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Abstract
Millions of cameras are openly connected to the Internet for

a variety of purposes. This paper takes advantage of this resource
to gather visual data. This camera data could be used for a myr-
iad of purposes by solving two problems. (i) The network camera
image data needs context to solve real world problems. (ii) While
contextual data is available, it is not centrally aggregated. The
goal is to make it easy to leverage the vast amount of network
cameras.

The database allows users to aggregate camera data from
over 119,000 network camera sources all across the globe in real
time. This paper explains how to collect publicly available infor-
mation from network cameras. The paper describes how to ana-
lyze websites to retrieve relevant information about the cameras
and to calculate the refresh rates of the cameras.

Introduction
In recent years, the prices of electronic sensing devices have

been falling rapidly. Among all sensing devices, image sensors
(i.e., cameras) are special because the same sensors can capture
a wide range of information. Cameras can be used to monitor
traffic flow, view wildlife, detect intruders, or determine weather
conditions. Millions of network cameras are connected to the
Internet for a variety of purposes. Nearly two hundred million
network cameras have been deployed [1]. The real-time visual
data can be used in many applications, such as emergency re-
sponses. Some of these data streams are publicly available with-
out password protection. As researchers gain the ability to collect
large amounts of visual data about the world, the true potential of
data-driven research is recognized. With the emergence of new
machine-learning technologies [2–4], a wealth of previously un-
tapped potential for large-scale visual data analysis has surfaced.
In 2020, 75% of mobile traffic will be video [5] and 82% of IP
traffic will be video [6]. Visual data is arguably the “biggest” of
big data because one HD video camera can produce data orders
of magnitude faster than text data. Computer vision is becom-
ing one of the central data-analysis techniques driving big-data
research. Visual data (image and video) is special because of the
versatility and the rich information it provides. A single image
may reveal many different types of information. For example, a
family’s vacation photograph also provides information about the
weather. This paper uses “network cameras” for the cameras that
are always connected to networks and have fixed locations; some
network cameras may be PTZ (pan, tilt, and zoom). By this defi-
nition, network cameras do not include cameras in mobile phones.

Despite the large amount of real-time data publicly avail-
able, two major problems inhibit the true potential of analyzing
the real-time data from network cameras. The first problem is the
need for contextual information. Context could include the cam-
era’s location, refresh rate, whether it is indoor or outdoor, and

so on. This contextual information is called metadata and can be
helpful for data analytics. Metadata can be useful for identify-
ing the cameras for specific purposes, for example, traffic cam-
eras for studying urban transportation. The second problem is
the wide range of protocols used to retrieve data from network
cameras. Different brands of network cameras need different re-
trieval methods (for example, different paths for HTTP GET com-
mands). Many organizations (such as departments of transporta-
tion in different cities) aggregate the data streams from multiple
cameras. There is no standard as to how the information is ag-
gregated and thus, there is no standard method for retrieving data
from different sources.

This paper presents a system that adds context information
to network cameras and retrieves data from large numbers of
publicly available network cameras. The system solves the two
problems that inhibit use of network cameras for large-scale data
aggregation by providing techniques to build a uniform network
camera database. The database, created using HTML parsing and
web automation tools, includes the location information about
each camera. In addition to the information collected using web
parsing methods, tools have been developed to aggregate addi-
tional information about each camera. This paper describes meth-
ods to obtain information such as the frame rate and the resolution
of the network cameras.

Evaluation of the proposed methods considers the amount of
data collected and the reliability of the data. The validity of this
data was determined by developing methods to eliminate static
images from the database and validating the frame rate analysis
of the network cameras using datasets with known frame rates.
The database currently contains information from over 119,000
cameras located in 162 countries around the world.

This paper has the following contributions:

1. This paper describes how to construct one of the largest (per-
haps the largest) camera network in the world.

2. The paper explains how to use HTML web parsing to pull
data from websites that aggregate data from network cam-
eras.

3. The system retrieves data from network cameras in websites
using XML HTTP Requests.

4. Due to the large number of network cameras, it is neces-
sary to frequently detect cameras that are disconnected or
no longer being updated.

