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Abstract
As datasets continue to increase in size and complexity, new

techniques are required to visualize surface flow effectively. In
this work, we introduce a novel technique for visualizing flow on
arbitrary surface meshes. This new method utilizes the closest
point method (CPM), an embedding technique for solving partial
differential equations (PDE) on surfaces. The CPM operates by
extending values off the surface into the grid and using standard
three dimensional PDE stencils to solve embedded two dimen-
sional surface problems. To adapt unsteady flow visualization for
the CPM, unsteady flow line integral convolution (UFLIC) is ap-
plied in three dimensions to the embedded surface in the grid to
visualize flow on an arbitrary surface.

To address the increased size and complexity of datasets, we
introduce the closest point sparse octree to efficiently represent
an embedded surface. By constructing a closest point sparse oc-
tree, complex surfaces can be represented in a memory efficient
manner. Further, various techniques, such as a Laplacian filter,
can be applied more easily to the embedded surface because of
the CPM. Finally, the memory efficiency of our new sparse octree
approach allows grids to be constructed up to 8,1923 in size on a
GPU with 12GB of RAM.

Visualizing vector fields is important and pervasive in a myr-
iad of fields such as computational fluid dynamics, aerospace,
and weather simulation. Many techniques have been developed
for vector field visualization, such as Line Integral Convolution
(LIC) [5]. LIC, and its variants, is a popular and fundamental vec-
tor field visualization method because of its simplicity and porta-
bility.

Because of its similarity to oil flow visualization in aeronau-
tics, LIC can also be appealing for vector field visualization on
surfaces. There are two different methodologies for LIC on sur-
faces: image-space methods and surface parameterization meth-
ods. Image-space methods project the visible surface geometry
and velocity field into the image space and LIC is applied in the
image space [16, 32]. By depositing values of just the visible
portions of the surface, the visualization is highly interactive due
to the parallel nature of LIC on a GPU. This interactivity comes
at a cost though: there can be artifacts from altering the camera
position which can be noticed around silhouette edges. Further,
self-occluded areas can be incorrect because the area under the
occluded area are not processed.

In contrast to image-space techniques, a surface can be pa-
rameterized and flow visualization techniques applied in the pa-
rameter space. The state of the art in parameter space tech-
niques utilizes the closest point embedding to apply UFLIC to sur-
faces [13]. Unfortunately, this nearly-interactive scheme does not
scale well as the surface requires a higher resolution grid which
drastically increases memory requirements.

In this paper we present a new method for visualizing flow

utilizing a parameterized surface. In a previous paper, we intro-
duced LIC using a closest point embedding [13]. This new re-
search moves beyond just an embedding to use the closest point
method for the surface flow visualization. As datasets continue to
increase in size, new techniques are needed for effective surface
flow visualization. Our approach utilizes a GPU-based stream-
ing, sparse octree to scale the parameterized representation up
to 8,1923. Further, we adapt LIC and the sparse octree to the
closest point method, a technique for solving PDEs on embedded
surfaces [25]. By using the closest point method, other partial
differential equation-based flow visualization techniques, such as
reaction-diffusion, could be applied to as well.

Our contributions are:
• Introduce the closest point method for surface flow visual-

ization.
• Introduce a sparse octree closest point construction tech-

nique.
• Apply unsteady flow line integral convolution (UFLIC) to

the closest point method for surface flow visualization.

To perform the surface flow visualization, a sparse closest
point embedding is constructed by converting the triangular mesh
into a sparse three-dimensional closest point octree. Then, un-
steady flow line integral convolution, or UFLIC, carries a noise
field through the three-dimensional sparse closest point grid by
extending the values off the surface into a surrounding grid and
applying UFLIC in three dimensions.

Related Works
We review the related works. First, flow on surfaces is re-

viewed. Then the works related to the closest point method are
covered. Finally, the sparse octree construction is reviewed.

Flow on surfaces
A thorough review of vector field visualization is beyond

the scope of this paper. We limit the review to relevant work on
surface-based flow visualization and refers readers to [4] and [8]
for a more thorough overview of flow visualization and surface
flow visualization, respectively.

