
Accelerating Advection Via Approximate Block Exterior Flow
Maps
Ryan Bleile1, Linda Sugiyama2, Christoph Garth3, Hank Childs1

1University of Oregon, Eugene,2Massachusetts Institute of Technology, 3University of Kaiserslautern

Abstract
Flow visualization techniques involving extreme advec-

tion workloads are becoming increasingly popular. While these
techniques often produce insightful images, the execution times
to carry out the corresponding computations are lengthy. With
this work, we introduce an alternative to traditional advection,
which improves on performance at the cost of decreased accuracy.
Our approach centers around block exterior flow maps (BEFMs),
which can be used to accelerate flow computations by reducing
redundant calculations. Our algorithm uses Lagrangian interpo-
lation, but falls back to Eulerian advection whenever regions of
high error are encountered. In our study, we demonstrate that the
BEFM-based approach can lead to significant savings in time,
with limited loss in accuracy.

Introduction
A myriad of scientific simulations, including those modeling

fluid flow, astrophysics, fusion, thermal hydraulics, and others,

model phenomena where constituents move through their volume.

This movement is captured by a velocity field stored at every point

on the mesh. Further, other vector fields, such as force fields for

electricity, magnetism, and gravity, also govern movement and in-

teraction. A wide range of flow visualization techniques are used

to understand such vector fields. The large majority of these tech-

niques rely on placing particles in the volume and analyzing the

trajectories they follow. Traditionally, the particles are displaced

through the volume using an advection step, i.e., solving an ordi-

nary differential equation using a Runge-Kutta integrator.

As computational power on modern desktops has increased,

flow visualization algorithms have been empowered to consider

designs that include more and more particles advecting for longer

and longer periods. Techniques such as Line Integral Convolu-

tion and Finite-Time Lyapunov Exponents (FTLE) seed particles

densely in a volume and examine where these particles end up.

For these operations, and many others, only the ending position

of the particle is needed, and not the details of the path the particle

took to get there.

Despite seemingly abundant computational power, some

techniques have excessively long running times. For example,

ocean modelers often study the FTLE within an ocean with both

high seeding density and very long durations for the particles

(years of simulation time) [2, 3]. As another example, fusion

scientists are interested in FTLE computations inside a tokamak

where particles travel for hundreds of rotations [1]. In both cases,

FTLE calculations, even on supercomputers, can take tens of min-

utes.

With this work, we consider an alternative to traditional Eu-

lerian advection. The key observation that motivates the work is

that, in conditions with dense seeding and long durations, par-

ticles will tread the same (or very similar) paths over and over.

Where the current paradigm carries out the same computation

over and over, we consider a new paradigm where a computa-

tion can be carried out a single time, and then reused. That said,

we find that, while particle trajectories do often travel quite close

to each other, they typically follow their own (slightly) unique

paths. Therefore, to effectively reuse computations, we consider a

method where we interpolate new trajectories from existing ones,

effectively trading accuracy for speed.

Our method depends on Block Exterior Flow Maps, or

BEFMs. The idea behind BEFMs is to pre-compute known tra-

jectories that lie on block boundaries. It assumes data is block-

decomposed, but this assumption is common when dealing with

parallel, distributed-memory computations. When a compute-

intensive flow visualization algorithm is then calculated, it con-

sults with the BEFMs and does Lagrangian-style interpolation

from its known trajectories. While this approach introduces error,

it can be considerably faster, since it avoids Eulerian advection

steps inside each block.

The contributions of the paper are as follows:

• Introduction of BEFMs as an operator for accelerating dense

particle advection calculations;

• A novel method for generating an approximate BEFM that

can be used in practice;

• A study that evaluates the approximate BEFM approach, in-

cluding comparisons with traditional advection.

Related Work
McLouglin et al. recently surveyed the state of the art in flow

visualization [4], and the large majority of techniques they de-

scribed incorporate particle advection. Any of these techniques

could possibly benefit from the BEFM approach, although the

tradeoff in accuracy is only worthwhile for those that have ex-

treme computational costs, e.g., Line Integral Convolution [5],

finite-time Lyapunov exponents [6], and Poincare analysis [7].

One solution for dealing with extreme advection workloads

is parallelization. A summary of strategies for parallelizing par-

ticle advection problems on CPU clusters can be found in [8].

The basic approaches are to parallelize-over-data, parallelize-

over-particles, or a hybrid of the two [9]. Recent results using

parallelization-over-data demonstrated streamline computation on

up to 32,768 processors and eight billion cells [11]. These paral-

lelization approaches are complementary with our own. That is,

traditional parallel approaches can be used in the current way, but

the phase where they advect particles through a region could be

replaced by our BEFM approach.

140
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017

https://doi.org/10.2352/ISSN.2470-1173.2017.1.VDA-397
© 2017, Society for Imaging Science and Technology



In terms of precomputation, the most notable related work

comes from Nouanesengsy et al. [10]. They precomputed flow

patterns within a region and used the resulting statistics to decide

which regions to load. While their precomputation and ours have

similar elements, we are using the results of the precomputation in

different ways: Nouanesengsy et al. use precomputation for load

balancing, while we use it to replace multiple integrations with

one interpolation.

In terms of accelerating particle advection through approxi-

mation, two works stand out. Brunton et al. [18] also looked at

accelerating FTLE calculation, but they considered the unsteady

state problem, and used previous calculations to accelerate new

ones. While this is a compelling approach, it does not help with

the steady state problem we consider. Hlwatsch et al. [15] employ

an approach where flow is calculated by following hierarchical

lines. This approach is well-suited for their use case, where all

data fits within the memory of a GPU, but it is not clear how

to build and connect hierarchical lines within a distributed mem-

ory parallel setting. In contrast, our method, by focusing on flow

between exteriors of blocks, is well-suited for this type of paral-

lelism.