5. The paper describes how to determine the refresh rates of
cameras posted to webservers.

Finding network cameras and the metadata about these cam-
eras is part of the Purdue CAM2 (Continuous Analysis of Many
CAMeras) project [7]. CAM2 is a computing platform for an-
alyzing real-time data from network cameras. CAM2 provides
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real-time data from network cameras, has a run-time system for
executing analysis programs, and manages computing resources.

Real-Time Visual Data from the Internet
Millions of network cameras have been deployed worldwide.

Many of them have restricted accesses, protected by passwords or
within private networks. Some of them make the data publicly
available on the Internet. Even though the data is public, there is
no central repository through which visual data from many dif-
ferent sources can be retrieved. If the visual data could be easily
obtained and analyzed, many time-sensitive problems could be
solved more easily.

(a) (b)

(c) (d)

Figure 1. Flooding in Houston on April 18, 2016

(a) (b)

Figure 2. (a) Smoky sky on May 16, 2016 in Canada due to wildfire (b)

Clear sky on August 2, 2016 taken by the same camera

Real-time visual data could be valuable in emergency re-
sponses. Figure 1 shows four images captured by the traffic cam-
eras [8] in Houston during the flooding on April 18, 2016. Fig-
ure 2 shows two images taken by the same camera. One image
was taken on May 16, 2016 when the sky was covered by smoke
from a wildfire. The other image shows a clear sky on August 2,
2016 after the fire stopped. These two examples illustrate the po-
tential for using network cameras for emergency responses. Net-
work cameras require no human efforts for making emergency
calls; thus, network cameras could help injured people even when
they cannot make phone calls. If network cameras have high re-
fresh rates, the visual data can be used to observe the development

of an event.
This paper classifies network cameras into two types: IP

cameras and Non-IP cameras. IP cameras have individual IP (In-
ternet Protocol) addresses and anyone on the Internet can commu-
nicate with the cameras directly (some cameras may have pass-
word protection). IP cameras usually have built-in web servers
and can respond to HTTP GET requests. Non-IP cameras do not
have individual IP addresses and are not directly accessible on
the Internet. Usually, the data streams from Non-IP cameras are
aggregated into file servers and are accessible through websites.
Many websites aggregate visual data from multiple cameras. Fig-
ure 3 (a) shows the website that displays the locations of traffic
cameras in New York City [9]. Figure 3 (b) shows one snap-
shot from a traffic camera. Transportation officials can monitor
whether an accident occurs on these streets. Figure 3 (c) is a web-
site that allows viewers to see snow conditions in ski resorts [10].
Figure 3 (d) is a snapshot from a camera in a ski resort. Figure 3
(e) is a website through which viewers can observe weather con-
ditions [11] and Figure 3 (f) is a snapshot. Figure 3 (g) shows
a website that provides real-time views of tourist attractions [12]
and Figure 3 (h) is a snapshot of Vancouver. The true potential of
the real-time data from network cameras can be exploited more
easily if the data is aggregated into a central repository.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Examples of websites that aggregate data from network cameras

The four examples in Figure 3 show wide variations of these
aggregation sites. Some websites provide precise locations and
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orientations of the cameras. Some others provide only approxi-
mate locations (such as the names of the cities). Some websites
publish the application programming interfaces (API) to retrieve
the data, while the others do not. Some websites assign individual
URLs to the data streams; thus, knowing the URLs can retrieve
the real-time data directly. Some other sites make the URLs re-
flect the time when the data is acquired; using an URL with a
past timestamp obtains a old image. These websites have differ-
ent refresh rates: some update the data every second (or multiple
times per second); some others update every few minutes or every
few hours. The CAM2 team has been building a camera database
which can present a uniform interface to retrieve data from dif-
ferent sources. This database hides the heterogeneity of the dif-
ferences so that the same program can utilize data from multiple
sources.

Network Camera Database
The camera database is constructed by retrieving camera in-

formation from the websites discussed above. A unique parsing
script is created for each individual website because the structure
of each site is different. The parsing scripts are written in Python
and use HTML parsing and web automation tools. The time it
takes to develop a parsing script can vary greatly depending on
the structure and variation of the site, the number of cameras, and
the amount of data provided on the site.

Analyze Camera Aggregation Websites
Parsing scripts take advantage of several Python modules

and APIs. Two of the most commonly used tools are the HTML
parsing module Selenium [13] and BeautifulSoup4 [14]. Both
tools come with advantages and limitations. Often, the limitations
of one tool is mitigated by a combination of the two tools.

