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Abstract
Recent progress in deep learning methods has shown that

key steps in object detection and recognition, including feature ex-

traction, region proposals, and classification, can be done using

Convolutional Neural Networks (CNN) with high accuracy. How-

ever, the use of CNNs for object detection and recognition has sig-

nificant technical challenges that still need to be addressed. One

of the most daunting problems is the very large number of train-

ing images required for each class/label. One way to address this

problem is through the use of data augmentation methods where

linear and nonlinear transforms are done on the training data to

create “new” training images. Typical transformations include

spatial flipping, warping and other deformations. An important

concept of data augmentation is that the deformations applied to

the labeled training images do not change the semantic mean-

ing of the classes/labels. In this paper we investigate several ap-

proaches to data augmentation. First, several data augmentation

techniques are used to increase the size of the training dataset.

Then, a Faster R-CNN is trained with the augmented dataset for

detect and recognize objects. Our work is focused on two dif-

ferent scenarios: detecting objects in the wild (i.e. commercial

logos) and detecting objects captured using a camera mounted on

a computer system (i.e. toy animals).

Introduction
Object detection and recognition is one of the most impor-

tant areas in computer vision since it is a key step for many ap-

plications including smart home, smart office, surveillance and

robotics. In this paper, we focus on two different scenarios: de-

tecting commercial logos in the wild and detecting objects cap-

tured by a high definition camera (i.e. toys). Logo detection is an

important task in contextual ad placement (placing relevant ads on

webpages, images, and videos), validation of product placement,

and online brand management [1]. Object detection can be used

as part of educational or entertainment applications providing a

richer interaction with the user.

Our work makes use of deep learning methods, in particular

the Faster R-CNN (Region-based Convolutional Neural Network)

[2]. The network is composed of three main parts: a feature ex-

tractor, a region proposal network, and a classifier. The network

allows us to detect multiple objects in a scene. This CNN is de-

scribed in more detail later.

Deep learning methods, such as Faster R-CNN, require ap-

proximately 5,000 samples per class [3] to have good perfor-

mance. This can be a problem in many situations, where only

one or few images of the object that we want to detect are avail-

able. One way to address this problem is through the use of data

augmentation methods where linear and nonlinear transforms are

done on the training data to create “new” or synthetic training im-

ages. Typical transformations include spatial flipping, warping

and other deformations. An important concept of data augmenta-

tion is that the deformations applied to the labeled training images

do not change the semantic meaning of the labels.

In this paper, we propose a solution to the lack of training

data by generating synthetic data using data augmentation meth-

ods. The synthetic image data is generated using transformations

such as rotations and color changes, and blending them into back-

ground images [4].

The main contribution of this paper is combining the use of

data augmentation techniques and the Faster R-CNN for object

detection with almost non-existent training samples. This tech-

nique is used for logo detection in the wild and object detection

with multiple toys in various poses.

This paper is organized as follows, in Section 2, we present

an overview of related work in object recognition, logo recog-

nition and data augmentation. In Section 3, we propose several

techniques for data augmentation and we provide an overview of

the datasets used for our experiments. In Section 4, we present the

experimental evaluation. In Section 5, we analyze the network us-

ing visualization tools. We conclude in Section 6, by presenting

conclusions and future improvements.

Overview Of Related Work
Traditionally, the use of hand crafted features, such as

SIFT [5] and textures [6], along with statistical classifiers, such

as Support Vector Machines (SVM) [7] and Nearest Neighbor

(NN) [8], have been the main approaches for object detection and

classification.

In the last several years deep learning methods has shown

to provide higher accuracy compared to traditional approaches

[2, 9, 10, 11, 12]. This improvement has been possible mainly by

advances in hardware (e.g. more powerful GPUs) and the avail-

ability of large labeled datasets (e.g. ImageNet [9] contains more

than 14M images). Deep learning methods have demonstrated im-

pressive results in speech recognition, object recognition and de-

tection and in other domains such as drug discovery and genomics

[13, 14]. Deep learning based methods are the leading approaches

in object classification (i.e. ImageNet [9]) and object detection

competitions (i.e. Pascal VOC [15] and MS COCO [16]).