Bhatia et al. [19] studied edge maps, and the properties of

flow across edge maps. While this work clearly has some similar

elements to our, their focus was more on topology and accuracy,

and less on accelerating particle advection workloads.

Scientific visualization algorithms are increasingly using La-

grangian calculations of flow. Jobard et al. [12] presented a

Lagrangian-Eulerian advection scheme which incorporated for-

ward advection with a backward tracing Lagrangian step to more

accurately shift textures during animation. Salzbrunn et al. de-

livered a technique for analyzing circulation and detecting vortex

cores given predicates from pre-computed sets of streamlines [14]

and pathlines [13]. Agranovsky et al. [16] focused on extracting

a basis of Lagrangian flows as an in situ compression operator,

while Chandler at al. [17] focused on how to interpolate new path-

lines from arbitrary existing sets. Of these works, none share our

focus on accelerating advection.

Method
Our method makes use of block exterior flow maps

(BEFM). We begin by defining this mapping. We then describe

our method, and how it incorporates these maps.

Block Exterior Flow Map
Definition

In scientific computing, parallel simulation codes often

partition their spatial volume over their compute nodes. Restated,

each compute node will operate on one spatial region, and that

compute node will be considered the “owner” of that region. Such

a region is frequently referred to as a block. For example, a sim-

ulation over the spatial region X: [0-1], Y: [0-1], and Z: [0-1] and

having N compute nodes could have N blocks, with each block

covering a volume of 1
N .

Consider a point P that lies on the exterior of a block B.

If the velocity field points toward the interior of B at point P,

then Eulerian advection of a particle originating at P will take

the particle through the interior of B until it exits. In this case, the

particle will exit B at some location P′, where P′ is also located on

the exterior of B. The BEFM captures this mapping. The BEFM’s

domain is all spatial locations on the exterior of blocks, and its

range is also spatial locations on the exteriors of blocks. Further,

for any given P in the BEFM’s domain, BEFM(P,B) will produce

a location that is on B’s exterior. Saying it concisely, the BEFM is

the mapping from particles at exteriors of blocks to the locations

where those particles will exit the block under Eulerian advection.

Figure 1 illustrates an example of a BEFM.

Figure 1. Notional example of a BEFM on a two-dimensional vector field.

This example shows the path of a particle moving through a region, with an

emphasis on the blocks it travels through. Particle P0 travels through block B6

and exits B6 at location P1. Thus, BEFM(P0,B6) = P1. Similarly, BEFM(P1,B3)

= P2, BEFM(P2,B2) = P3, etc. In the case of particles placed in an outgoing

region of flow, the BEFM returns the particle itself, e.g., BEFM(P1,B6) = P1.

Using BEFMs for Calculating Particle Trajectories
Now consider a particle P that lies on the interior of block

B0. Further, consider the trajectory of P when traveling for T time

units. Assume P travels through blocks B1, B2, ..., BN−1, before

terminating in the interior of block BN at time T. Consider how

BEFMs can be used to calculate P’s trajectory:

• Since P lies in the interior of B0, traditional advection is

needed to calculate the path of P until it reaches B0’s exte-

rior.

• The BEFM can then be used to calculate the path of P

through B1, B2, ..., BN−1.

• P’s trajectory into the interior of BN is then again calculated

with traditional advection.

Putting it all together, if BEFMs can calculate mappings

more quickly than the calculations for advecting a particle through

a block, then this method should be faster than traditional advec-

tion. Further, if a BEFM can calculate mappings instantaneously,

then the speedup for the BEFM-style calculation would be limited

only by the cost for the steps through the initial and final blocks

(B0 and BN ).

Approximate BEFMs
There are many ways to implement a BEFM. For ex-

ample, a BEFM could respond to each mapping request (i.e., a

BEFM(P,B)) by going back to the original vector field and em-

ploying traditional advection. In this case, the BEFM would have

the same performance characteristics as traditional advection, and

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 141



the abstraction of BEFMs on top of traditional advection would be

unnecessarily complicated.

For our research, we are interested in BEFMs where each

mapping request can be satisfied much more quickly than the

work it takes to advect a particle using traditional advection.

For this reason, we consider precomputation, i.e., evaluating the

BEFM before the main work begins of calculating particle trajec-

tories. However, it is not obvious how to precompute a perfect

BEFM. Our approach to this problem is to precompute an Ap-

proximate BEFM or ABEFM. This ABEFM will know the exact

mappings for certain locations on the boundary. We refer to this

list of locations as the KnownParticleList.

When an ABEFM is asked to calculate mappings for parti-

cles that are not in the KnownParticleList, it will interpolate the

exit location from the nearest particles that are in the KnownPar-

ticleList.

There are many ways to establish an ABEFM’s KnownParti-

cleList. We chose to generate locations uniformly along the exte-

rior of a block at some chosen sample density. With this approach,

the accuracy and pre-computation time are in tension. High sam-

ple densities will increase accuracy at the cost of pre-computation

time. Low sample densities will reduce pre-computation time at

the cost of accuracy.

Conditions Where an ABEFM Cannot Be Used
It is not always possible to interpolate new trajectories

from the ABEFM’s known trajectories. Through our experiments,

we have identified three ways in which interpolation is not possi-

ble. They are listed below and illustrated in Figure 2:

1. If a particle trajectory from the exterior of block B never

again reaches the exterior of block B, i.e., if a particle lands

in a sink or is caught in a vortex inside the block.

2. If a particle trajectory differs too significantly from its

neighbors, i.e., neighboring trajectories separated and exit

through different faces of B.

3. If all neighboring trajectories are not uniformly entering the

block or uniformly exiting the block, e.g., some neighbor-

ing particles get displaced to the interior of the block while

others are displaced into neighboring blocks.

