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Detection and characterization of Coordinate Measuring Ma-
chine (CMM) probes using deep networks for improved quality

assurance of machine parts.
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Abstract

We propose the use of a deep network to detect, segment
and characterize a Coordinate Measuring Machine (CMM) probe
used in measuring various machine parts. Our motivation is to
accelerate the time taken for an operator to input various pa-
rameters of a CMM probe into the system, so that delay in qual-
ity assurance of machine parts can be negated. Using imagery
from a high resolution EO sensor, we design a probe recogni-
tion and characterization framework which can segment probe
regions, classify various probe-region proposals into generic or
specific probe components, and estimate the various configuration
parameters of the probe. In order to measure a specific machine
part, an operator provides the CMM machine with an image of an
assembled probe. This end-to-end deep network-based framework
will then generate configuration parameters suitable for the mea-
surement task. Since the number of machine parts are in the order
of thousands, the probe can have multiple configurations. In this
work, we do extensive analysis on a probe dataset captured in our
lab and evaluate two main aspects of the framework: its ability to
segment regions, and classify those regions as probe components.

Introduction

Vision-based automation has become the de-facto standard
in various processes in manufacturing sectors such as aerospace
and automotive. One of the main processes in the manufacturing
pipeline is the quality assurance and final inspection to verify a
part dimensions using Coordinate Measuring Machines (CMM).
However, the inspection processes in place are not adaptable to
different types of manufacturing parts. These parts are in the or-
der of thousands and each type requires a different configuration
of a CMM measurement probe. For every new part, the operator
needs to assemble a probe and manually enter the configuration
parameters onto the CMM system. Since this process is time con-
suming and tedious especially in older machines, we require a
data-driven method which can model and characterize the probe
and its configuration from high-resolution imagery.

A CMM probe consists of 3 —4 main components such as
the probe head, probe body, probe extension (optional) and sty-
lus head. Different variants of these parts are used to create a
unique probe configuration. In order to automatically recognize
a probe, its characteristics such as shape, size, the structure and
other dimensions should be extracted as features by the vision
system. These extracted features should then be compared to the
corresponding known probe configuration within a pre-defined
database. The proposed framework in this work addresses this
issue of extracting relevant feature which are suitable to discrim-
inate between very similar configurations. Sample images of the
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Figure 1: Sample illustration of the probe image capture for CMM
machines.
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Figure 2: Examples of some Renishaw probes used in CMM ma-
chines and the various stylus provided.

simple setup for probe image capture and the sample types of the
components are shown in Figure 1 and Figure 2 respectively.

Objective

The aim of this project is to recognize and characterize a
CMM probe configuration from a high resolution EO sensor so
that accurate estimates of the system-specific probe parameters
are generated. Some of the technical challenges that we will face
are the following:

e Image data collection and ground truth annotation of large
number of probe configurations for various manufacturing
parts.

e Development of deep learning/data-driven models to cap-
ture fine features of the probe from high resolution imagery
for accurate recognition among similar classes.

The main objective is to explore and develop a vision-based algo-
rithm to recognize various configurations of a CMM (Coordinate
Measuring Machine) probe used in measuring machine parts. In
this work, we focus on 12 specific types of probe configurations
which are similar to each other. Each configuration is obtained by
selecting a probe stylus, probe body (extension) and a probe head
from a set of 3 different types of probe stylus (stylusl, stylus2,
stylus3), two different types of probe body extensions (bodyl,
body?2), and two different probe heads (head1, head2). One of the
main challenges in probe recognition is that the various classes
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Figure 3: The proposed framework for recognition of probe configuration

are too similar to each other for a standard object classification
problem. The attributes that need to be extracted are the sub-
tle circular/straight line features in the probe body, the printed
writing on the head, and the length/size of the stylus. To capture
these subtle features effectively, we use a high resolution Point
Grey 12MP monochrome EO sensor. However, due to high reso-
lution of the image, current state of the vision algorithms cannot
be applied directly as this would involve downsizing the image
which would eliminate the subtle features necessary for the probe
recognition. Our proposed novel algorithm leverages various deep
learning models to extract probe-specific features from local re-
gions, which can then be applied to a naive Bayes or Neyman-
Pearson classifier to recognize the complete probe.