One deep learning approach that has achieved high accura-

cies in classification and detection is the Convolutional Neural

Network (CNN) [13, 3, 12]. This network combines convolu-
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tional filter layers and non-linearity layers to learn and extract

features (feature extraction subnet) and fully-connected layers to

classify them (decision subnet) [17, 12].

The feature extraction subnet can contain many convolu-

tional layers and each layer contains multiple filters. The filters

of the first convolutional layers are able to detect simple features

such as color or edges. Filters in deeper layers learn more com-

plex features (e.g. some layers can detect complex shapes such

as faces, wheels, and animals). Between convolutional layers,

non-linear layers such as the Rectified Linear Unit (ReLU) or

Max-pooling are included. ReLU layers compute the maximum

between 0 and their input value. Max-pooling layers perform a

non-linear down-sampling. The down-sampling process consists

of partitioning the input image into non-overlapping rectangles

and selecting the maximum value inside each rectangle. The out-

puts of the convolutional layers are usually known as feature or

activation maps.

The decision subnet can contain multiple fully connected

layers. Fully connected layers consist of a set of matrix multi-

plications followed by non-linear operations (typically a ReLU).

The size of the last fully connected layer output is equivalent to

the number of classes. The network outputs a probability or con-

fidence value for each class. The decision subnet usually requires

a fixed input size. This issue is addressed by initially cropping or

resizing the input images before the feature extraction subnet.

The weights and parameters of the convolutional and fully

connected layers are learned from training samples using Back-

propagation [13] in combination with gradient-based methods

such as Stochastic Gradient Descent (SGD) [14]. The learning

process starts by assigning random values to the weights and pa-

rameters of the network. Then, two different stages, propagation

and weight update, are repeated over a fixed number of iterations.

First, an input image is propagated forward through the network

until it reaches the output layer. Then, the output of the last layer

is compared with the ground truth value using a loss function. The

loss function is a function that generates an error measure. If the

predicted output is close to the desired output, the error measure

will be small. If the predicted output differs a lot from the desired

one, the error will be large. The error value is backpropagated

through the whole network using SGD. The SGD is an optimiza-

tion method that updates the values of the weights and parameters

of the network in order to minimize the loss function. The loss

function gives a measure of the training error.

The training error represents how well the network fits the

training data. Typically, the training error underestimates the test-

ing error. Testing error is the error that results when the network

is used for a new observation that was not used in the training

process. If the gap between test and training error is large, we

say that the network is overfitting. That means that the network

has learned the training data but is not able to generalize to new

examples.

A common practice in deep learning is to train a CNN with a

large generic dataset (e.g. ImageNet) and then use the weights and

parameters obtained in the training process as an initialization.

This process is known as fine-tuning.

In our work, we make use of two common CNN models: the

Zeiler & Fergus (ZF) net [18] and the VGG16 (Visual Geometry

Group) net [19]. The ZF Network has 5 pairs of convolutional and

ReLU layers followed by 2 fully connected layers. The 1st convo-

lutional layer has 96 filters with size 7 × 7, the 2nd convolutional

layer has 256 filters of size 5 × 5, the 3rd, 4th and 5th convolu-

tional layers have 256, 384 and 384 filters respectively. Each filter

has a size of 3 × 3. VGG16 is a deeper model containing 5 sets

of layers. Each set contains two convolutional and ReLU layers

followed a max pooling layer. The number of filters in the convo-

lutional layers are 65, 128, 256, 512 and 512 respectively. All the

filters have a size of 3 × 3. VGG16 ends with 3 fully connected

layers.

CNN are good for image classification but they can not lo-

calize objects inside the image. The Region-Based Convolutional

Neural Network (R-CNN) [20] is a network able to locate and

classify several objects in images of any size by combining CNNs

and external region proposal methods. A region proposal method

is a method that finds a set of regions, typically defined with

bounding boxes, that might contain objects of interest. Typi-

cal region proposal methods are Selective Search [21] and Edge-

Boxes [22]. Selective Search splits the image in several regions

of interest by using similarity measures based on color and visual

features like SIFT [5]. EdgeBoxes finds regions of interest using

object contours information. In the R-CNN, each region of inter-

est is cropped and resized to 227 × 277 pixels. Then, the resized

image is used as input of a CNN consisting of five convolutional

layers and two fully connected layers. The CNN assigns to each

region of interest a class and a confidence score.

