,wherel <mn<6
Kbix[m,n] = { 0 otherwise. ®
IfR;, = Rf, we use the kernel Kpni
1 ,ifn=00rm=0
Ky [m,n] = { 0 otherwise, ©)
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(b) F (foreground) (c) Neighborhood of (d) Trimap Assign-
Seed Region ment

Figure 5. Demonstration of Initial Trimap Assignment. (a) shows the original
image, where the plus sign is the clicked location. (b) applies gBb to form
layer L$5°. (c) shows the seed region R, and the foreground F. (d) shows
the dilated seed region highlighted in green and the grid boundary is the
neighborhood of seed region selected from layer LS. Finally, (e) shows the
final Trimap assignment for this clicked location.

where 1 < m,n < 3. The erosion is required because the gBb
is a blocky segmentation. The edge of the segmentation is not
accurate. The erosion allows the Graph-Cut to optimize the seg-
mentation boundary.

U = {x:x € UR;}, where R;NR; # 0} NF° (10)

B={FUU}*¢ 11

Equation 10 shows the definition of the unknown set. The
underlying idea is, we want to set the neighborhood of seed re-
gion to be in the unknown set. However, the neighborhood of
L8B% tends to break into small regions at the boundary area which
makes the neighborhood ineffective to use. Instead of selecting
the regions from L$5?, We take the neighborhood of the fore-
ground set from LS. The neighborhood is defined as the regions
that overlap with F. The rest of the Trimap is set to the back-
ground as shown in Equation 11.

Sequential Clicks

For sequential user clicks, the algorithm keeps tracking
where has been clicked and what seed regions have been used.
We assume the current click as click n and a past click as click
j. For the click j, we record (1) the seed locations as x5/
associated with, (2) the user operation, and (3) the seed re-
gion being used. The ) represents the click types, where
we define a click to select as 0 and a click to remove as 1.
We write the sequential inputs as a series of user operations
(xs(1>,c(1),R§1>),(xs(z),c(2),R§2)),...,(xs("),c(”),R@). In addi-
tion, for a past click j, the final segmentation separates the un-

known set U\ to a predicted foreground set £y ()

dicted background set BAU(j ). The segmentation result is de-
noted as 7U) = {£U) UBU)}, where FU) = F() UFU(J) and
B = B uE,Y.

and a pre-
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We consider the following five cases:
Case 1 — R§"> #* R§j> where 1 < j <nand M =0
Case 2 — R§") #* RE‘D where 1 < j <nand M =1
Case 3 — Rﬁ") = jo) where 1 < j <nand e =),
Case 4 — Rg.") = jo) where 1 < j < n and ) + D x, ) =
xs(”_l), and
Case 5 — R§") = jo) where 1 < j < n and ¢ # () x (W) £
PALDE
The five cases include all the possible scenarios given the click
history.

For Case 1, the user selects a seed region that has not yet
been used. The Trimap assignment is straightforward and similar
to Equation 7. Let the foreground F be

s
>

F={x:xe{R"oKk}UFr- (12)

. The foreground is the union of estimated foreground from the
(n— 1)" click and current seed region. The unknown set is the
neighborhood of the foreground region, where

U={x:x€URy}
, where R, N {{R\" UF(" D} & Ky} # 0} N FE.
(13)

The background is set to the rest of the pixels.

Case 1 is similar to the first click. In fact, if we set the the
foreground at click zeros as a empty set, namely £ ©) = 9. The
Trimap assignment is the same as Case 1. The first click can be
combined with Case 1 when we initialize the foreground set as
empty.

For Case 2, the user selects a seed region to remove. In this
case, we flip this seed region from the foreground to the back-
ground and turn the neighborhood of background region to un-
known. That is we flip some of the predicted foreground to un-
known. The Trimap assignment becomes

B={x:xe{R" oKk }UBr D}, (14)

U={x:x€URy}

, where R, N {{R"" UB" VY & K} # 0} N B
(15)

. The rest of pixels are set as F.

For Case 3, it occurs when the users click the same seed
region which is clicked before with the same user operation. Be-
cause the Trimap assignment always preserves the seed region
to the known foreground or the known background, clicking the
same seed region with the same operation cannot change the
Graph-Cut result. In this case, the Trimap will not be updated,
so the segmentation remains the same. Hence, 70 = =),

For Case 4, it indicates there exists two clicks with differ-
ent user operation at exactly the same location. In this case, we
change the Trimap assignment for this seed region. If user places
a foreground click, the Trimap assignment follows Case 1. If the
user places a background click, the Trimap changes according to
Case 2.
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(a) Segmentation Result of the First Click. From left to right, the im- (b) Case 1: The user places a foreground click on a new seed region.
ages shows the location of the first click, the trimap assignment, and the

segmentation result of the first click highlighted in green color.