Selenium is a browser automation tool that supports Firefox
and Chrome. For parsing camera data, Selenium has several ad-
vantages. First, it is easy to debug. During the execution of the
script, Selenium renders a browser window and simulates the user
interaction with the website. The user can see exactly what is hap-
pening as the code executes. Selenium executes all the JavaScript
on a page load, which is one major advantage when compared to
BeautifulSoup4. Selenium allows access to webpage elements by
Xpath. Xpath is a way of navigating the hierarchy of the HTML
syntax. The main disadvantage of Selenium is its speed. It has
to render all the pages fully in the browser. Selenium also has
stability issues and can crash when the user attempts to navigate
between pages before a page is fully loaded. Another issue is that
browser compatibility limits the cross-platform usability of the
script. Often, different browser versions will load pages at differ-
ent speeds, and Internet connections and other variables can have
large effects on a script’s stability.

BeautifulSoup4 (BS4) is another tool used for parsing web-
sites for camera data. BS4 uses a different approach: Instead of
fully rendering the page in a browser, BS4 downloads the page
source and parses the HTML into a Python object. BS4 does not
fully render the page, so it is faster than Selenium. Selenium can
access information only in the current fully rendered page; BS4
can store multiple HTML pages, each in its own Python object.
BS4 does not simulate user interactions, such as clicks or key-
board presses; thus, BS4 is faster than Selenium. BS4 also has
limitations because it doesn’t render the entire page. This often

causes problems when loading pages that have HTML page ele-
ments with Javascript. On many websites, JavaScript is responsi-
ble for loading lists and populating camera pop-ups. Many web-
sites have cameras organized in maps requiring users to navigate
an interactive map and click on camera links. BS4 is unable to
extract the camera information from these websites.

Website-parsing scripts that take advantage of both Selenium
and BS4 are often the best option. Selenium can be used to
load the webpage in a headless browser, such as PhantomJS [15].
PhantomJS does not need to fully render the page. After the page
is rendered, the HTML source can be sent to BS4 scripts to extract
information. This method is faster and more reliable.

CAM2 also uses the Google Geolocation API [16] to obtain
the information about cameras’ locations. Some websites provide
latitude and longitude information. It is possible to look up the ad-
dress (city, county, state, country) from such information. Some
websites do not provide location information with sufficient pre-
cision. These cameras’ locations are marked as “approximate” in
the camera database.

Find Camera Aggregation Websites
Searching “network cameras” on the Internet may return re-

sults that include vendors of cameras and network cameras with
publicly available Non-IP camera streams (i.e., on aggregation
websites). Before adding a camera into the CAM2 database, it
is necessary to determine whether the site updates the visual data
frequently. Right now, this decision is made manually. To im-
prove the success rate of such searches, the CAM2 team currently
focuses on websites that aggregate traffic cameras from govern-
ments, for example, the New York City Department of Trans-
portation website [9]. The website has a pop-up window for each
snapshot as shown in Figure 5 (a). There is HTML text above
and below the image data. Using this URL could hinder the re-
trieval of the camera snapshot, so the path to the raw image URL
is needed. Most URLs that link directly to the image data end
with an image file extension, as in Figure 5 (b). Many websites
follow a convention for each camera’s image path.

If the URL to the image data can be found, the next step is to
determine if location information is also provided on the website.
The information may appear in different places on the webpage.
In Figure 5 (a), the HTML text at the top of the page provides
the location information. For Figure 3 (d), the only location in-
formation provided is the name of the ski resort. It is important
to review the overall structure of the website and determine what
tools are necessary to obtain the relevant information. Some web-
sites have easily identifiable HTML tags or an XML or JSON file
associated with the camera data. If the website has all the cam-
era data stored in one file, then adding the cameras is simple and
can be done by parsing the JSON or XML file associated with the
image data.