Case 1 Case 2 Case 3 

Figure 2. Cases where an ABEFM cannot interpolate a new trajectory.

Note that on the right figure one of the particles enters the block while the

other particle exits the block.

Fortunately, we can detect each of these three cases, and

fall back to traditional advection to determine a particle trajec-

tory. However, the rate at which the three cases occur is critical

to understanding possible performance improvements. In our ex-

periments, we determined these rate of the three cases occurring

to be around 10% for our data sets.

An Approach for Creating and Using an ABEFM
In this section we describe our algorithms for creating an

ABEFM and utilizing an ABEFM for advection.

Examples in this outline will follow the assumption that

ABEFM’s KnownParticleList points are uniformly generated at

the mesh resolution, i.e., one particle trajectory for every node in

the mesh that lies on the exterior of a block. For example, in a

10× 10 two-dimensional mesh with 4 blocks laid in a 2× 2 pat-

tern, each block’s external edge will consist of 5 cells and there-

fore 6 points. Additionally, these mapped points are not dupli-

cated across shared faces. Figure 3 illustrates this example.

Figure 3. Initial locations for particle trajectories to be mapped during the

pre-computation phase of an ABEFM. Depicted is a 10x10 mesh with 2x2

blocks overlaid and the locations of the mappings defined on the block’s ex-

teriors.

Building an ABEFM
ABEFM construction consists of generating flows for each

location in the KnownParticleList. This is done by initializing

particles at each location in the KnownParticleList and then ad-

vecting those particles across a block. Advection is done using

traditional Eulerian methods such as Runge-Kutta. Pseudocode

for this method is outline in Algorithm 1.

Algorithm 1 Build Flow Map

1: function GET BLOCK ID(Particle P)

2: Determine the block that P advects through

3: return BlockID

4: end function
5: function ADVECT ON BLOCK(Particle P, Block B)

6: Advect P until it exits B (using Eulerian advection)

7: Stop P on boundary of B

8: Compute which Face of B that P landed on

9: return P, FaceID

10: end function
11: for all P in KnownParticleList do
12: Bid = GET BLOCK ID(P)

13: NewP, Fid = ADVECT ON BLOCK(P, Bid)

14: Def: Flow F as the set < P, NewP, Bid, Fid >
15: end for

142
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017



Advecting With an ABEFM
An earlier section, Using BEFMs for Calculating Particle

Trajectories, describes how to use a BEFM for particles at ar-

bitrary locations in a volume. For this discussion, we focus on

the case of a particle P that lies on the boundary of block B, and

calculating where P exits B.

The trajectory for a particle P is calculated as follows. First,

the neighboring particles, P1, P2, ..., Pn, from the KnownParti-

cleList are identified. For our study, the KnownParticleList had

particles seeded at regular intervals, so n would be four, and we

would find the four particles that formed a square around P. Next,

we check the Pi for our three conditions where an ABEFM cannot

be used (see section “Conditions Where an ABEFM Cannot Be

Used”). If we cannot use the Pi, then we fall back to traditional

Eulerian advection using Runge-Kutta solves. If we can use the

Pi, then we take the output location to be the weighted average

of the exit locations of the Pi. For our construction of four Pi’s

in a square configuration, this can be accomplished with bilinear

interpolation. We also interpolated the time to advance through

the volume from the times of the Pi’s. If this time was greater

than the amount of time remaining for the particle to travel, then

we reject the interpolated result (since it traveled too far), and fall

back to Eulerian advection. However, if the interpolated projec-

tion was within the time bounds, then we use it and avoid Eulerian

advection. Pseudocode for this method is outlined in Algorithm

2.

Algorithm 2 Advect with Flow Map

1: function ADVECT BLOCK(Particle P, Block B)

2: Integrate to find P’s exit location

3: Stop P on boundary of B

4: if P.Time ≥ End Time then
5: return 0

6: else
7: return 1

8: end if
9: end function

10: function ADVECT VIA FLOW MAP(Particle P, Block B)

11: Interpolate Output location and time from (P,B)

12: if Output.Time > End Time then
13: return ADVECT BLOCK(P,B)

14: end if
15: Set P = Output

16: return 1

17: end function
18: AdvectionList: List of particles to be advected

19: for all Particles P in AdvectionList do
20: keepGoing = 1

21: while P.time < End Time && keepGoing do
22: Bid = GET BLOCK ID(P)

23: if Particle on Computable Face then
24: keepGoing = ADVECT VIA FLOW MAP(P,Bid)

25: else
26: keepGoing = ADVECT BLOCK(P, Bid)

27: end if
28: end while
29: end for

Study Overview
Data Sets

We considered three data sets. Each had steady state flow

(i.e., one time slice) and was defined on a regular mesh. They are:

• Tokamak: the magnetic field inside a tokamak. Inside

the tokamak, the velocity vector values lead to circulation

around the tokamak. Outside the tokamak, the velocity field

is all zero vectors. This data set had dimensions 3003.

• Astro: a supernova simulation. The vector field has high

variability in its central spherical region, and steadily points

out or in when approaching the edges. This data set had

dimensions 2563.

• TH: a thermal hydraulics simulation of air mixing in a “fish

tank” box with two inlets — one with hot air and one with

cold air — and an outlet. This data set had dimensions 5003.

Testing Factors
We considered six dimensions of configurations:

• Domain block layout: what are the impacts of having fewer

or more blocks?

• Density of known particles: what are the impacts in calcu-

lating more or less particles during preprocessing? — time

for preprocessing, time for regular execution, and accuracy?

• Integration time: how does performance and accuracy

change as particles go for shorter or longer periods?

• Step size: how does step size affect performance and accu-

racy?

• Data set: how does the underlying vector field affect perfor-

mance and accuracy?