Surface Flow Visualization
Image-space surface LIC methods were introduced simul-

taneously by Laramee et al. [16] and van Wijk [32] (ISA and
IBFVS, respectively). These are extensions of Image Based Flow
Visualization [31], or IBFV, to surface flow visualization by uti-
lizing the GPU perform LIC in image space. The IBFV method
uses a white noise texture that is bent by the vector field and then
blended with other white noise textures over time. This technique
is very efficient on the GPU. Both the ISA and IBFVS extend
IBVF by projecting the velocity field embedded in the surface
geometry into the image space and bending and blending the tex-
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tures in image space. Image-based methods are very efficient for
surfaces with the normal inherent drawback of image based meth-
ods. To enhance the coherency of the output, the noise texture
is mipmapped and the triangle-texture mapping is altered [11].
These adjustment do not solve the inherent problem of correct
surface occlusion nor allow the use of other unsteady flow tech-
niques such as dye advection [18, 12].

In contrast to image space approaches, surfaces can be pa-
rameterized and the flow visualization done in the parameter
space. Parameterized surface flow visualization was first intro-
duced by Forssell et al. [9]. This LIC-based approach generated
the visualization in parameter space, but generally was not distor-
tion free. Battke et al. performed LIC on a tessellated surface in
the local coordinate space of the triangle [3]. Unfortunately, the
triangulation needed to be good, thus limiting its usefulness.

Flow Charts is another parameterized unsteady flow visual-
ization technique for surfaces [19]. The triangular mesh is decom-
posed into patches using a particle system, which are then packed
into textures. Three particle advection schemes for dense flow
visualization, GPU Line Integral Convolution, Unsteady Flow
Advection- Convolution and level-set dye advection, are used to
visualize the vector field on the texture [17, 34, 33]. The texture
is then mapped onto the surface during rendering. While Flow
Charts allows for multiple visualization types, it has the following
drawback: the pre-processing step to decompose the mesh with a
particle system is very time-consuming and does not scale well.
To speed-up the parameterization to near interactive speeds, Kim
et al. introduced the closest point embedding, a fast parameteriza-
tion that performs ULIC at near interactive rate [13]. Particles are
placed on the surface and then advected according to the velocity
field. Once advected, the particles are re-projected back onto the
surface and their value is saved into on to the grid. This advec-
tion/projection scheme is continued until the particle has traveled
a pre-determined length.

Closest Point Method

Ruuth and Merriman introduced the closest point method
(CPM) as an embedding surface for solving partial differential
equations (PDEs) [25]. The CPM allows for unmodified R3 dif-
ferential operators to replace intrinsic surface operators normally
used to solve PDEs on surfaces by extending values on the sur-
face into the grid. Macdonald and Ruuth followed up the explicit
time step with an implicit time step, as well as evolving a level-
set on a surface [21, 20] and März and Macdonald followed up
the works of Macdonald and Ruuth with proofs for the principles
of the method [22].

There have been numerous applications of the CPM to sur-
face problems. Tian et al. used the CPM for segmentation on
a surface [30] and Hong et al. applied the CPM to the level-set
equation to simulate fire on a surface [10]. Auer et al. used the
closest point method to solve the Navier-Stokes equations on sur-
faces and introduced a higher order interpolant for creases [1].
Finally, Demir and Westermann recently used the closest point
for a smoother approximation of an octree surface representation
with ray casting [7]. Although designed for processing arbitrarily
large meshes, the octree construction would not scale to the sizes
necessary for the datasets we use.

Sparse Octree
A comprehensive overview of fast sparse octree voxeliza-

tion is outside the purview of this paper. We refer the reader to
Laine [14] for more detailed analysis.

Recently, there have been numerous fast, sparse GPU vox-
elization for rendering systems proposed. GigaVoxels, introduced
by Crassin et al. [6], renders large volumetric datasets depending
on viewpoint and adaptive data representation. Laine and Kar-
ras [15] are also rendering based, using a slice-based approach to
construct a top-down tree. Schwarz and Seidel [28] replaced the
2D rasterization approach previously used with a set of “3D ras-
terizers” approach. This gave a more flexible scheme by reducing
some of the redundant per-triangle processing.