The R-CNN, and many other object detection methods, pro-

cesses the bounding boxes generated by region proposals meth-

ods using Non-Maximum Suppression (NMS) [20]. NMS rejects

a bounding box if it has a large overlap with another bounding

box with higher confidence. If the overlap is higher than a thresh-

old, the bounding box is rejected. Typically, the threshold is a

parameter learned by the network in the training process.

The main problem with R-CNN is that it is computationally

complex since every image is processed as many times as regions

of interest are detected. Previous work such as the Spatial Pyra-

mid Pooling Network (SPPnet) [10] address this problem by using

pooling. SPPnet starts with a CNN (e.g. VGG16 or ZF) followed

by a spatial pyramid pooling layer and fully connected layers. The

spatial pyramid pooling layer uses max-pooling for each region

of interest using grids with multiple sizes. The regions of interest

are computed using Selective Search. The images are processed

only one time by the CNN. Then, spatial pyramid pooling is use

to generate the output of the last convolutional layer, the feature

map, and is later classified by the fully connected layer.

The Fast R-CNN [11] is a network with the same structure

as SPPnet but substitutes the spatial pyramid pooling with a RoI

(Region of Interest) pooling layer. The RoI pooling layer is a

simplified version of the spatial pyramid pooling, where instead

of using a grid with multiple sizes, only one size (tipically 7 ×

7) is used. Fast R-CNN also introduces a more effective method

for training the CNN and adds a bounding box regressor. The net-

work is trained using multiple regions per image instead of using

only one as it is done in SPPnet. The bounding box regressor is a

layer that outputs the locations of bounding boxes where objects

of interest might be located.

In our work, we use a variant of the Fast R-CNN known

as the “Faster R-CNN” which combines the Fast R-CNN with a

RPN (Region Proposal Network). The RPN is a neural network

that uses the output of the last convolutional layer of the CNN,
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Figure 1. Faster R-CNN is a network that combines a Convolutional Neural Network, a Region Proposal Network, a Region of Interest Pooling layer, and a

classifier

the feature map, to generate regions of interest. The RPN con-

sist of a 3 × 3 sliding window that outputs a set of 9 bounding

boxes containing regions of interest. Each bounding box has a

different size and a different aspect ratio. A fully connected layer

assigns a binary class (foreground or background) to each bound-

ing box. Following the steps in the Fast R-CNN, each region of

interest is applied to the RoI pooling layer and is later classified

by a fully connected layer. In the classification step, a confidence

score is assigned to each bounding box. The confidence value

ranges from 0 to 1 where a confidence of 1 represents that the

network is almost certain that the class assigned is correct. A

threshold is usually set to 0.7 in a deployment stage and all the

bounding boxes below the threshold are discarded. The network

can be trained end-to-end and provides an almost real time perfor-

mance. With the addition of RPN, there is no need to use external

region proposals methods. Figure 1 shows the structure of the

Faster R-CNN.

The Faster R-CNN is the basis of several 1st-place entries in

the ImageNet and MS COCO competitions [2]. It is also used in

commercial systems such as Pinterest [23].

Other methods for image detection such as You Only Look

Once (YOLO) [24] provide real-time performance by compromis-

ing accuracy. Recent methods such as Single Shot Multibox De-

tector (SSD) [25] provide real time performance and good accu-

racy but seem to perform poorly detecting small objects since it

resizes the input images to a size of 300 × 300 pixels and reso-

lution is lost. Both methods divide the image into a fixed number

regions and predicts bounding boxes and probabilities for each

region using fully connected layers.

Several methods have been proposed for logo detection and

recognition using both hand crafted visual features [26] and deep

learning [1, 27]. The work presented in [1] makes use of CNNs

for logo classification and the Fast R-CNN for logo detection with

and without localization. They report a mean average precision

of 74.4% using Fast R-CNN with the VGG16 [19] architecture

and selective search as region proposal method. In this paper, we

show that the Faster R-CNN combined with data augmentation

produces significant improvements in logo detection with local-

ization.

Data augmentation has been used for object detection using

hand crafted visual features [26, 28] and for deep learning [4].