Our motivation for this algorithm is to combine a generic
segmentation capability with a weak probe component detection
criteria to retain regions containing specific parts of the probe
within the image. Once we obtain the localized regions of the
probe, we classify the various probe regions as a body, head, and
extension (stylus). The novelty in our proposed approach is the
use of a segmentation techniques to obtain certain regions of the
probe and subsequently use deep residual neural networks to rec-
ognize generic or specific probe components from high resolution
imagery. This is in contrast to state of the art CNN networks
which are targeted for object recognition among a large number
of classes with very distinct characteristics.

Related Work

Machine vision algorithms are widely used with CMM tech-
nology for several dimensioning tasks. Most of the time vision-
based systems provided by commercial entities such as Cognex
is used to improve the operation of a CMM. In traditional ap-
proaches, the vision camera is mainly used as a feedback to the
CMM:s motion controller to accurately guide the probe [6]. An-
other advantage of using the vision system is to register 2-D point
from the camera and 3-D points from CMM and these points
would be helpful for calibration. Combining a CMM with a vi-
sion system helps in reverse engineering of freeform surfaces ac-
curately [1]. It also helps in reconstructing CAD model of objects
of complex geometry with high accuracy. The fusion of optical
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and mechanical sensors makes it unique and is highly automated.
A research group [12] has demonstrated usage of 3D active vi-
sion sensor in combination CMM equipped with motorized touch
probe for part localization. In all the research above the common
theme was to improve the CMM process and make it more accu-
rate. Our proposed effort takes this concept to a whole new level
where we would leverage state of the art models to enhance and
increase the automation process without the need for extra cal-
ibration and environment setup. Our research focuses on using
deep learning methods to effectively detect, segment and charac-
terize a CMM probe before further evaluation and analysis.

Object segmentation is a critical portion of any classifica-
tion or recognition problem. Traditionally this problem has been
solved with various background modeling techniques including
background subtraction, Gaussian Mixture Model (GMM), and
statistical models. With the advent of deep learning, traditional
techniques are being replaced and outperformed in many learning
tasks. Selective segmentation[14], in conjunction with Convolu-
tional neural networks have been combined to form region-centric
CNNs (R-CNN) networks for object detection and classification
[2, 10] . Here, region proposals are provided to the network to ob-
tain efficient features for object classification. These features are
then classified using SVMs or fully-connected layers to recognize
the object present in the region. Convolutional neural networks
have also been used in optimizing the masks surrounding the re-
gions, and one such work was done by Pinheiro et al [7] where
higher level layers of the VGG-Net [13] was replaced with two
convolutional layer branches, one which outputs a mask, and the
other a score reflecting the presence of an object. This approach
is more generic as it could provide region proposals which has
higher chance of containing an object.

Methodology

The proposed approach for probe configuration recognition
from a high-resolution image is to segment various interesting re-
gions corresponding to the probe, classify those individuals re-
gions as probe components, and then use the various probe com-
ponent detections to estimate the complete configuration. The
framework is a combination of three algorithms: probe region
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Figure 4: Illustration of deep mask segmentation on sections of the probe.
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Figure 5: Illustration of glimpses extracted from various region segments. From each region, we obtain 4 x 64 x 64 glimpses.

segmentation, probe region classification, and probe characteriza-
tion. As shown in Figure 3, the probe region segmentation algo-
rithm leverages a pre-trained deep neural network model known
as deep mask [7, 8] where region proposals and their correspond-
ing masks can be obtained from an image. Using the centroids of
these region proposals, glimpses of such regions can be extracted
at different resolutions. These glimpses of the probe regions are
then classified using a trained probe component network using
Residual Nets [3]. We will now explain each of these algorithms
and its usage in the following sub-sections.