On the other hand, Baert et al. [2] proposed a CPU out-of-
core sparse voxelization approach. Although not as fast as previ-
ous implementations, it is the only method that is not bound by
the available memory. Recently, this was extended to the GPU
by Pätzold and Kolb [23] and achieved moderate speed-ups. The
Schwarz and Seidel [28] is up to two orders of magnitude faster
than [2], but it is not out an out-of-core method and may not have
scaled to a high enough resolution for our purposes.

Embedding the Surface
To maintain as much flexibility as possible, we implement

the sparse voxelization octree approach similar to Baert et al. [2]
on the GPU. The closest point method is extended to use this
data structure on the GPU. The sparse voxelization algorithm is
a bottom-up sparse voxelization approach that proceeds in two
steps: the voxelization and the sparse octree construction. Fur-
ther, this is a hybrid approach where the voxelization and closest
point embedding process is implemented in CUDA, whereas the
sparse octree construction is on the CPU. The first phase inputs a
triangular mesh and generates an intermediate sparse closest point
grid using Morton order. The second phase produces a sparse oc-
tree through a streaming process using Morton order.

Sparse Closest Point Grid
The closest point grid is constructed from a surface mesh

with the velocity field at the vertices of the mesh. Fig. 1a is a two-
dimensional grid, where the blue cells are close to the surface
and contain the closest point to the surface. The white cells are
outside of the narrow band around the surface and therefore are
excluded from the sparse octree. The closest point embedding
stores the location on the surface that is nearest to the cell. Using
Fig. 1b as an example, the cell at (23,14) is colored red, and the
closest location on the surface to the cell is colored green. The
value stored in the closest point embedding at the cell (23,14) is
(21.3,14.8), which is the closest surface point (green circle) to the
red cell.

Construction of the closest point octree is as follows. The
whole octree grid is decomposed into subgrids because the grid
memory increases exponentially as the grid size increases. Then,
for each grid cell and each triangle near the grid cell, a count of
the number of triangles near the grid cell is computed. This count
is needed to construct an array of triangles that are near to a grid
cell. For each triangle in the subgrid, an axis aligned bounding
box (AABB) is determined. Then, the AABB is expanded by a
user-defined offset. In practice, to balance performance and accu-
racy the offset is set to 3. Then, for each grid cell in the AABB,
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(a) A piecewise curve embedded
into a grid.

(b) A subsection of the grid show-
ing a closest point to the surface.

Figure 1: Figs (a) and (b) are two-dimensional examples of the
closest point embedding. For all figures, the cells marked as close
to the surface are colored blue, and cells far away from the sur-
face are colored white. Cells colored blue are stored in the sparse
octree, whereas cells colored white are discarded to save memory.
Fig. (a) is an example surface, a curve embedded in a 24x24 2D
grid. Fig. (b) displays part of the grid from (a) with an example
of the closest point to the surface shown, where the red cell is at
the fine grid position, (23,14) , the projection is visualized with an
arrow, and the surface location (the green point), is at (21.3,14.8).

the closest point to the grid cell on the triangle is computed. If the
distance from the closest point to the grid cell is less than a user-
defined value, radius, then a counter is incremented with atom-
icInc in CUDA because other triangles may also be near the grid
cell. In practice, radius = 5. Next, an exclusive scan is performed
on the grid cell counts, which gives us an index for each grid cell
to have its own subarray of triangles. Further, it also computes
the total number of triangles to cells needed, and a new array is
constructed to store the triangle to cells.

After an array is created for storing lists of triangles close
to grid cells, the array is filled in parallel. For each triangle in
the subgrid and for each grid cell in its expanded axis-aligned
bounding box (AABB), the triangle is stored in the triangles-to-
cell array. Finally, for each grid cell that has a triangle near it, and
for each triangle near it, the closest point is computed and if this
is closer than previous triangles, it is stored. The velocity field is
stored into its own sparse grid in a similar manner.

To compute the point on a triangular mesh closest to the grid
cell, for every triangle in the grid, the triangle is translated and
rotated such that one vertex is at the origin, and the two other
vertices are in a coordinate plane. This translation and rotation
transforms finding the closest point into a two-dimensional prob-
lem, where solving for the location in two dimensions gives seven
regions where the projected grid vertex can lie [27].