Typical data augmentation techniques used in deep learning in-

clude image cropping, flipping and color changes [9] to create

the augmented or synthesized images. More complex techniques

can include noise addition, geometric transformations, or image

compression. The method presented in [28] combines multiple

transformations to the training set. After the data augmentation

process an accuracy increase of 3.5% in 2010 ImageNet competi-

tion was reported.

Synthesized images have been used for training neural net-

works for self-driving vehicles [29] and text recognition appli-

cations [30] and have demonstrated encouraging results. The

method presented in [29] makes use of 3D virtual worlds to train

a neural network. The use of virtual worlds has proved to be ef-

fective when using reinforced learning [31].

Other work has used neural networks to generate new data.

The work presented in [30] uses a neural network to estimate the

depth of images used as background images. Text is then added

to uniform regions of the background images using the depth in-

formation. Methods such as [32] use Recurrent Neural Networks

(RNN) to generate new training samples using information ex-

tracted from a training dataset.

Our Proposed Approach
In this section we describe our method for synthesizing im-

ages. Our approach is based on the work described in [4, 28]

which blends images of objects with real-world background im-

ages. The images of objects and logos undergo several transfor-

mations as described in the following sections. Images of objects

are essential to data augmentation. For logo detection, the images

are extracted from the FlickrLogos-32 [26] dataset. There are sev-

eral public datasets available containing labeled images with lo-

gos, these include FlickrLogos-32[26], FlickrLogos-27 [33], Bel-

gaLogos [34] and MICC-Logos. We selected FlickrLogos-32

for our training and evaluation purposes because it contains the

largest number of labeled images and is the one commonly used

in previous works of logos in the wild detection.

FlickrLogos-32 consists of 32 different brands (classes) each

with various versions. The dataset contains 8240 images mined

from Flickr [35]. Figure 2 shows samples from the FlickrLogos-

32 dataset. The dataset is divided into training and testing parts.

Training data is comprised of 1280 images (40 per class) con-
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taining genuine logos and 3000 images with no logo content. The

3000 images are used as background images (distractors). Testing

data includes 960 (30 per class) images containing genuine logos

and 3000 background images. Each image with a genuine logo

is provided with the true class and a binary segmentation mask

indicating the logo location.

In the case of object detection, high quality images are cap-

tured using a high-definition camera contained in the HP Sprout
1. The HP Sprout is a desktop computer released in November

2014 that also has a projector, a HD camera, a 3D camera, a touch

mat and a LED desk lamp [36].

Logo Extraction

Figure 2. Image samples from FlickrLogos-32. The logos are for Adidas

(left), Corona (center) and Starbucks (right)

Logo images are extracted from the FlickrLogos-32 train-

ing set using the binary segmentation masks and labels provided.

Each image may include more than one logo. In total, we obtain

60-80 images per brand. Images smaller than 20 × 20 pixels are

discarded since they are very difficult to detect after data augmen-

tation. Figure 3 shows examples of logos from the FlickrLogos-32

dataset.

Figure 3. Six different logos from FlickrLogos-32

The same brand can have different versions of logos. Figure

4 shows the inter-class variation of three different brands. We do

not make distinction between logo versions and we assign one

class per brand.

Object Capture
Total of 20 high quality images are captured for every object

in a different pose. The HP Sprout is used in the image acquisition

process. The images are captured using the top HD camera with

white light projected to the touch mat and the LED desk lamp

turned off. In this paper, no 3D information is captured or used.

Various poses are used, Figure 5 shows six examples of the

same object. As presented in following sections, the number of

poses used in the data augmentation process will affect the de-

tection and precision performance. Intuitively, if more poses are

1HP Sprout, HP Inc R©

Figure 4. Different logo versions for Fedex (left), Apple (center) and Google

(right)

available for training, the network will be more resistant to rota-

tions and change of poses. In this paper, a set of 15 different toys

was used. Figure 6 shows examples of different toys. Some fig-

ures have minor differences between them (set of small red and

black toys). Despite that, the network is able to differentiate them

as presented in next sections.