Testing Methodology
Our methodology consisted of seven phases. The first phase

studied our “default” case in detail. Each of the remaining six

phases sweep through one dimension of our testing factors, and

explores the impact of that factor by looking at performance and

accuracy measurements. Performance is measured in terms of

both run times for each method as well as the speedup of the

ABEFM compared to Eulerian advection. Accuracy is measured

in the following way. The locations of each particle advected by

the ABEFM are compared to the locations of each particle ad-

vected by the traditional Eulerian method. The average distance

between points is divided by the largest possible distance in the

problem space to get a measure of the error, giving 1-error as a

measure of accuracy.

Phase 1: Baseline Test
Our Baseline case combines a “default” advection workload

with an ABEFM configuration. The default advection workload

was a mesh resolution number of particles – a particle located at

each node in the mesh – integrating for 10 time units with a step

size of 0.001 on the vector field from the Tokamak data set. The

default ABEFM configuration on the Tokamak was (10x10x10)

blocks and a KnownParticleList with 300 particles in each dimen-

sion.

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 143



Phase 2: Block Layout
With this phase, we wanted to understand the effects of

changing block size. Large blocks cause particles to travel larger

distances, but the interpolated path may be less accurate. Small

blocks cause particles to travel shorter distances – and so the num-

ber of operations needed to go the same distance is greater – but

the interpolated path may be more accurate. With this phase, we

wanted to understand the magnitude of these effects.

We considered 9 block layouts: (5x5x5), (10x10x10),

(15x15x15), (20x20x20), (25x25x25), (30x30x30), (40x40x40),

(50x50x50), and (100x100x100). Additionally we take a detailed

look at a few more layouts designed around the motion in the un-

derlying data set – since the tokamak data set has circular motion

in the X and Y planes we used block layout targeting only those

dimensions: (4x4x2), (5x5x2),..., (11x11x2).

Phase 3: Integration Time
With this phase, we considered integration time. Short inte-

gration times imply that we spend the majority of our time using

traditional advection to get to block boundaries, mitigating the op-

portunity for speedup. Longer integration times, however, create

the potential for applying the ABEFM repeatedly, and possibly

significant speedups.

We considered 5 integration times: 1, 5, 10, 25, and 50 time

units.

Phase 4: Step Size
With this phase, we considered step size. Small steps sizes

move more slowly through a volume, while large step sizes move

more quickly. However, for the ABEFM method, the step sizes

only impact performance for stepping to the boundary, so the prin-

cipal change is in the comparison with traditional advection.

We considered 7 step sizes: 0.1, 0.05, 0.01, 0.005, 0.001,

0.0005, and 0.0001.

Phase 5: Density of Known Particles
With this phase, we wanted to understand the effects of

changing the number of known particles in the precomputation

phase. Increasing this density will increase accuracy and the abil-

ity to use an ABEFM, but also increases precomputation costs.

Decreasing this density could impact accuracy and decrease the

ability to use an ABEFM, but reduces precomputation costs. With

this phase, we again wanted to understand the magnitude of these

effects.

We considered 5 densities along each dimension of the mesh:

100, 200, 300, 400, and 500.

Phase 6: Data Set
The performance of the ABEFM can clearly be affected by

the underlying vector field. With this phase, we considered all

three data sets. We performed the study from Phase 2 on each of

the data sets keeping the total number of Eulerian steps constant.

The Tokamak data set values are already listed in Phase 2. The

Astro data set used an integration time of 5000 and a step size

of 1. The TH data set used the same configuration as the Toka-

mak data set. Each data set used their own native resolution for

precomputed particles for the KnownParticleList: 256 per dimen-

sion for Astro and 500 per dimension for TH. Each considered

workloads of 203 particles.

Phase 7: Accuracy Performance Comparison
It is important to compare the accuracy and performance re-

sults of the ABEFM method with the traditional method. Since

the traditional method already uses accuracy and performance

tradeoffs, we need to understand how this tradeoff compares with

that of the ABEFM. For this study, we hold the comparison step

size fixed at 0.0001. We then run a series of Euler and ABEFM

runs at different step sizes to compare the resulting differences in

accuracy and performance. In doing this we will be able to under-

stand the region of performance and accuracy where the ABEFM

method will out perform the traditional approach.

Hardware
All studies were performed on a machine with dual 8-core

3.2GHz E5-2667 v3 Intel Xeon processors and 132 GB of RAM.

This initial study was done on a single node, using 16 cores, with

OpenMP parallelism over particles. Our goal was to enable the

most direct comparisons between the ABEFM approach and tra-

ditional Eulerian integration methods, so the parallelism for each

scheme was simplified to only OpenMP and looping over particles

in each advection routine. Additionally, the Eulerian integration

method used was a Runge-Kutta 4 integrator.

Measurements
The measurements we took for each experiment were:

• Time: the total run time of the ABEFM approach (meaning

both build time and advection time using the ABEFM). We

also would run a separate experiment with the traditional

Eulerian approach and measure its time.

• Speedup: the total speed up from using an ABEFM com-

pared to just Eulerian integration.

• Usability Metric: the percentage of time spent interpolating

with the ABEFM versus using Eulerian integration and the

percentage of faces for which an ABEFM can be used.

• Error: the average accuracy of advected particles comparing

particle end locations of the ABEFM and Eulerian methods.

Results
Phase 1: Baseline Test Analysis

Phase 1 explores a single configuration, to set baseline ex-

pectations for the ABEFM method, and how the ABEFM method

compares with traditional Eulerian advection. Table 1 shows the

key results gathered in our study.

This baseline test demonstrates the viability of the ABEFM

approach. Although the precomputation is non-trivial, it is still

much smaller than the time to perform Eulerian advection. Ad-

ditionally, the errors incurred were minimal — with the average

less than 1% different from the Eulerian value. Figure 4 shows the

FTLE computed using both the ABEFM method and traditional

Eulerian advection showing that ABEFM version maintains all

visible features distinguishable in the original Eulerian version.