To ensure scalability of the closest point construction, the
grid is subdivided into subgrids depending on the amount of mem-
ory on the GPU. The number of partitions required is determined
by the amount of memory needed to store a Morton code (8 bytes),
a closest point (12 bytes), and a velocity vector (12 bytes) for each
grid cell in the subcell (in the worst case), plus an integer (4 bytes)
per grid cell to count the number of triangles that are near the cell.
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2 3 6 7

0 1 4 5

(a) Highest level.
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0 1

2 3

(b) Level below the highest.

Figure 2: A two-dimensional example of Morton order and its
hierarchy. (a) is the highest level Morton order, and (b) is a coarser
Morton order.

Morton Order

Morton order, or z-order (Fig. 2), is a multidimension to
one dimension mapping that maintains locality. It is a hierarchi-
cal ordering such that the Morton order for a high level of the
tree (Fig. 2a) is congruent to the Morton order of a lower level
(Fig. 2b) of the octree. The purpose of using Morton codes for
the octree construction is that Morton order allows a bottom-up
construction. Further, Morton order makes it easier to divide the
work into separate “queues,” where there is one queue for each
level of the octree.

To construct the Morton code, the three-dimensional grid cell
coordinate is stored interleaved in a 64-bit unsigned integer (Al-
gorithm 1). To interleave the bits, for each bit b at position i in a
grid cell coordinate c, a mask is created (1 << i) and applied to
that coordinate with a bitwise conjunction. Then, it is bitshifted
by twice the bit position i, and the value is applied to the output
with a bitwise disjunction. This procedure is carried out for each
dimension of the grid cell coordinate. For instance, the coordi-
nate (23,6,14) is (10101,00110,01110) in binary and interleaved
001100111110001 or the 6641st cell in the Morton order.

Algorithm 1 Interleaved Morton encode where the input is a grid
cell coordinate, (x,y,z), the output is the Morton code, mc and
<< is the left bitshift.

mc← 0
i← 0
while i < 21 do

mc← mc ∨ (x∧ (1 << i) << i×2)
i← i+1

end while
i← 0
while i < 21 do

mc← mc ∨ (y∧ (1 << i) << i×2+1)
i← i+1

end while
i← 0
while i < 21 do

mc← mc ∨ (z∧ (1 << i) << i×2+2)
i← i+1

end while
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Figure 3: Continuing with the embedded piecewise curve exam-
ple from Fig. 1, a 4× 4 two-dimensional subgrid is used as an
example to construct a sparse octree in (b). The cells are labeled
0x0 to 0xF in Morton order. In (a) 0x0 to 0x3 are in the grey level
and the parent-child relationship is recorded in the green level.
In this example, only 0x2 and 0x3 are leaf nodes that exist in the
closest point grid. The nodes 0x0 and 0x1 are empty keys.

Sparse Octree Construction
The sparse octree construction is as follows. Given a sorted-

order Morton key list of occupied cells from the closest point con-
struction , for each Morton key, place it in the queue at the high-
est level (leaf level) of the tree. Continue filling the highest level
queue with Morton keys from the list of occupied cells or empty
keys until the queue is full. Once the leaf level queue is full, a
parent node is created in a queue at the second highest level and
the parent-child relationship is recorded. The lowest level queue
is reused for the next set of leaf nodes. This parent-child relation-
ship recording is recursively done for each queue of the tree, until
the tree is completed. Note, if a queue is filled with empty keys,
then the queue can be skipped and a key inserted at the parent
queue. This procedure makes for an efficient empty key skipping
technique.