Figure 5. Captures of different poses

Figure 6. Six different toys

Synthetic Data Generation
We want to generate real world looking images containing

the objects of interest (logos or toys). To accomplish this, we

start by randomly selecting a background image from the MIT-

Places dataset [37]. The MIT-Places dataset contains 205 scene

categories and a total of 2.5 million images recorded at various

locations around the world. We utilize the testing data within this

dataset for the process of synthetic images generation. The test-

ing data contains 41,000 images. Figure 7 shows samples from

the MIT-Places dataset. We assume that the background image

does not contain any object that we are trying to detect. This is

reasonable assumption since the MIT-Places dataset is focused on

real world or natural scenes.

Then, several object or logo images are randomly selected (1

to 9 images). For each object or logo image, a set of transforma-

tions and deformations are used as described below.
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Figure 7. Examples of MIT-Places dataset

Geometric Transformations
First, the images are randomly rotated with a degree selected

uniformly between -40 and 40. Then, a random homographic pro-

jection is used matrix 1. Where the parameters h11 and h12 are

randomly selected between -0.001 and 0.001. Next, the image

is randomly resized such that the new size is 0.1 to 0.25 times

the size of the background image. The parameters are manually

selected in order to make the synthesized images look as much

real as possible. Therefore, extreme resizes and highly deforming

homographic transformations are unwanted.

H =





1 0 0

0 1 0

0 h11 h12



 (1)

Geometric transformations aim to model different poses of

objects and logos. By rotating and resizing the training images,

the network is able to be scale and rotation invariant. By using

perspective projections combined with capturing multiple poses

in the object capture step, the network is able to be pose change

invariant.

Color Transformation
After geometric transformations, a small color variation is

done to the images. Following the steps in [9, 28] we compute

the eigenvalues and eigenvectors of the RGB values of the image.

Each of the three eigenvectors is a 3D vector. We then find a

randomly chosen weight (uniform distribution between -0.1 and

0.1) for each eigenvector and calculate the weighted sum. The

weighted sum is a 3D vector and is added to the RGB vector of

each pixel.

Color transformations aims to model small color variations

that objects or logos may present in the real world caused by dif-

ferent lighting conditions.

Blurring And Noise Addition
In this step, we use Gaussian blurring with a variance ran-

domly selected between 0.001 and 0.1 and kernel size of 3 x 3.

Then, we randomly select a noise model between Gaussian, Salt

& Pepper, Poisson and Speckle noise. A small amount of noise is

added in the image.

Gaussian noise is commonly generated by capture devices

during image acquisition. In order to model Gaussian noise, we

add a different random RGB value to each pixel in the image. The

random values are extracted from a random variable with normal

density function with mean 0 and a variance selected randomly

between 1.2 and 2.4. Variance range is selected empirically to

introduce a reasonable amount of noise.

Salt & Pepper can originate as analog-to-digital converter er-

rors or transmissions errors. We model Salt & Pepper noise by

changing the value of each pixel of the image with probability

0.03. The pixel will be changed either to white, (255, 255, 255)

in RGB value, or to black, (0, 0 ,0) in RGB value, both cases with

a probability of 0.015.

Poisson noise, or also known as shot noise, can be modeled

by a Poisson process. In order to generate Poisson noise, a ran-

dom variable is created for each pixel. This random variable has a

Poisson distribution (Equation 2) with mean λ , where λ is equiv-

alent to the value of the pixel. A random sample is extracted from

every random variable. The sample is used to replace each orig-

inal pixel. After this process, each pixel of the image has been

replaced by a random value from a Poisson distribution. This

process modifies the image in a non linear way. Because the vari-

ance of the Poisson distribution is equal to its mean λ , the darker

pixels will not suffer much change while the brighter pixels will

have more variation. Finally, we make a weighted average with

the original image and the distorted image with weights 0.8 and

0.2 respectively. This average weight aims to avoid images too

distorted.

P(x) =
e−λ λ x

x!
(2)

Speckle noise is a granular multiplicative noise. We generate

Speckle noise by multiplying each pixel of the image by a random

value. The random values are extracted from a random variable

with normal density function with mean 1 and a variance of 0.2.

After blurring and noise addition, the noisy images are

clipped to range between 0 to 255 before they are added to back-

ground images as presented in the next section.