Obtain Location Information
If a website uses the Google Maps API showing the loca-

tions of cameras, the information may be obtained by analyzing
the JSON or XML file. It is possible using the Chrome Devel-
oper Tools to view XML HTTP Requests (XHR), as shown in
Figure 4. Some websites load many different XHR files; some
sites load data from several JSON files into one map. If the JSON
file containing the image data can be found, Python JSON mod-
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Figure 4. Finding XHR data using chrome developer tools

(a) (b)

Figure 5. Identifying the URL of the raw camera image data

ule [17] is used to parse the JSON data and retrieve the location
information. In the snippet of JSON code below, the latitude, lon-
gitude, and camera ID can be identified. If this information can be
matched with the URL of the camera image stream, then all the
necessary information has been obtained from the website and it
can be added to the CAM2 database.

”id”:”745”,”latitude”:”40.743982”,
”longitude”:”-73.717583”,
”title”:”imagescamera1.png”,
”icon”:”imagescamera1.png”,
”content”:”Union tpke @ Little Neck Pkwy”

To match the URL of the image with the location informa-
tion, the tools refer back to the page the image was displayed on,
as shown in Figure 3. In this case, the ID shown in the JSON file
can be matched with the description of the image in the pop-up
window to retrieve the URL of the image. The tools can match
the exact geographic coordinates of the camera in the JSON file
to the image data shown in Figure 6.

Figure 6. Matching the JSON data to the image data

If a website does not use JSON or XML to load the camera
data onto a map, then other methods must be used to retrieve the
location information. These methods are often less precise. Pars-
ing the HTML pages can be more difficult because each page has
unique structures. Fully understanding the directory tree of a site
can expedite the process. For instance, the structure of the Alberta
Department of Transportation website is outlined in Figure 7.

Figure 7. Map of 511.alberta.ca website structure

In addition to understanding the overall directory organi-
zation of the website, the HTML of each page containing rele-
vant information must be reviewed. The hierarchical structure of
HTML can make it difficult to locate desired information within
the webpage. To navigate through the page structure in Figure
7, links must be identified between each page within the HTML
page. Figure 8 is an example of how the Google Chrome Devel-
oper Tools may be used to identify page structure and determine
how to navigate between webpages. The highlighted portion of
the HTML source code contains the link to the camera page. Each
page must be individually loaded to find the source URL of the
camera image data.

After the HTML hierarchy of the website is understood and
the tags containing pertinent information are identified, a Python
script written in Selenium or BS4 navigates the website and pulls
the relevant information. Once the information has been obtained
from the website via the parsing of HTML or JSON files, the
information from the entire website can easily be added to the
CAM2 database.
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Figure 8. Identifying the HTML structure of a webpage

Collecting Additional Metadata
After the essential information of each camera is obtained,

several tools can be used to collect additional metadata about each
camera. The information includes frame resolution (number of
pixels), the refresh rate, and the amount of change in different
frames to estimate the space needed for storage. This metadata
can be collected by analyzing snapshots from each camera.

Calculate Frame Rates
To determine a camera’s frame rate, a tool detects the

changes between two adjacent frames. This may take from sev-
eral seconds (for a camera with a high refresh rate) to a few hours
(for a camera with a low refresh rate). The results can also vary
significantly due to network delays or the aggregation sites being
too busy.

Figure 9. Camera information is loaded from the CAM2 database to a

Python object in the frame rate assessment program

Figure 9 shows the first step in the frame rate aggregation
process. The program obtains the information about a list of cam-
eras from the database and retrieves snapshots from these cam-
eras. The time to download one image from each camera could
vary and affect the accuracy of the calculation of frame rates.
Also, this program goes through the list sequentially. To improve
accuracy, cameras are moved from the cameras list to a separate
list called activeCameras if the response time is sufficiently short.
Only snapshots from cameras in the activeCameras list will be

Figure 10. The camera list is populated with cameras from the database

until it has reached capacity

downloaded and compared to estimate the refresh rates, as illus-
trated in Figure 10.

The program makes an HTTP request to the web server host-
ing the camera image data. Figure 11 shows the first image down-
loaded for each network camera. This file is called the Reference
Image. If the request is successful, the program moves the camera
to the activeCameras list. The program begins downloading more
images via another HTTP GET request. Figure 12 shows how the
next image (called the Starting Image) is downloaded.