An example of the sparse octree construction is given in two-
dimensions in Fig.3. At the highest level of the octree, Morton
keys 0x2 to 0x3, along with empty keys 0x0 and 0x1, are placed
in the queue. Then, a parent-child relationship is recorded at the

parent node, A, on the green level and the queue is cleared. Then,
empty keys 0x4 through 0x7, the parent node B is created and
recorded in the queue at the green level, and the queue at the
gray level is cleared. Then, the Morton keys 0x8 through 0xB are
placed in the queue, and the parent node is created in the queue at
the green level. Finally, 0xC, 0xE and 0xF Morton keys, with the
empty key 0xD, are copied to the queue. The parent node is then
created in the green queue. Since the queue is done, the queue at
the red level records the parent-child relation between the red and
green levels. Fig. 3 is an example with the queue stopped after the
parent-child relationship is recorded for the green level A.

Using the Closest Point Octree
Once the triangular mesh is converted to a sparse clos-

est point octree, locating a cell now requires a tree-traversal of
O(log(n)) time. Given a point within the domain of the closest
point grid, the search starts at the root node. For each level in the
tree, find the child node that encapsulates the point. This search
continues down each level until either an empty node is reached
or the leaf node is found.

Although the cost of any lookup is O(log(n)) with the octree,
this search can limit performance for three-dimensional stencil
operations such as Laplacian or linear interpolation. Therefore,
if there is enough memory on the GPU, a neighborhood index is
constructed for each grid cell by doing a tree-traversal on each
neighbor grid cell and stored in a neighborhood lookup.

Flow Visualization With the Closest Point
Method

To demonstrate the effectiveness of the closest point method
for flow visualization, we apply the unsteady flow line integral
convolution, or UFLIC, to visualize surface flow. In this section,
we describe usage of the UFLIC on the surface as well as the
visualization of the surface flow.

Unsteady Flow Line Integral Convolution (UFLIC) is a tech-
nique to visualize unsteady flow [29]. In this scheme, particles
are released from the center of every pixel and are advected for-
ward, depositing their scalar value along the pathline. Once the
advection and depositing are completed, the accumulated values
are normalized, filtered, and jittered, creating the flow visualiza-
tion.

UFLIC
The closest point sparse octree is used to produce and visu-

alize the UFLIC on the surface. Initially, given the closest point
and velocity grid, a UFLIC sparse grid of the same size is filled
with random noise, similar to how a two-dimensional UFLIC is
initialized. Once the noise grid is constructed, the values on the
surface are extended from the surface into the surrounding exten-
sion grid in the extension phase. To extend the surface values into
the surrounding grid cells, for each grid cell, linearly interpolate
the values around the closest point of the grid cell. Then the in-
terpolated value is stored in the grid cell in the extension grid.

Once the white noise has been extended into the extension
grid, for each cell, a point is placed at the center of the cell and
stores the value of the initial grid cell. As the particles are ad-
vected through the grid, their initial values are accumulated in
the UFLIC grid using a three-dimensional Bresenham line draw-
ing algorithm. Once the advection process is complete, the field
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(a) 40×40 noise grid. (b) 20×20 velocity field. (c) Zoomed into noise grid.

(d) Extending the values on the surface
into the grid.

(e) Applying UFLIC.

Figure 4: Fig. (a) through (e) are a two-dimensional example of the UFLIC with a one-dimensional embedded curve. Fig. (a) is a 40×40
noise grid, and Fig. (b) is a vector field, but 20× 20 to reduce visual clutter. Fig. (b) also has a zoomed in portion for Figs. (c) and (d).
Fig. (c) shows the extension phase of the closest point method. The values have been interpolated into the UFLIC grid. Finally, a single
example is given in Fig. (e), where a value that was interpolated from the surface is then deposited back onto the surface with UFLIC.

is normalized, sharpened with a three-dimensional laplacian op-
erator, and jittered. To visualize the surface, a parametric CPU
raycaster is implemented [24].

An example of the extension and application of UFLIC is
shown in Fig. 4. Fig. 4a and 4b are a 40×40 noise grid and a 20×
20 velocity field, respectively. The velocity field is down sampled
to reduce visual clutter. Fig. 4c shows the zoomed in region of
Fig. 4b combined with the noise of 4a. Fig. 4d extends the surface
values into the extension grid, where the closest point to a grid cell
is shown with a red line. Finally, UFLIC is applied to the two-
dimensional extended grid in Fig. 4e, but only a single particle
advection is shown. The value that is deposited onto the UFLIC
grid was interpolated off the surface in the extension phase.