Phase 2: Varying Domain Block Layouts
This phase studies the effect on ABEFM calculations when

dividing the mesh into different numbers of blocks. Figure 5

shows tradeoffs in accuracy and speedup as the number of blocks

increases. It shows that with the lowest number of blocks, both

144
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017



Time (seconds)
ABEFM Build Time 2.19
ABEFM Run Time 164.05
Eulerian Run Time 1426.35

Speedup
ABEFM Run Time over Eulerian Time 8.69
ABEFM Total Time over Eulerian Time 8.58

Usability
Percent Usable Faces 88.84%

Percent ABEFM Jumps 90.84%
Error

Average Accuracy 99.30%
Average Error 0.70%

Max Error 30.43%
StdDev Error 2.56%

Table 1: Phase 1 Results

speedup and accuracy is quite good. By increasing the number of

blocks, our accuracy drops off slightly and our run time slowly

increases as the number of ABEFM jumps required to travel the

same distance increases.

This configuration confirms that fastest run times with the

Tokamak data set come from the block layouts with smaller num-

bers. In Figure 6 we look closer at block layouts based on the data

set symmetry. Due to the cyclic nature of the data in the x and y

dimensions, we reduced the number of blocks in the z dimension

and varied only the x and y dimensions. Before these studies,

our initial intuition was that the closer the block jumps are the

less error there will be, but this was not true here. Having less

block jumps can also decrease the error, as there are less interpo-

lations that are approximating the flows locations and/or there are

a greater percentage of Eulerian updates. This displays a trade-off

between the number of times an error is introduced versus the size

of the errors introduced.

Phase 3: Integration Time
This phase looked at performance and accuracy as particles

were allowed to travel for longer and longer distances. Figures 7

and 8 show the results of this study. The take away from these

figures is that, as integration time increases, the speedups from

the ABEFM method become increasingly higher. While this is

expected, the study shows the extent of speedup that is possi-

ble. Speedup is ultimately limited by the number of faces along a

block that can be used for interpolation (and thus do not have to

fall back to Eulerian advection). The choice to fall back to Eule-

rian advection produces an Amdahl’s Law effect in our speedups

as we get to higher and higher values of integration time.

Phase 4: Step Size
This phase varied the step size used for computing the Eule-

rian advection steps. This is used in building the BEFM and for

all advections using the traditional Eulerian method. Figures 9

and 10 show the results of this phase.

Step size affects both the Eulerian method and the Eulerian

portions of the ABEFM preprocessing phase. As step size de-

creases, the speedup increases.

Figure 4. The FTLE field computed using the ABEFM (Top) and the Eule-

rian advection technique (Bottom).

Phase 5: Varying the KnownParticleList
Phase 5 varied the density of the KnownParticleList. Figure

11 shows the effect on accuracy and performance when this factor

is varied. For this test, the average accuracy decreases more sig-

nificantly as we vary the density below the mesh resolution and

increases only gradually as we vary above the density of the mesh

resolution. Additionally, the time to build the ABEFM increases

with the increase in density of this list, though not significantly

as this range spanned a time of 0.33 seconds at 100 points per di-

mension and 4.33 seconds at 400 points per dimension, growing

steadily in between. Our increase in performance and therefore

our increasing speedups are accounted for by the larger number of

acceptable BEFM jumps that can be performed at higher densities

with less increase in performance as we reach the point where we

stop improving our mapping significantly.

Phase 6: Varying the Data Set
This study incorporated the remaining two data sets (TH and

Astro) to see how well they performed compared to the Tokamak

data set. The data sets were studied with a variety of blocks (i.e.,

the same study that was performed in Phase 2, but for these new

data sets). For reference, the Tokamak data set’s results for this

analysis were listed in Figure 5.

In the Astro data set, the velocity field shows significant mix-

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 145



BlockLayoutBlockLayoutBlockLayoutBlockLayout
Speedup Avg Accuracy

10101010 30303030 50505050 70707070 90909090
0000

3333

6666

9999

12121212

98.75%98.75%98.75%98.75%

99.00%99.00%99.00%99.00%

99.25%99.25%99.25%99.25%

99.50%99.50%99.50%99.50%

99.75%99.75%99.75%99.75%

Blocks Per DimBlocks Per DimBlocks Per DimBlocks Per Dim

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Figure 5. Results from Phase 2: The accuracy and speedup for the Toka-

mak data set with respect to varying block dimensions.

Specialized Block StudySpecialized Block StudySpecialized Block StudySpecialized Block Study
SpeedupSpeedupSpeedupSpeedup Avg AccuracyAvg AccuracyAvg AccuracyAvg Accuracy

4.4.24.4.24.4.24.4.2 6.6.26.6.26.6.26.6.2 8.8.28.8.28.8.28.8.2 10.10.210.10.210.10.210.10.2
8.58.58.58.5

9.59.59.59.5

10.510.510.510.5

11.511.511.511.5

12.512.512.512.5

99.60%99.60%99.60%99.60%

99.66%99.66%99.66%99.66%

99.72%99.72%99.72%99.72%

99.78%99.78%99.78%99.78%

99.84%99.84%99.84%99.84%

Block Layout [x.y.z]Block Layout [x.y.z]Block Layout [x.y.z]Block Layout [x.y.z]

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Figure 6. Results from Phase 2: The accuracy and speedup for the Toka-

mak data set with respect to varying block dimensions. This study held the z

component of the block layouts at its minimum value, 2, due to the symmetry

present in the problem. Taking advantage of this property, we see a much

higher accuracy and speedup, showing that we can fine tune the best block

layout for a given problem.

ing in the center and is headed straight out or straight in towards

the edges of the domain. The result of varying block dimension

can be seen in Figure 12. It shows an optimal layout for run time

at around 203 resolution of blocks. The accuracy at this level is

not significantly different then at other block sizes. This data set

shows significantly less performance benefits as there are fewer

blocks that have acceptable mappings for the ABEFM approach.