The Python file comparison library filecmp is used to com-
pare the Reference Image with the Starting Image. It compares
only the checksum of the two image files. If the two image files
are identical, the program will continue to download new Start-
ing Image files for that camera until it finds the image file on the
provider server has changed (i.e., the Reference Image and the
Starting Image are not identical). Once a Starting Image has been
downloaded and it is different from the Reference Image, the pro-
gram will cease getting Starting Images for that camera. The time
that this change occurred is recorded by the program and it will
then begin to get the final image needed for a successful frame
rate analysis.

The final image necessary to determine the frame rate is
called the Ending Image. The Ending Image is found using a
method identical to the way the Starting Image was found, ex-
cept the Ending Image is compared to the Starting Image rather
than the Reference Image. Once the Ending Image has been deter-
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Figure 11. Using and HTTP GET request, the first image (Reference Im-

age) is downloaded from the network camera’s web server

Figure 12. The second image (Starting Image) is downloaded from the

network camera’s server using an HTTP GET request

Figure 13. The Starting Image is compared to the Reference Image using

the Python filecmp module

Figure 14. The Ending Image is downloaded in the same way as the

Starting Image and the Reference Image

mined, the frame rate of the network camera can be determined by
subtracting the timestamp of the Ending Images from the times-
tamp of the Starting Image.

Evaluation

Figure 15. Locations of network cameras in CAM2 database

Figure 16. Percent of cameras with successfully assessed frame rates

rounded to the nearest whole minute

The map in Figure 15 displays the locations of the cameras
in CAM2. Currently, CAM2 contains over 119,000 cameras lo-
cated in 162 countries around the world; approximately 53.8% of
them are in the United States. Figure 16 shows the distributions
of refresh rates.

The CAM2 system has been able to capture images from a
wide range of events and natural disasters including the Houston
flooding disaster pictured in Figure 1 and the Alberta wildfire in
Figure 2. These images show the capacity of the CAM2 cam-
era database to capture image data from both remote and urban
environments.

Figure 16 shows the results of analyzing the frame rates of
several thousand US cameras from the CAM2 database. The data
was collected for at least 4 runs of the frame rate assessment pro-
gram over several weeks. The data shows that around 36% cam-
eras update frames every 4 minutes.

The method may encounter high variations in the frame
rates. Figure 17 plots the frame rate analysis data from four sites
with network cameras. Each source has dozens of cameras, The
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Figure 17. Range vs. average frame rate across all assessments for each

camera in four unique sources

x-axis of the graph shows the range (difference between the maxi-
mum and minimum frame rate value found during all assessments
for the camera). The y-axis is the average value for the frame rate
found during all assessments.

Each site has a distinct grouping along the frame rate axis
(y-axis). An estimate of the true frame rate for each source can be
determined using Figure 17. From this figure, we can determine
that the network cameras in Source 4 have a frame rate of about 60
minutes and that the cameras in Source 3 have a frame rate around
15 minutes. For Source 1, two distinct groups can be identified:
one group around 8 minutes and another group around 2 minutes.
Figure 18 shows another example of a network camera source
with distinct groupings.

Figure 18. Distribution of frame rate data for one department of transporta-

tion

Figure 18 is similar to Figure 17 but this data is taken from
frame rates of the traffic cameras from one department of trans-
portation. Of the 1,117 cameras from this source, the frame rates
of 753 (67%) were able to be accurately obtained using the frame
rate analysis program. The frame rates for the other 300 cameras
could not be found because not enough successful attempts were
made to find the frame rate or no data could be retrieved from the
camera. Two distinct groups of cameras can be identified from
Figure 18. The first group has an average frame rate around 15
minutes and the second group has an average frame rate around 3
minutes. In Figure 19, we can see that the two groups each have

(a) (b)

Figure 19. Examples of the different cameras used by one department of

transpiration website

distinctly different snapshots. Figure 19 (a) is a snapshot taken
from the group with frame rates around 15 minutes and Figure 19
(b) is a snapshot from the group around 3 minutes.

Conclusion
This paper presents the method to build a large (possibly the

largest in the world) camera network using publicly available data
from network cameras. The paper explains how to discover net-
work cameras, retrieve relevant information about these cameras,
and download visual data from these cameras. CAM2 currently
has more than 119,000 network cameras and the number keeps
growing. CAM2 is a collection of tools available for researchers.
Interested readers may register at https://cam2.ecn.purdue.
edu/.
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