After the particles are advected through the surface, the
UFLIC grid is normalized and a standard three-dimensional lapla-
cian filter is applied to all the cells. Then, the grid is clamped and
jittered to prepare for the next iteration of UFLIC.

Results and Discussion
To validate the unsteady flow line integral convolution

(UFLIC) on a surface using the closest point method, a visual
comparison is performed between our technique and a previous
unsteady surface flow visualization methods: the Closest Point
Embedding [13]. Then, to demonstrate the closest point sparse
octree performs and scales well, three datasets are used with vary-

ing grid sizes.

Validation
To demonstrate the UFLIC with the CPSO, two datasets are

used: the ICE train and the F6 plane datasets (Figs. 5 and 6,
respectively). An important goal is that the closest point sparse
octree (CPSO) has comparable results to previous parametric un-
steady flow surface visualization techniques: the Closest Point
Embedding (CPE) [13]. A figure is provided for each dataset us-
ing CPE, as well as the CPSO, for comparison purposes. Both
the ICE train and the F6 airliner are voxelized with a grid size of
10243, and the delta wing vortex bubble dataset is voxelized with
a grid size of 81923. The grid size of 10243 for the ICE Train
and F6 airliner was chosen because they are visually similar to
the CPE UFLIC. However, the grid size of 81923 for the delta
wing vortex bubble was chosen because it is the resolution that
accurately represents the surface. The delta wing vortex bubble
is a complex integral surface that tightly wraps around itself, and
in some regions the surface is very close to itself. Therefore, a
refined sparse octree, with a grid size of 81923, is needed to cor-
rectly represent the surface with the CPSO and to apply UFLIC
properly.

The ICE train (Fig. 5) is a simulation of a high speed train
traveling at 250 km/h with wind blowing at a 30 degree angle.
The wind creates a drop in pressure, generating separation and
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(a) The CPSO ICE Train

(b) The CPE ICE Train
Figure 5: The ICE train visualized with UFLIC with the closest
point sparse octree and UFLIC (Fig. (a)) and the closest point
embedding (Fig. (b)).

attachment flow patterns, which can be seen on the surface in
Fig. 5a. Shear stress is shown on the airliner (F6) dataset, which
is in Fig. 6a.

When generated with the Closest Point Embedding and the
CPSO, both datasets are visually similar. For the ICE Train in
Fig. 5, the separation (highlighted by the red circle) and attach-
ment (highlighted by the green circle) flow patterns can be seen
in both procedures. With the F6 dataset in Fig. 6, the shear stress
from the wind (highlighted with a red circle) can been seen in
both implementations as well.

Timing and Scaling Results
To demonstrate the effectiveness of the closest point sparse

octree, the construction of the CPSO and the application of
UFLIC are timed using varying grid sizes. The amount of time
it takes to construct the CPSO scales with the number of sparse
voxels. Further, the amount of memory used is significantly re-
duced in comparison to a full grid.

Three datasets were used for timing purposes: the two
datasets used for visual verification , the ICE train and the F6
plane, were voxelized into grids ranging from 5123 to 40963. The
third dataset, a vortex coming off a delta wing is also voxelized
(Fig. 7), but it is from 5123 to 8,1923.

The timing results, dimensions of the full grid, and the num-
ber of sparse voxels of the CPSO are in Table 1. All tests were per-
formed on an Intel Xeon 5170 with 16GB of RAM using a Nvidia
Quadro K6000 GPU and CUDA v7.0. The timing results are pro-
duced for constructing the closest point sparse octree and running

(a) The CPSO Airliner

(b) The CPE Airliner
Figure 6: The airliner (F6) dataset visualized with UFLIC and the
closest point sparse octree (Fig. (a)) and the closest point embed-
ding (Fig. (b)).

UFLIC. All the UFLIC runs were performed with a life span (ttl)
set to 2. Further, UFLIC is run without constructing the neighbor-
hood lookup, for consistent scaling results . All timing results are
in seconds.

To save time initializing memory on the GPU, a simple mem-
ory pool manager is used. In a preprocess step, a large amount of
GPU memory is allocated as a memory pool, which allows for
quicker allocation and deallocation of temporary memory buffers
when constructing the closest point octree.