The second data set, TH, captures the mixing of hot and cold

air currents. The vector field for this data set has significant mix-

ing throughout its volume. The results of varying block dimen-

sion can be seen in Figure 13. The optimal layout for runtime

is at around a block resolution of 203. For this problem we do

not see a significant effect on accuracy with a change in the block

layouts.

Integration Time StudyIntegration Time StudyIntegration Time StudyIntegration Time Study
Speedup Avg Accuracy

1111 5555 10101010 25252525 50505050
0000

3333

6666

9999

12121212

95.00%95.00%95.00%95.00%

96.25%96.25%96.25%96.25%

97.50%97.50%97.50%97.50%

98.75%98.75%98.75%98.75%

100.0…100.0…100.0…100.0…

Integration TimeIntegration TimeIntegration TimeIntegration Time

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Figure 7. Results from Phase 4: Speedup and accuracy for both the

ABEFM and Eulerian methods as a function of integration time.

10101010 20202020 30303030 40404040 50505050
0000

1500150015001500

3000300030003000

4500450045004500

6000600060006000
BEFMBEFMBEFMBEFMBEFMBEFMBEFMBEFM EulerEulerEulerEulerEulerEulerEulerEuler

Integration TimeIntegration TimeIntegration TimeIntegration Time

Ti
m

e 
[s

ec
on

ds
]

Ti
m

e 
[s

ec
on

ds
]

Ti
m

e 
[s

ec
on

ds
]

Ti
m

e 
[s

ec
on

ds
]

Figure 8. Results from Phase 4: Runtime for both the ABEFM and Eulerian

methods as a function of integration time. Values of ABEFM runtime range

from 50.5 seconds to 462 seconds while Eulerian runtimes range from 180

seconds to 5,150 seconds.

Step Size StudyStep Size StudyStep Size StudyStep Size Study
SpeedupSpeedupSpeedupSpeedup Avg AccuracyAvg AccuracyAvg AccuracyAvg Accuracy

0.10.10.10.1 0.010.010.010.01 0.0010.0010.0010.001 0.00010.00010.00010.0001
0000

3333

6666

9999

12121212

92.00%92.00%92.00%92.00%

94.00%94.00%94.00%94.00%

96.00%96.00%96.00%96.00%

98.00%98.00%98.00%98.00%

100.0…100.0…100.0…100.0…

Step SizeStep SizeStep SizeStep Size
Sp

ee
du

p
Sp

ee
du

p
Sp

ee
du

p
Sp

ee
du

p

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Figure 9. Results from Phase 5: Speedup and Accuracy for the ABEFM

method and Eulerian Method as a function of step size. Accuracy is calcu-

lated with respect to the Eulerian method running with the same step size.

Phase 7: BEFM vs. Euler
The ABEFM method makes a tradeoff between accuracy and

performance. Such a tradeoff is possible already within the tra-

ditional Eulerian approach, by increasing step size. In our final

phase, we compare our approach with increased step sizes using

the traditional approach.

Figure 14 shows a significant drop off in accuracy of the tra-

ditional method as step size increases, compared to the relatively

small decrease in accuracy seen in the ABEFM method for the

same changes. Figure 15 additionally shows that the ABEFM

method reaches and maintains a higher speedup for all reason-

able choices of step size. The performance gains of the ABEFM

method begin immediately as step size increases, while maintain-

ing a relatively accurate calculation. The Eulerian method how-

ever suffers from a immediate drop in accuracy while not see-

ing any performance benefits until much further from the baseline

step size. In the long run the Eulerian method is more affected

by the change in step size and so gains a significant speed im-

BEFMBEFMBEFMBEFM EulerEulerEulerEuler BuildTimeBuildTimeBuildTimeBuildTime

0.10.10.10.1 0.010.010.010.01 0.0010.0010.0010.001 0.00010.00010.00010.0001 0.000010.000010.000010.00001
10101010

1000100010001000

100000100000100000100000

0000

100100100100

200200200200

300300300300

400400400400

Step SizeStep SizeStep SizeStep Size

Ti
m

e 
[s

ec
on

ds
]

Ti
m

e 
[s

ec
on

ds
]

Ti
m

e 
[s

ec
on

ds
]

Ti
m

e 
[s

ec
on

ds
]

Bu
ild

 T
im

e
Bu

ild
 T

im
e

Bu
ild

 T
im

e
Bu

ild
 T

im
e

[s
ec

on
ds

]
[s

ec
on

ds
]

[s
ec

on
ds

]
[s

ec
on

ds
]

Figure 10. Results from Phase 5: Runtimes and build time for the ABEFM

method and Eulerian Method as a function of step size.

146
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017



KnownParticleListKnownParticleListKnownParticleListKnownParticleList
SpeedupSpeedupSpeedupSpeedup Avg AccuracyAvg AccuracyAvg AccuracyAvg Accuracy

100100100100 150150150150 200200200200 250250250250 300300300300 350350350350 400400400400
0000

2.52.52.52.5

5555

7.57.57.57.5

10101010

99.75%99.75%99.75%99.75%

99.80%99.80%99.80%99.80%

99.85%99.85%99.85%99.85%

99.90%99.90%99.90%99.90%

99.95%99.95%99.95%99.95%

Num. Points Per Dim.Num. Points Per Dim.Num. Points Per Dim.Num. Points Per Dim.

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Figure 11. Results from Phase 4: Accuracy and speedup for varying the

density of the KnownParticleList.