(c) Case 2: The user places a background click on a new seed region. (d) Case 3: The user places a foreground click at the same place.

(f) Case 5: The user places a background click on a seed region that has
been selected as left.

(e) Case 4: The user places a background click at the same place.

Figure 6. An Example of Trimap Assignment for the Second Click. The example shows the second click followed by the first click showed at (a). Each case from
the left to right shows the new seed region, the Trimap assignemnt, and the segmentation result. (a) The first left click selects the tiled floor. (b) A foreground
click is placed at a region that doesn’t belong to previous seed region highlighted in dot pattern. (c) A background click is placed at a region that doesn’t belong
to previous seed region highlighted in dot pattern. (d) A foreground click is placed at the same location as a previous background click. (e) A background key is

placed at the same location as a previous left click. (f)A background key is placed at a selected seed region which was selected by a left click before.

For Case 5, it indicates there exists two clicks that are located
inside the same seed region with different types of operation. The
two clicks contradict each other. In this case, it indicates this
seed region may contain both the foreground and the background.
Therefore, an in-region partition is required to separate the two
seed points into two seed regions. Case 5 occurs when the bound-
ary between two seed regions is weak, or when the colors of the
two regions are similar. However, under this case, the region is
generally hard to separate by Graph-Cut with few user inputs. In
this case, we use the seed region from the superpixel layer, Rf .
That is, Ry = |RS|. Then, the Trimap assignment is made based
on the user operation. If the foreground click is placed, Case 1 is
applied, and if the background click is placed, Case 2 is applied.

Figure 6 shows 5 different places to click after the first click.
We first show the first click at (a). The user can click anywhere for
the second click. The place the user clicks may make the segmen-
tation fall into the 5 different cases shown in (b) to (f). We show
three images for each case. They are the place of the new click, the
Trimap assignment, and the final segmentation result highlighted
in green color. The first example at 6(b) shows the case when the
user places the second click on a new location which has not been
selected. The seed region associates with this location has not yet
been used in the past. Similar to Case 1, (b) shows an example
when the user places the second click on a new location, where
the seed region has not yet been used in the past. However, unlike
Case 1, the user places a background click to remove the area.

For Case 3 to 5, the new point is placed inside Rﬁl). At case 3, the
user places the click at the same location as the first click with the
same operation. The Trimap assignment doesn’t change, and the
segmentation result remains the same as the first click. For Case
4, the user clicks at the same location, but with a different user
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(1)

operation. The entire Ry
(1)

the user clicks inside Ry’ with a different user operation, In this
case, we apply the seed region from Layer 2 — SLIC.

changes to background. For Case 5,

3.3 Graph-Cut

Based on the Trimap, we apply the cost of cut which is pro-
posed in [6]. We define vector A as the segmentation, and A di-
vides Vp € U to {F,B}. The C(A) is the cost of cut.

C(A)=A-R(A)+E(A), (16)
where R(A) is the Gaussian mixture model for F and B. We use
CIE L*a*b color space and represent each pixel as a three dimen-
sional vector (L,a,b). E(A) is the cost to assign neighboring pixel
to different groups. We write the R(A) as

Z RP(AP)7

pe{F.B}

a7

where R, (Ap) is the GMM model built from F and G respectively.

5
FPEF:Z

—log g(p|OFk) —log Tr k), (18)

where g(p|6Fy) is the k" Gaussian distribution with parameters
O ) and 7 is the weight of mixture k for the foreground. Sim-
ilarly for p € B,

M-

Ry(peB) =Y (—log g(p|Opx)—log mp ). (19)

k=1
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The E(A) represents the potential for being a edge. We apply the
edge energy proposed by [6]

—[14; — 4,
2-E(||Ai - 4;17)

E@A)= Y

(A,,A/)EN

I(AivAj)'exp( )7 (20)

where (A;,A;) € N is denoted as the set of neighboring pixels and
E(]|A; —Aj||?) is the expectation of difference between neighbor-
ing pixels.

3.4 Iterative Optimization

After the first Graph-Cut has been made, the potential fore-
ground may still exist in the background region and vise versa.
Hence, we propose an iterative Trimap optimization procedure.
The idea is when the user places a foreground click, the algorithm
should keep searching for the neighborhood of the foreground un-
til no more foreground can be found. Similarly, this also applies
to the case when the user places a background click. We will first
discuss the Trimap refinement for the foreground click and the
Trimap refinement for the background click follows similar logic.