For the CPSO construction, the amount of time it takes to
construct the sparse octree scales at similar rate as the number of
sparse voxels rather than increasing exponentially with the dense
grid size. Table 1 includes the timing results for building the
CPSO and applying UFLIC to each dataset for varying grid sizes.
Further, the number of voxels generated is also in the table.

The ICE train dataset with a grid size of 5123, 10243, 20483,
and 40963 takes 1.12, 3.15, 14.34, and 59.4 seconds to con-
struct the CPSO, respectively. The number of voxels in the sparse
octree are 930,803, 3,836,484, 15,800,019, and 65,742,208 for
grid sizes 5123, 10243, 20483, and 40963. For an increase in di-
mensions from 5123 to 10243, the numbers of voxels increases
by 4.1x, and the amount of time to build the CPSO increases
by 2.8x. For an increase in the grid size from 10243 to 20483, the
number of voxels increases by 4.1x, and the time to construct the
CPSO increases by a factor of 4.6x. Changing the grid size from
20483 to 40963 increases the voxel count by 4.2x, and the build
time for the CPSO increases by 4.1. For each increase in the grid
size, both the CPSO and the number of voxels increase linearly at
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Table 1: The timing results (in seconds) and the increase in time from the previous grid size for the construction of the CPSO and applying
UFLIC as well as dimensions for the datasets are listed. Further, the number of sparse voxels and the increase from the previous grid
size voxel count are listed in the last two columns. All timing results were performed with an Intel Xeon 5170 with an Nvidia Quadro
K6000 GPU.

Timing Dimensions Sparse Voxels Sparseness (%)

CPSO UFLIC

Build (s) Increase of time Run (s) Increase of time Count Increase of size

ICE Train

1.12 - 0.53 - 5123 930,803 - 99.3

3.15 2.8x 1.88 3.5x 10243 3,836,484 4.1x 99.6

14.34 4.6x 11.48 6.1x 20483 15,800,019 4.1x 99.8

59.4 4.1 147.84 12.9x 40963 65,742,208 4.2x 99.9

F6 Plane

3.22 - 0.31 - 5123 611,854 - 99.5

4.5 1.4x 1.42 4.6x 10243 2,647,537 4.3x 99.8

12.85 2.9x 7.63 5.4x 20483 11,078,157 4.2x 99.9

48.84 3.8x 84.31 11.0x 40963 45,526,355 4.1x 99.9

edelta vortex

1.71 - 0.06 - 5123 114,215 - 99.9

2.25 1.3x 0.29 4.8x 10243 489,710 4.3x 99.95

5.58 2.5x 1.66 5.7x 20483 2,594,110 5.3x 99.97

5.58 2.5x 14.0 8.7x 40963 15,259,859 5.9x 99.98

20.65 3.7x 314.8 19.7x 81923 87,677,518 5.8x 99.98

Figure 7: This is the CPSO delta wing vortex bubble with a grid
size of 8,1923.The delta wing vortex bubble dataset is a stream
surface off of a delta wing. It is a complex surface that flows
around itself.

a similar rate.
On the other hand, the increase in the UFLIC runtime does

not have a linear increase. The increase in time for grid size 5123

to 10243 is 3.5x, the increase in time for grid size 20483 is 6.1x,
and the increase in time for grid size 40963 is 12.9x. The non-
linear increase for the UFLIC time is because the neighborhood
index is not used. For instance, without the neighborhood index,
applying the Laplacian operator requires eight lookups starting
from the root node of the octree tree. This tree traversal is the

cause for the UFLIC performance not scaling linearly with the
number of voxels.

Table 2 has the ICE Train UFLIC timing results (in seconds)
while using the neighborhood index. Increasing the grid size from
5123 to 10243, the time to run UFLIC increased by 0.89 and the
number of voxels increased by 4.1x. Similarly, increasing the
grid size from 10243 to 20483 increases the amount of time to
apply UFLIC by 4.1x, and the number of voxels increased by
4.1x. By using the neighborhood index, the time to apply the
UFLIC increases at a rate similar to the increase in the number of
voxels.