Probe Region Segmentation

One of the first tasks in this approach is to segment rele-
vant regions of the probe present in the high resolution image.
Selective segmentation [14] is an effective way to obtain regions
proposals where these patches can be fed to a classifier for ob-
ject recognition. However, we employ the use of a more accurate
segmentation technique known as Deep Mask [7] which provides
region proposals which has high probability of containing a pos-
sible interesting object. The Deep Mask is a deep convolutional
neural network where it uses the first few trained layers of a VGG-
Net [13] in the main branch of the network. The input to the main
branch is an image of size 3 x 224 x 224 and output is a 3D ten-
sor of size 512 x 14 x 14. From the main branch, this 3D ten-
sor is fed to two parallel branches, named as mask branch, and
score branch. The mask branch consists of a convolutional layer
(conv(1,1)) , fully connected layer, and upsampling to generate a
binary mask of the possible object. The score branch consists of
a convolutional layer (conv(2,2)), a fully connected layer and an
output node which provides a confidence score which indicates
how much of the object is fully contained in the estimated mask.
The learning of the network uses a binary logistic regression loss
which uses the pixel-by-pixel inference of the mask as well as the
score value.
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In our proposed model, we leverage the trained model of the
deep mask (provided as open-source) and leverage the scores ob-
tained when applied on the high resolution probe image. Due
to memory constraints, we first divide the high resolution image
of size 768 x 1792 into overlapping 512 x 512 blocks. For each
block, we apply the deep mask to obtain k region proposals as
shown in Figure 4. The first two rows of 512 x 512 blocks fo-
cuses on regions of the stylus, the next two focuses on the probe
body, and the last two focuses on the probe head. The motivation
behind this division of the large image is to obtain appropriate
representations of the regions of the probe components at high
resolution. We apply a filter to those regions by using the score
obtained from those regions. Setting the score at 0.7, we obtain
an average of 100 regions proposals from the whole image.

Now, to appropriately represent these regions at different res-
olutions, we make use of a neural network module known as
glimpse. The glimpse layer has been very effective in attention
networks [5] where the glimpse module provides multi-resolution
multi-scale aspects of an object from a high resolution image at
different instants of time and at different locations. In this work,
we do not use recurrent models to capture the temporal transitions
of the glimpse but is used only to get the multi-resolution multi-
scale aspects of the probe component region. These glimpses of
the probe region are shown in Figure 5

Probe Component Net : Classification of probe re-
gions.

From the glimpses obtained, we can now train and model
a neural network to classify each glimpse of a probe region into
probe components. In this work, we focus on two types : one is a
generic probe component classification which tells if the glimpse
is of a stylus, body or head of the probe; the other is a more spe-
cific probe component classification which tells if the glimpse is
a particular stylus, body or head from a set of styluses, bodies
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Figure 6: Deep residual network for probe component classification

and heads of the probe. For the generic probe component clas-
sification problem, we explore pre-trained Residual Net models
as feature extractors for each glimpse image. The CNN features
extracted from each glimpse is then fed to a fully-connected layer
for a generic probe component classification. In this classification
problem, we extract glimpses of size 3 x 224 x 224 from each seg-
mented region of the probe. We consider only two scales while
computing the glimpse of a region. For the specific probe com-
ponent classification problem, we explore a custom deep resid-
ual neural network which mirrors the Residual-Net-18 [3] ar-
chitecture but with the input as a glimpse of much smaller size
3 x 64 x 64. In this problem, we extract 4 scales of the glimpse.
The only motivation for the small size and large number of scales
of the glimpse is to have large number of samples and reduce
memory consumption in training a deep network. Our objective
to explore how well the network functions as a specific probe clas-
sification network. This network is illustrated in Figure 6.

The architecture of the network that we use in the specific
probe component classification problem is as follows : 1 convo-
lution layer, 1 spatial batch normalization layer, 3 residual layers
as defined in [3], 1 average pooling layer, and a fully connected
layer. We train this network using Stochastic gradient optimiza-
tion for weights and biases with 7 different class labels repre-
senting the probe components (stylusl, stylus2, stylus3, bodyl,
body?2, headl, head?2). To minimize the effect of over-fitting, we
use a Randomized Rectified Linear units (RRelu) as the activa-
tion function. After training, what we expect is to obtain a class
label and a confidence score. In our approach, this confidence
score will reflect the probability of a specific probe component
present in a glimpse of a segmented region. The complete probe
characterization from the high resolution image will accumulate
these probability scores computed from every glimpse of each
segmented region in a Naive Bayes or Neyman Pearson classi-
fier [9]. The probe characterization problem is currently work in
progress.