Image Blending
Finally, the object images are blended into the background

in a random position ensuring that there is no overlap between

various objects. The blending process consist of substituting the

pixels of the background image with the pixels of the foreground

image. More complex blending techniques, such as Poisson Im-

age Editing [38] , were discarded for simplicity and because they

can produce undesired artifacts or distortions to the foreground

image. Figure 8 shows examples of generated images. Two syn-

thetic datasets are generated using the process described above.

The first dataset contains 16,000 images with logos extracted from

FlickrLogos-32 and the second one contains 25,000 images with

15 different toys.

Figure 8. Examples of generated images using Logos (left) and toys (right).

Experiments
We describe several experiments here where we train the

Faster R-CNN using ZF [18] and VGG16 [19] models, presented

in previous sections, with FlickrLogos-32 dataset and synthetic
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data. In all the experiments the Mean Average Precision (mAP)

is computed using the Pascal VOC 2010 [15] procedure. mAP is

defined later. In the Pascal VOC 2010 procedure, for every im-

age each predicted bounding box is compared with all the ground

truth bounding boxes of the same class. If the Intersection over

Union (IoU) overlap (Equation 3) between the predicted bound-

ing box Bp and some ground truth bounding box Bgt is 50% or

larger, the prediction is considered as a True Positive (TP), if not,

is consider as a False Positive (FP).

IoUOverlap =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
(3)

To compute the mAP, the Precision (Equation 4) and Recall

(Equation 5) are required [39, 40]. Precision is the ratio between

the True Positives (TP) and the sum of True Positives (TP) and

False Positives (FP). Recall is the ratio between True Positives

(TP) and the number of ground truth bounding boxes (Nbbox).

Precision =
T P

T P+FP
(4)

Recall =
T P

Nbbox

(5)

For each class, a Precision/Recall curve is obtained by vary-

ing the threshold parameter from 0 to 1. The Average Precision

(AP) is defined as the area under the curve. The Mean Average

Precision (mAP) is computed by averaging the AP value for all

classes.

The previous process is repeated obtaining the AP for each

class. The Mean Average Precision (mAP) is the average of the

AP.

In the following experiments, we start the training process

using pre-trained models with MS COCO for VGG16 and Ima-

geNet for ZF.

Logo Recognition
In the first experiment, we train a Faster R-CNN with the

VGG16 model. The network is trained using various combina-

tions of synthetic images and FlickrLogos-32 images: using only

synthetic images, using only FlickrLogos-32 images, and using

both synthetic and FlickrLogos-32 images. The Faster R-CNN is

trained for 100,000 iterations and we evaluate it every 10,000 it-

erations using the testing set from FlickrLogos-32. In Table 1 we

present the best results for each combination of training data.

Our use of the Faster R-CNN instead of the Fast R-CNN ap-

pears to provide a significant improvement. The use of synthetic

data together with the original data (FlickrLogos-32) provides an

increase of 1.3% respect to only using original data. In Figure

9 we can see some examples of detected logos. The use of syn-

thetic data without any original image has poor performance. We

believe this is caused by the loss of information of the background

while synthesizing images ( i.e. a Corona logo is more likely to

be found in a bottle or a Starbucks logo is more likely to be found

in a cup of coffee).

Figure 9. Examples of logos detected in the wild

Object Recognition
While deploying applications using the HP Sprout the GPU

memory can be a limiting factor. In this set of experiments, we

introduce the ZF model since it has smaller size than VGG16 and

can be used with the HP Sprout GPU. Since we only have syn-

thetic data for toys, a small test dataset was manually labeled us-

ing LabelMe [41] for evaluation purposes. The dataset contains

35 labeled images containing up to 15 different toys. The images

are captured using HP Sprout camera with good lighting condi-

tions. Figure 10 shows some examples of testing images.

Figure 10. Examples of toys testing set

In the first experiment, we train the Faster R-CNN with

VGG16 and ZF using the synthetic dataset containing objects

(toys). We train several networks using a different number of

images from synthetic toys dataset for each one: 25,000 images

(100% of synthetic dataset), 12,500 images (50% of synthetic

dataset) and 6,250 images (25% of synthetic dataset). Follow-

ing the previous experiment, the network is trained over 100,000

iterations and it is evaluated every 10,000 iterations. We present

the best results using ZF and VGG16.