Similar to the linear scaling of the CPSO construction and
voxel count of the ICE Train, the F6 plane dataset’s CPSO con-
struction time increases at a similar linear rate as the voxel count,
which can be seen in Table 1. Likewise, applying UFLIC in-
creases at a nonlinear rate because of the required tree traversal.

Finally, the scaling of the CPSO and voxel count of the delta
wing vortex bubble dataset are similar to ICE train and F6 plane
datasets. Further, applying UFLIC increases at the expected non-
linear rate because of the required tree traversal. The increase
in the time to apply UFLIC is not unexpected because the shape
of the delta wing vortex bubble is very long and narrow, and the
surface folds closely back onto itself multiple times. This close-
ness requires a higher resolution for the delta wing vortex bubble
dataset than the ICE Train and the F6 aircraft. Further, the non-
linear jump seen increasing the grid size from 20483 to 40963 in
the ICE Train and F6 aircraft datasets occurs at the higher, 81923,
grid size. The nonlinear increase in UFLIC runtime is the same as
the ICE train and F6 plane: the neighborhood lookup is not used.

One measure of memory efficiency for the CPSO is compar-
ing the number of voxels in a dense grid to the number of voxels
eliminated in the CPSO. All the datasets, regardless of grid size,
achieve a 99% or higher sparseness percentage in Table 1, which
means that at least 99% of the dense grid is empty data, and the
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Table 2: The timing results (in seconds) and the increase in time from the previous grid size for applying UFLIC as well as dimensions
for the ICE Train dataset are listed using the neighborhood index. Further, the number of sparse voxels and the increase from the previous
grid size voxel count are listed in the last two columns. All timing results were performed with an Intel Xeon 5170 with an Nvidia Quadro
K6000 GPU.

UFLIC Timing Dimensions Sparse Voxels Sparseness (%)

Run (s) Increase of time Count Increase of size

ICE Train

0.21 - 5123 930,803 - 99.3

0.89 4.2 10243 3,836,484 4.1x 99.6

3.78 4.3 20483 15,800,019 4.1x 99.8

sparse octree removed those empty grid cells to save memory.
Finally, compared to the previous technique, the closest point

embedding (CPE) [13], the closest point sparse octree scales be-
yond the CPE memory-limited 10243 grid size on the Nvidia
Quadro K6000. The CPE is a two-level grid, with the coarse
dense grid constructing the closest point grid whereas the refined
subgrid is the visualization grid. Unfortunately, constructing the
CPSO is not as fast as the closest point embedding, which can
construct a closest point grid, with a grid size of 512×58×69 in
0.03s for the ICE train dataset compared with 5123 time for the
CPSO of 1.12s. For the F6 plane dataset, a closest point grid with
a grid size of 384× 192× 55 is constructed in 0.06s compared
with the 5123 time for the CPSO of 3.22s. Although significantly
faster than our implementation, the CPE cannot skip empty space
for the closest point grid construction, and therefore cannot scale
to the resolution required to accurately represent the delta wing
vortex bubble surface because memory on the GPU is limited.

Conclusion and Future Works
We have introduced a new method for surface flow visual-

ization using the closest point method. The key idea is that by
embedding the closest point to a surface into the surrounding grid
and extending the surface into the grid, UFLIC can be performed
in 3D to generate the 2D embedded surface flow visualization.

Further, we have introduced a sparse octree for the closest
point method. Constructing a sparse octree for the closest point
method helps save memory over other construction techniques.
This expands the ability of the closest point method to larger
datasets, which is increasingly important as data sets continue to
grow larger over time.

With our new technique, there are numerous advantages
compared to previous works. It avoids the visibility problems of
image-space approaches, such as popping artifacts on the silhou-
ettes, and can resolve occluded areas that image-space methods
cannot. Further, although the user chooses the octree grid size,
which is a static constraint, the ability to zoom into intricate areas
of the surface which is sometimes needed, can be handled.

In the future, we would like to explore increasing the perfor-
mance of the octree to bring the runtime down to near interactive
rates. Further, we would like to adapt other PDE-based flow visu-
alization techniques such as reaction-diffusion [26].
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