Results and Analysis

We explore the capabilities of the proposed probe seg-
mentation and classification framework on a data-set containing
high resolution images of the probe. This data-set is captured
from a 12 MP Point grey machine vision camera with custom
region of interest set to focus only on the probe and the size
set to 768 x 1792. Sample images of the probe and its various
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Figure 7: Illustration of various probe configurations

configurations are shown in Figure 7. There are 12 different
configurations with each obtained by selecting a particular
combination of the probe components such as the stylus, body
(extension) and head. There are three different styluses (stylus1,
stylus2, stylus3) which vary mostly in size and length, two
different probe body (bodyl, body2) which vary in the concentric
features, and the probe head (headl, head2) which vary in
the marking, and its length. For this data-set, we captured
100 images of each configuration, leading to a total of 1200.
The general variation in the image set is the small degree of
rotation of the probe along its axis, its position in the image
with respect to the x,y and z (depth) axis, and small changes in
the background which are relatively uniform. This entire image
capture setup used a micrometer stage where the probe could
be placed. Some of the main challenges in this data-set are the
following: high similarity (low variance) between the various
probe configurations; high similarity between specific probe
components; and high inter-class variance of the probe classes.

Analysis-1: Effectiveness of probe features and
segmentation

We first qualitatively evaluate the effectiveness of captur-
ing features which can potentially help in discriminating sim-
ilar looking probe configurations. Traditional hand-engineered
features such as SIFT, SURF or BRIEF have been used exten-
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sively to solve image recognition tasks in robotic vision and au-
tomated guidance systems such as automated bin picking in man-
ufacturing. Similar features can also be obtained by applying a
pre-trained convolutional neural network model such as AlexNet
[4]. An illustration of hand-engineered and CNN-based features
on sample probe images are shown in Figure 8. We can see
that the specific attributes of the probe such as elliptical features,
line features and point features can be detected using both hand-
engineered and CNN features, thereby providing us a cue for dis-
criminating between two different probe configurations. Our mo-
tivation then for using a deep neural network is to obtain rele-
vant and optimal features for probe recognition and characteriza-
tion where the feature detectors are governed by data-driven tech-
niques. We have also obtained some preliminary results showing
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Figure 8: Features and region proposal illustration for the probe
using hand-engineered techniques, selective segmentation [14]
and deep mask segmentation [7].

the application of selective segmentation [14] on a sample im-
age of the probe. We see that selective segmentation with probe-
specific constraints are able to obtain region proposals which con-
tain parts of the probe and more useful to characterize the probe.
However, we use deep mask segmentation technique as it can pro-
vide more accurate region proposals than the selective segmenta-
tion technique.

Analysis-2 : Probe component type classification

In this analysis, we explore some common approaches to-
wards learning and fine-tuning deep networks for probe compo-
nent type classification where there are three classes stylus, body,
and head. In our first approach, we use a pre-trained model such
as Residual Net — 18 which has 18 layers trained already on an
ImageNet [11] dataset. This model takes an input image size of
3 % 224 x 224 and outputs a 512 element features. So, in our
framework, we capture glimpses of 224 x 224 on a segmented
region of the probe with two scales and feed each scale to the pre-
trained network to obtain CNN-based features. From the dataset,
the total number of glimpses extracted and segmented for fine-
tuning a model is around 217,000 images. As shown in Table 1,
there are three different fine-tuned models which varies in the ar-
chitecture of the fully connected layers. The activation functions
of these layers use a ReLU units with the LogSoftMax layer at
the output. We evaluate the various models by computing the pre-
cision (%), recall ( TPZ%) and accuracy.

As shown, the precision, recall and accuracy of the model
increases by about 5% rate with increase in complexity of the
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Figure 9: Accuracy curve for train, test and validation set obtained
from the pre-trained model 512 — 1000 — 300 — 30 — 3.

architecture of the fully connected layers. The precision of the
stylus increases from 80.17% to 84.96% while its recall increases
from 81.66% to 86.74%. Similarly, the precision of the body in-
creases from 81.98% to 87.80% while the recall increases from
81.78% to 87.63%. For the probe head, we obtain a high precision
of around 90.69% which increases to 95.06% while the recall in-
creases from 89.86% to 94%. The overall accuracy increases from
84.65% to 89.72%. These results prove that using a pre-trained
model (trained on a much larger and diverse dataset) is useful in
recognizing and classifying regions on probe images captured us-
ing a different sensor in a different environment. The low-level
feature maps which capture the relationships between edges, cor-
ners in the image are similar to those found on the probe. The
higher level abstracted features which form building blocks of a
generic ImageNet object class is applicable for representing sim-
ilar building blocks of a image of a probe captured in a differ-
ent environment. However, from the Figure 9, we see that the
pre-trained models slightly overfit the data but not to a huge de-
gree. This is due to the lack of refinement and fine-tuning of the
higher abstracted feature layers (the convolution layers) towards
the probe images. Therefore, we explore the option of training
a custom model (ProbeComponentNet) from scratch using larger
dataset but with smaller image/glimpse size of 64 x 64.