Astro Block StudyAstro Block StudyAstro Block StudyAstro Block Study
SpeedupSpeedupSpeedupSpeedup Avg AccuracyAvg AccuracyAvg AccuracyAvg Accuracy

20202020 40404040 60606060 80808080 100100100100
0.80.80.80.8

1111

1.21.21.21.2

1.41.41.41.4

1.61.61.61.6

95.20%95.20%95.20%95.20%

95.90%95.90%95.90%95.90%

96.60%96.60%96.60%96.60%

97.30%97.30%97.30%97.30%

98.00%98.00%98.00%98.00%

Blocks Per DimBlocks Per DimBlocks Per DimBlocks Per Dim

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Figure 12. Results from Phase 5: Accuracy and runtime for the Astro data

set as a function of varying block dimensions.

provement but by this point has given up a significant amount of

accuracy to do so.

Conclusion and Future Work
We introduced Block Exterior Flow Maps (BEFMs) and de-

signed an algorithm for accelerating flow calculations using Ap-

proximate BEFMs (ABEFMs). The approach has two significant

controlling parameters — block layout and density of known par-

ticles calculated in the preprocessing phase — and we studied the

impacts of these parameters for multiple particle advection work-

loads. We found that ABEFMs provided significant winnings for

extreme particle advection workloads, with one workload com-

pleting in 159 seconds where the traditional approach took 3,320

seconds, a speedup of more than 20X and with an average error

of less than 2%. Further, as particles are advected for longer and

longer distances, our technique has the possibility to show even

greater gains.

This technique was developed in response to needs within

the fusion community to advect for long periods around a toka-

mak. They are interested in the steady-state problem, so that is

all we considered in this initial work. While our technique is cur-

Thermal Hydrolic Block StudyThermal Hydrolic Block StudyThermal Hydrolic Block StudyThermal Hydrolic Block Study
SpeedupSpeedupSpeedupSpeedup Avg AccuracyAvg AccuracyAvg AccuracyAvg Accuracy

20202020 40404040 60606060 80808080 100100100100
0000

0.750.750.750.75

1.51.51.51.5

2.252.252.252.25

3333

96.00%96.00%96.00%96.00%

96.40%96.40%96.40%96.40%

96.80%96.80%96.80%96.80%

97.20%97.20%97.20%97.20%

97.60%97.60%97.60%97.60%

Blocks Per DimBlocks Per DimBlocks Per DimBlocks Per Dim

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Figure 13. Results from Phase 5: Accuracy and runtime for the TH data

set as a function of varying block dimensions.

ABEFM vs. Euler AccuracyABEFM vs. Euler AccuracyABEFM vs. Euler AccuracyABEFM vs. Euler Accuracy
ABEFM_AABEFM_AABEFM_AABEFM_A Euler_AEuler_AEuler_AEuler_A

0.0010.0010.0010.001 0.010.010.010.01 0.10.10.10.1
75.00%75.00%75.00%75.00%

82.50%82.50%82.50%82.50%

90.00%90.00%90.00%90.00%

97.50%97.50%97.50%97.50%

Step SizeStep SizeStep SizeStep Size

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Av
g 

Ac
cu

ra
cy

Figure 14. ABEFM and Euler accuracy at varying step sizes.

ABEFM vs. Euler SpeedupABEFM vs. Euler SpeedupABEFM vs. Euler SpeedupABEFM vs. Euler Speedup
ABEFM_SABEFM_SABEFM_SABEFM_S Euler_SEuler_SEuler_SEuler_S

0.0010.0010.0010.001 0.010.010.010.01 0.10.10.10.1
1111

10101010

100100100100

1000100010001000

10000100001000010000

Step SizeStep SizeStep SizeStep Size

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

Figure 15. ABEFM and Euler Speedups at varying step sizes. Speedups

are compared to the running time of the Eulerian problem with a step size of

0.0001.

rently useful for stand-alone post hoc analysis, our future work

will be to insert the method into their simulation codes for in situ
processing. While our preprocessing times are currently large,

we believe they can be accelerated on the many-core architectures

now prevalent on top supercomputers. Further, our block-centric

approach lends itself well to distributed memory parallelism. In

another branch of future work, we would like to consider con-

structing the ABEFM adaptively, in an effort to minimize un-

needed calculations, and to increase resolution in complex flow

regions. We can leverage the work of Barakat and Tricoche for

construction of a flow map through sparse adaptive sampling to

accomplish this [20]. An additional branch of future work will be

to consider ways of extending the ABEFM method to unsteady

state problems as certain assumptions will need to be revisited for

that case.

Acknowledgments
This work was supported by the Director, Office of Sci-

ence, Office of Advanced Scientific Computing Research, of

the U.S. Department of Energy under Contract No. DE-AC02-

05CH11231 through the grant “Towards Exascale: High Per-

formance Visualization and Analytics”, Program Manager Lucy

Nowell, and by the SciDAC Institute for Scalable Data Manage-

ment, Analysis, and Visualization.

References
[1] Sugiyama, Linda and Krishnan, Harinarayan, Finite Time Lyapunov

Exponents for magnetically confined plasmas, Bulletin of the Amer-

ican Physical Society, 57 (2012).

[2] Tamay M. Özgökmen and Andrew C. Poje and Paul F. Fischer and

Hank Childs and Harinarayan Krishnan and Christoph Garth and

Angelique C. Haza and Edward Ryan, On Multi-Scale Dispersion

Under the Influence of Surface Mixed Layer Instabilities, Ocean

Modeling, 56, 16-30 (oct 2012).

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 147



[3] Larry Pratt and Irina Rypina and Tamay Özgökmen and Peng Wang

and Hank Childs and Yana Bebieva, Chaotic Advection in a Steady,

Three-Dimensional, Ekman-Driven Eddy, Journal of Fluid Mechan-

ics, 738, 143-183 (jan 2014).