After Graph-Cut, the unknown group U is separated into
the predicted foreground £y and the predicted background By .
By hypothesis, this refinement is associated with the foreground
click, which indicates that the users want to increase the fore-
ground. We define the converge criterion as every region in layer
LS does not contain more than p percentile of the estimated fore-
ground. That is, the segmentation converges when

‘FAU(l)ﬂRﬂ

VRS € L5,
l RS |

<p 21)
If the segmentation is not yet converged, the potential foreground
may still exist in the current background area. Therefore, we ex-
pend our unknown area toward the background. We update the
Trimap as,

FO  ply F{ﬁ“, (22)
U «{x:xeUR;}
A . (23)
, where R; N {F ) & K.} # 0} N (FD)<,
and
BY « {FOyyye, (24)

The rest of the area belongs to Bl Equation 23 is very similar to
Equation 10. A subtle difference is the foreground from Equation
7 is eroded from the seed region. However, the foreground from
Equation 22 does not require erosion. Hence, Equation 23 directly
takes the neighborhood from the foreground.

Similarly, we can apply this method to the background click.
We shrink the foreground and expand the background. The con-
vergence criteria becomes

(i) ~ pS
y NR?|

|B
VRS € LS, 25
' Y] )

If the segmentation has not converged, we update the Trimap as

B « BOUBY, (26)
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U «{x:xeUR;}
27

and
FO  (BOyyye, (28)

The algorithm continues to refine the segmentation until the seg-
mentation result meets the convergence requirement. Algorithm 1
summarizes the Click-Based Interactive Segmentation Algorithm
described in this section.

Algorithm 1 Click-Cut
/*Initialization*/
Initialize three layers image hierarchy with LS, L85, and origi-
nal image.
Clear the clicked history. Set 70 B
/*Start sequential clicks*/
while true do
T(l> < f“(iil)
Read the i click. Get click point x§i>
if i = 1 then
Setc =0
Get seed region R\
Assign Trimap T based on Case 1 to 5.
Build GMM model and construct cost function.
T « Graph-Cut output.
if 7 has not converged then
T updated 7@
7O update GMM and perform Graph-Cut.
if User satisfies with the result then
End segmentation

4. Experiment Result

We conducted a psychophysical experiment to evaluate the
algorithm. We compared our method to four other existing meth-
ods shown in Table 1 — the Post-Processing output of Graph-
Cut to remove the disconnected foreground[8] (GC); Random
Walker[11] (RW); Euclidean Star Convexity (ESC); and Geodesic
Star Convexity[10] (GSC). All of these methods allow users to
place clicks to complete segmentation. The goal of the experi-
ment was to study the segmentation processes when clicks were
used as segmentation inputs. The segmentation objects were se-
lected from 25 different indoor scenes. The scenes included the
bedrooms, the living rooms and the kitchens. We selected 50 ob-
jects from these images. The objects selections were made in 5
different categories in which a user might be interested in replac-
ing the surface. The 5 categories were walls or ceilings (11 ob-
jects); floors (10 objects); cabinets (10 objects); table tops (10
objects); and furniture (9 objects). The procedure for the experi-
ment is detailed below.

The subjects were provided with an explanation on how to
use the different segmentation tools and were given time to get fa-
miliar with each tool. After this, they were presented with the goal
for their segmentation image, which was a binary mask represent-
ing the desired segmentation. The subjects were then assigned a
segmentation method to segment the image. Their objective was
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Table 1:
rithms

List of Compared Interactive Segmentation Algo-

| Abbreviation Methods

CC Click-Cut: The Proposed Algorithm
GC Post-Processing Output of Graph-Cut
RW Random Walker

ESC Euclidean Star Convexity

GSC Geodesic Star Convexity

to click on the image to get a result similar to the desired segmen-
tation. They were allowed to place sequential clicks in case one
click was not adequate. The segmentation process ended when the
participant report being satisfied with their segmentation result, or
when they had placed more than 20 clicks. Each subject partici-
pated in 15 trials that includes using all 5 segmentation methods
on 15 different objects. In all, 17 subjects participated in a total of
250 trials that used 50 different objects and 5 different segmenta-
tion methods. The entire experiment took every subjects 40 to 60
minutes.