Analysis-3: Probe component classifications

In this analysis, we explore the state of the art deep resid-
ual neural network architecture for directly classifying specific
probe components which make up the entire probe configuration.
There are seven classes of components in this dataset, specifically
stylusl, stylus2, stylus3, bodyl, body2, headl, and head2. In
this approach, we train a custom deep residual network (known as
Probe Component Net) which takes in 3 x 64 x 64 image. There-
fore, in our framework, each segment generates 4 glimpses of
size 3 X 64 x 64 resulting in a total of 490,000 glimpses from
this dataset. The motivation behind this approach is to explore
the possibilities of directly associating a glimpse of a particular
probe segment/patch to one of the specific probe components.
The end goal is to obtain probability of each patch/segment of
a probe belonging to one of the components. This will make the
complete inference of a probe configuration easier as we can now



Conf Input glimpse size | Stylus Body Head
Pre-trained ResNet-18 - 512-100-3 224 x 224 80.17% | 81.98% | 90.69%
Pre-trained ResNet-18 - 512-300-30-3 224 x 224 83.51% | 86.90% | 93.79%
Pre-trained ResNet-18 - 512-1000-300-10-3 224 x 224 84.96% | 87.80% | 95.06%
ProbeComponentNet 64 x 64
(a) Precision Scores
Conf Input glimpse size | Stylus Body Head
Pre-trained ResNet-18 - 512-100-3 224 x 224 81.66% | 81.78% | 89.86%
Pre-trained ResNet-18 - 512-300-30-3 224 x 224 85.80% | 85.92% | 93.34%
Pre-trained ResNet-18 - 512-1000-300-10-3 224 x 224 86.74% | 87.63% 94%
ProbeComponentNet 64 x 64
(b) Recall scores
Conf Input glimpse size | Overall Accuracy
Pre-trained ResNet-18 - 512-100-3 224 x 224 84.65%
Pre-trained ResNet-18 - 512-300-30-3 224 x 224 88.56%
Pre-trained ResNet-18 - 512-1000-300-10-3 224 x 224 89.72%
ProbeComponentNet 64 x 64

(c) Accuracy
Table 1: Precision, recall and accuracy per probe component class for various configurations using a common pre-trained Residual

network, and changing the fully connected network for classification.

have each segmented region of a probe associated with a probe
component. By the association of multiple probes regions with
the corresponding probe component labels, the complete probe
configuration from a high resolution image can be estimated. The
performance of the Probe Component Net is summarized in Table
2.

In Table 2a, we see that the precision and recall of the task of
identifying specific probe components is much less than what was
observed for generic probe component classification. This can be
attributed to the fact that the specific probe component classes are
very similar to each other. One example is the tuple of categories
(stylusl, stylus2, stylus3) where the only difference is in the di-
ameter of the ball bearing at the end of stylus and the length of the
stylus. Since we are using only a gray-scale camera, we lose the
color information which can be a key component in distinguish-
ing between various stylus components. The precision of a stylus-
type category varies from 64% to 68% while the recall varies from
63% to 67%. However, the category tuple (bodyl, body2) have a
higher precision and recall rate ranging from 70% to 79%. More-
over, the category tuple (headl, head2) have even higher preci-
sion and recall ranging from 75%to 84%. This is mainly because
there are more variations in the body and head component type
of the probe such as variation of lines, edges, elliptical features,
small markings etc. Overall, the accuracy of the specific probe
component detection peaks only at 73.33% and is mainly due to
the low accuracies obtained by the stylus categories.