Note that VGG16 model has a larger mAP than ZF. VGG16

is formed by more layers and it allows the network to learn more

complex features. Using only 12,500 images in the training pro-

cess seems to provide a better performance. The use of a large

number of images for training might cause some overfitting and

therefore a decrease of performance. In Figure 11 some detection

results are presented. Notice that the network is able to differenti-

ate each of the individual red and black toys despite having minor

differences between them.

In the last experiment, we analyze the effect of the number

of images used in the synthetic generation process. We generate

two extra toys datasets with 25,000 images using 10 and 5 clean

images per class. We train ZF with the new datasets using dif-

ferent number of synthetic images (100%, 50% and 25% of the
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Table 1 Mean Average Precision (mAP) of different methods for logo recognition

Training data FL32 Synthetic FL32 + Synthetic Previous Work [1]

mAP 84.11% 65.55% 85.40% 74.40%

Table 2 Performance (mAP %) using different amount of synthetic data using 20 different poses

Model 6,250 images 12,500 images 25,000 images

VGG16 94.32% 97.42% 96.36%

ZF 92.91% 92.41% 93.41%

Figure 11. Original images (left) and objects detected (right) using ZF

model

dataset) and we compare it with the original dataset made using

20 object images per class.

The results presented in Table 3 indicate that the number of

original object images used for data synthesis is related with the

amount of data required to train the network to achieve a good

performance. If a low number of images is used in the synthesis

process, the synthesized images will contain less information and

less images will be required in the training process. In the exam-

ple of toys recognition, if more points of view (more images) are

used for image synthesis, the synthetic images will contain more

information and the average precision will increase. In Figure12

we present the evolution of the mean average precision over the

iterations in the training process. We observe that stops increasing

between 10,000 and 30,000 iterations and it varies up to 100,000

iterations.

Figure 12. Evolution of mAP as a function of number of iterations using

ZF model trained with 25,000 synthetic images of 20 poses (Blue), 12,500

synthetic images of 10 poses (Red) and 6,500 synthetic images of 5 poses

(Green)

Network Visualization

For a better understanding of how the Faster R-CNN can de-

tects objects in images, we use the visualization toolbox described

in [42]. This tool can represent the activations maps generated

when an image is processed through the network. We visualize

the activation maps of the convolutional layers of the Faster R-

CNN using ZF network trained with synthetic toys dataset. In

Figure 13 we present different activation maps of the first convo-

lutional layer. The input image (top left) passes through the first

convolutional layer and activates different filters. We select some

representative filters from the first convolutional layer of the ZF.

The white pixels of the activation map represent the regions of

the image that activate the filter. We can observe that some filters

in the first layer learn features such as green (bottom left) or red

colors (bottom right) while other filters detect edges (top right).

Figure 13. Activation map of filters from conv1 layer in ZF model

Deeper layers can learn more complex features. In Figure 14

representative activations in the second, third and fourth convo-

lutional layers are presented. We can observe that black objects

are detected (bottom left) in the second convolutional layer. The

brown toy is detected in the third convolutional layer (top left)

and objects with banana shape are detected in the fourth convo-

lutional layer (bottom right). Each convolutional layer contains

some filters that never get activated. This indicates that the net-

work could be reduced in size and obtain the same accuracy for

object detection.
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Table 3 Performance (mAP %) of ZF model using different amount of images for data synthesis and training

Number of pose images per object 6,250 images 12,500 images 25,000 images

20 92.91% 92.41% 93.41%

10 87.54% 90.43% 88.08%

5 83.32% 80.83% 80.87%

Figure 14. Activation map of filters from conv2, conv3 and conv4 layers in

ZF model

Conclusions
In this paper, we showed that the Faster R-CNN is able to de-

tect objects with fewer training images. Data augmentation tech-

niques allows us to generate a larger number of images and for

satisfactory training. We obtained near real time object recogni-

tion using the HP Sprout system with excellent accuracy when

test images have clean background and good illumination. While

detecting logos, we obtain better results than previous methods.

The network is resistant to scale changes, rotations, and small oc-

clusions.

In the future, we want to explore the use of the Single Shot

Multibox Detector [25] since it might improve speed and accu-

racy. We also want to incorporate depth information in the pro-

cess of image synthesis as it might produce more realistic images

[30].
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