During the experiment, we observed two types of clicking
habits for different subjects. Most subjects showed a tendency to
click at the center of the desired object. Some tended to click
on the corner of the segmentation just like using the polygon
tool. Most participants had consistent clicking habits and patterns
throughout the experiment. Because of the algorithm constraints,
all the algorithms except CC required making the first click on
the foreground and the second click on the background in order
to produce the initial segmentation. For these algorithms, the par-
ticipants could click on the background or the foreground third
click onwards. The algorithm, CC, only required the participants
to make their first click on the foreground, after which they could
make any other clicks. The results for the experiment are pre-
sented in terms of segmentation accuracy. We compare the final
segmentation with its F1 Score.

precision - recall

Fl = (29)

precision + recall
We performed 50 trials with 5 different segmentation methods.
Figure 7 shows how many trials are finished before a certain num-
ber of clicks. The result shows that CC requires fewer clicks than
any other segmentation method. 31 out of 50 trials for CC utilized
6 or fewer clicks.

Figure 8 shows the convergence of segmentation. The seg-
mentation result is expected to gradually improved when the sub-
ject places more clicks. Each line in the plot represents the av-
erage segmentation accuracy over 50 trials. Because most trials
took 20 clicks or less, if a trial ends before 20 clicks, the seg-
mentation accuracy remains the same from the last click to the
twentieth click. The error bar shows the variance of the 50 trials.
Our experiment result shows that all the segmentation methods
are able to gradually converge, but CC converges the fastest out
of the 5 methods. Our method also shows a smoother trend com-
paring to other methods.

In previous work on interactive segmentation, only the fi-
nal segmentation result were presented and discussed. However,
this does not take the user’s experience into consideration. The
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Figure 7. Count of Trials Finished Before a Number of Click. Each method
performs 50 trials. The x-axis shows how many clicks has been performed,
and the y-axis counts the number of trials that are able to finished before a
certain click number. Our method, CC requires fewer clicks than any other
segmentation method. For our methods, 31 out of 50 trials are finished in 6
clicks.
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Figure 8. Convergence of Segmentation Accuracy through Clicks. The plot

shows the average segmentation accuracy of 50 trials. The error bar shows

the variance of the 50 trials. CC converges the fastest out of the 5 methods.

user tends to get frustrated when the segmentation result can not
be consistently improved. This phenomenon is especially serious
when using only click as the segmentation inputs. Most of the al-
gorithms show an instability trend through clicks. Figure 9 shows
an example of the segmentation accuracy using the method GSC.
The original image and the segmentation goal are represented in
(a). The white color represents the desired segmentation, and the
black color represents the unwanted region. The segmentation ac-
curacy at each click is reported in (b). A significant decrease at
the fifth click, the tenth click, and the eleventh click were spotted.
Figure 9 (c) shows the intermediate segmentation result at these
clicks. Based on our experiment result, we found the instability is
commonly seen at click-based interactive inputs. Figure 10 shows
the trials from the object category - Furniture. Each method con-
tains 9 trials. For each plot, every dotted line represents one dif-
ferent trial, and the solid line represents the average segmentation
accuracy of the 9 trials. The average smooths out the instability.
We propose to measure the instability as accumulated decrease
in which we kept tracking the sum of accuracy decrease through
clicks. The equation of accumulative decrease (AccD) at click i is
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Instability of Segmentation Processes through Clicks
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(a) Segmentation Goal (b) An Example of Segmentation Accuracy
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(c) Examples of Segmentation Result through Clicks

Figure 9. An Example of the Instability of Segmentation Accuracy. (a) The
top image shows the original image, and the bottom image shows the desired
segmentation. The white color represents the desired segmentation, and the
black color represents the unwanted region. (b) The segmentation accuracy
at each click. A significant decrease at the fifth click, the tenth click, and
the eleventh click can be spotted. (c) shows the intermediate segmentation
result.

formatted as follows.

' 0 Lifi<l
AceD(i) = { XizzAFl(x)’-ﬂAFl(xKO , otherwise

where AF1(x) = F1(x) — F1(x—1), and 1 of(y) <0 is an indicator
function.

Figure 11 shows the measurement of accumulative decrease
at different segmentation methods. Our algorithm CC shows the
segmentation has very small instability comparing to all the other
methods. The segmentation accuracy shows the trend of consis-
tent increasing.

(30)

5. Conclusion

This paper presents a novel interactive segmentation method
that uses only clicks to perform the segmentation for the indoor
scenes. We first present an effective global segmentation. Then,
a sequential Trimap assignment is proposed to segment the selec-
tion. We conducted the psychophysical experiment to study the
effectiveness of the segmentation as well as the segmentation ac-
curacy. We propose a novel metric to measure the instability of
segmentation output through sequential clicks that causes a bad
user experience.
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