In Table 2b, we provide the true positive rate, the false pos-
itive rate and the false negative rate in the form of confusion ma-
trix. Here, the rows correspond to true class while the columns
refer to the estimated class by the network. The true positive
rates for each category lie along the diagonal, the false negative
rates fall only the rows, and the false positive rates fall along the
columns. For the category tuple (stylusl, stylus2, stylus3) , the
true positive rate lies between 48% to 49% with the false pos-
itive and negative rates spread across predominately along the
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other stylus and body categories. We see that around 4% — 8%
of stylus1 segments falls in the (stylus2, stylus3, bodyl, body2)
categories contributing to a high false negative rate of 21.86%.
Also, regions belonging to other stylus and body component cat-
egories fall in the stylusl category which contributes to a high
false positive rate of 22.54%. Similar is the case with stylus2 and
stylus3 categories where the true positive rate is 47 — 48% while
the false positive and false negative rate is around 25% —27% and
16 — 18% respectively. This large false positive and false negative
rates can be attributed to two main factors: similarities within the
stylus component categories; and the other is noisy labeling of
the data where some samples of body component categories are
present in the stylus and vice-versa. The former can be resolved
by obtaining higher resolution glimpses and at large number of
scales to capture the variations in the szy/us component categories.
However, the latter issue of noisy labeling can be attributed to the
weak-labeling criteria in setting up the ground truth. This can
be see in the performance of the network on the body categories
where they achieve high true positive rates of 55% — 59% but the
false positive and false negative rates are spread out across all
other categories. When we consider the head component cate-
gories, the false positive rates and false negative rates are concen-
trated more along the other head component category and body
component category. Here, a true positive rate of 62% — 68% is
obtained with false positive rand false negative rates of 18% and
15% respectively. Another indication of weakly labeled and noisy
ground truth is the indication of over-fitting of the model in spite
of sufficient training data samples and necessary regularization
techniques such as usage of RRelu units, spatial batch normaliza-
tion techniques and drop out mechanisms. This fact is illustrated
in the accuracy curves shown in Figure 10.

Conclusions/Future Work
In this work, we have explored the use of state of the art deep
learning approaches to characterize a CMM probe configuration
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Stats Stylus-1 | Stylus-2 | Stylus-3 | body-1 | body-2 | head-1 | head-2 | Overall
Precision | 68.63% 64.81% 64.81% | 76.37% | 70.74% | 78.66% | 77.82%
Recall 63.67% 63.78% 66.59% | 67.44% | 79.02% | 75.23% | 83.58%
Accuracy 73.33%
(a) Precision, Recall and Accuracy scores for specific probe component classification.

True Class/Estimated Class | Stylus-1 | Stylus-2 | Stylus-3 | Body-1 | Body-2 | Head-1 | Head-2
Stylus-1 49.32% 7.46% 6.43% 3.76% 4.21% 0.22% 0.44%
Stylus-2 6.65% 47.37% 4.72% 2.51% 4.75% 0.21% 0.32%
Stylus-3 4.18% 3.67% 48.91% 1.78% 3.55% 0.13% 0.48%
Body-1 7.14% 8.39% 8.64% 55.80% | 5.06% 4.32% 4.01%
Body-2 4.15% 5.76% 6.13% 0.022% | 59.49% | 4.22% 3.20%
Head-1 0.21% 0.32% 0.29% 4.49% 4.88% 62.48% | 10.79%
Head-2 0.22% 0.13% 0.33% 2.51% 2.27% 7.85% | 67.50%

(b) Confusion matrix reflecting percentage of true positives (along the diagonal), false negatives (along rows), and false positives (along columns)

Table 2: Performance of Probe Net component classification with RRelu (Randomized leaky rectified units) units and glimpse size of
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Figure 10: Accuracy curve from Probe Component Net
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from high resolution imagery. This led to the development of a
novel vision-based CMM probe recognition framework which can
reduce cost and time during machine part inspection. In this ap-
proach, we leveraged the use of segmentation techniques to obtain
certain regions of the probe, and develop a deep residual neural
network model to associate the region with a generic probe com-
ponent type and a specific probe component. In our analysis, we
have obtained a fairly good performance with the generic probe
component type classification and fairly moderate performance
with the specific probe component classification. This paves way
to another simple statistical approach which can leverage the con-
fidence scores or probability scores of various regions in the im-
age to estimate the complete probe configuration.

As part of future work, we will address the issues of over-
fitting, and miss-classification through a more accurate ground
truth labeling, and introduction of more imagery under differ-
ent background conditions. We will also explore the use of CAD
models of the various probe components in our framework to ob-
tain a match between the segmented regions and the correspond-
ing 3D models for higher accuracy and robustness.
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