[4] Tony McLoughlin and Robert S. Laramee and Ronald Peikert and

Frits H. Post and Min Chen, Over Two Decades of Integration-

Based, Geometric Flow Visualization, EuroGraphics 2009 - State

of the Art Reports, April 2009, pg. 73

[5] Cabral, Brian and Leedom, Leith Casey, Imaging Vector Fields Us-

ing Line Integral Convolution, Proceedings of the 20th Annual Con-

ference on Computer Graphics and Interactive Techniques, New

York, NY, 2014.

[6] G. Haller, Distinguished material surfaces and coherent structures

in three-dimensional fluid flows, Physica D: Nonlinear Phenomena,

149, 248 - 277, (2001).

[7] Sanderson, Allen R and Chen, Guoning and Tricoche, Xavier and

Pugmire, David and Kruger, Scott and Breslau, Joshua, Analysis

of recurrent patterns in toroidal magnetic fields, Visualization and

Computer Graphics, IEEE Transactions on, 16, 1431-1440 (2010).

[8] David Pugmire and Tom Peterka and Christoph Garth, Parallel Inte-

gral Curves, High Performance Visualization—Enabling Extreme-

Scale Scientific Insight, 91-113 (oct 2012).

[9] David Pugmire and Hank Childs and Christoph Garth and Sean

Ahern and Gunther H. Weber, Scalable Computation of Stream-

lines on Very Large Datasets, Proceedings of the ACM/IEEE

Conference on High Performance Computing (SC09) (nov 2009).

[10] Boonthanome Nouanesengsy and Teng-Yok Lee and Han-Wei Shen,

Load-Balanced Parallel Streamline Generation on Large Scale Vec-

tor Fields, IEEE Transactions on Visualization and Computer

Graphics, 17, 1785-1794 (2011).

[11] Tom Peterka and Robert Ross and Boonthanome Nouanesengsey

and Teng-Yok Lee and Han-Wei Shen and Wesley Kendall and Jian

Huang, A Study of Parallel Particle Tracing for Steady-State and

Time-Varying Flow Fields, Proceedings of IPDPS 11, Anchorage

AK (2011).

[12] Jobard, B. and Erlebacher, G. and Hussaini, M.Y., Lagrangian-

Eulerian advection of noise and dye textures for unsteady flow visu-

alization, IEEE Transactions on Visualization and Computer Graph-

ics, 8, 211-222 (2002).

[13] Salzbrunn, Tobias and Garth, Christoph and Scheuermann, Gerik

and Meyer, Joerg, Pathline predicates and unsteady flow structures,

The Visual Computer, 24, 1039-1051 (2008).

[14] Salzbrunn, T. and Scheuermann, G., Streamline Predicates, IEEE

Transactions on Visualization and Computer Graphics, 12, 1601-

1612 (2006).

[15] Hlawatsch, M. and Sadlo, F. and Weiskopf, D., Hierarchical Line In-

tegration, Visualization and Computer Graphics, IEEE Transactions

on, 17, 1148-1163 (2011).

[16] Alexy Agranovsky and David Camp and Christoph Garth and E.

Wes Bethel and Kenneth I. Joy and Hank Childs, Improved Post

Hoc Flow Analysis Via Lagrangian Representations, Proceedings

of the IEEE Symposium on Large Data Visualization and Analysis

(LDAV), 67-75 (nov 2014).

[17] Chandler, Jennifer and Obermaier, Henriette and Joy, Kenneth and

others, Interpolation-based pathline tracing in particle-based flow

visualization, IEEE Transactions on Visualization and Computer

Graphics, 21, 68-80 (2015).

[18] Brunton, Steven and Rowley, Clarence, A method for fast compu-

tation of FTLE fields, APS Division of Fluid Dynamics Meeting

Abstracts, 1, (2008).

[19] Bhatia, Harsh and Jadhav, Shreeraj and Bremer, P and Chen, Guon-

ing and Levine, Joshua A and Nonato, Luis Gustavo and Pascucci,

Valerio, Flow visualization with quantified spatial and temporal er-

rors using edge maps, IEEE Transactions on Visualization and Com-

puter Graphics, 18, 1383–1396 (2012).

[20] S. Barakat and X. Tricoche. Sparse Adaptive Sampling for Scalable

Flow Map Computation. IEEE Transactions on Visualization and

Computer Graphics, 19(12), 27532762, 2013.

Author Biography
Ryan Bleile received his BS in Computer Science and Physics from

the University of the Pacific (2013) and is a PhD student in Computer Sci-
ence at the University of Oregon, Eugene. Ryan is currently a Lawrence
Graduate Scholar at Lawrence Livermore National Laboratory working
on research in the field of Monte Carlo Particle Transport for next gener-
ation architectures.

Linda Sugiyama received a BS in the Applied Mathematics Engi-
neering Physics program at the University of Wisconsin-Madison in 1975
and a PhD in Applied Mathematics from M.I.T. in 1980. Since then, she
has been a research scientist at M.I.T., where she has worked in a variety
of areas in plasma physics related to magnetically confined fusion. A ma-
jor focus of her work has been the development and application of large
scale nonlinear MHD simulations of plasma instabilities and “extended
MHD” nonlinear models that include important particle motion effects.

Christoph Garth is an Assistant Professor in the Computer Science
Department at the University of Kaiserslautern, Germany, from which he
also received his Ph.D. in Computer Science in 2007. Christophs research
is focused on topology-based methods and high-performance computing
techniques with applications to visualization and data analysis.

Hank Childs is an Associate Professor in the Computer and Infor-
mation Science Department at the University of Oregon. He received his
Ph.D. in computer science from the University of California at Davis in
2006. Hank’s research focuses on scientific visualization, high perfor-
mance computing, and the intersection of the two.

148
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017


