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Abstract. Extracting hierarchical structures from networks provides
us with an effective means of visualizing them, especially when
they contain complicated node connectivities such as those in traffic
and distributed networks. Although many techniques have been
developed for such purposes, they often deterministically break
unwanted cycles that may arise from inconsistencies in the network
hierarchies, and thus never seek the best compromise among
possible partial orders of nodes inherent in the cycle. This article
presents an algorithm for inferring such partial orders by optimizing
the network hierarchies along flow paths that are given as input. Our
idea is to extract network hierarchies from round-trip paths as well
as one-way ones by deriving reasonably consistent multi-layered
structures even from possibly inconsistent flow data over the
networks. This problem is formulated as mixed-integer programming
where we incorporate additional constraints into fundamental
layout criteria according to the type and/or expected use of the
network. For better visual readability of the network layout, the
nodes in individual layers are clustered and reordered for minimizing
edge crossings, which is followed by fine adjustment of intervals
between neighboring nodes. We study several network examples
to demonstrate the feasibility of the proposed approach including
course dependency charts, railway networks, and peer-to-peer
(P2P) networks. c© 2016 Society for Imaging Science and
Technology.

INTRODUCTION
Real world networks consist of a large number of entities
that have complicated relationships in between. These
network structures are usually dominated by their interior
relationships that include several dependency information
such as feeding relationships in ecosystem, task ordering
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for management, and visiting orders of network nodes
in the Internet. Visualizing such dependency relationships
allows us to understand the overall trends of the internal
communication flows inherent in the network. In practice,
this can be accomplished by laying out the entities as network
nodes along the communication flows, which amounts
to visually elucidating the underlying hierarchy of the
network. Directed graphs are commonly employed for this
purpose since relationships between the nodes can be easily
represented as directed edges in the graphs. Hierarchical
representation of directed graphs also alleviates visual clutter
problems we often encounter when visualizing complicated
networks.

However, conventional techniques primarily focus on
hierarchical layout of directed acyclic graphs (DAGs) and
often suffer from hair-ball effects as the number of paths in-
creases (Figure 1(a)). This is because they cannot effectively
identify hierarchical structures inherent in general directed
graphs due to unwanted cycles arising from deadlocks in
the dependency relationships. In practice, most techniques
try to cut edges until all the cycles are removed from the
network, while this forces us to ignore possibly significant
influence of eliminated edges when inferring the underlying
hierarchical layout. Furthermore, especially in distributed
networks, we are more interested in data traffic along a path
between a specific pair of nodes for understanding the overall
trend of the network communication. Incorporating such
information about communication paths over the network
will provide us with more options for laying out the network
in a hierarchical fashion.

These factors are indeed significant when we try to
understand the hierarchical structure in the Internet. Here,
the Internet consists of autonomous systems (ASs), which are
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(a) (b)

Figure 1. Examples of P2P network representation. (a) Hierarchical layout of the network obtained using the algorithm by Gansner et al. (b) Inferring
optimal hierarchies from dependency between nodes of a P2P network extracted from round-trip communication paths.

defined as groups of IP networks maintained under the same
administrative control. This implies that data transmission
paths between a pair of ASs usually go up and down in
the Internet hierarchy, often by way of the topmost network
layer (such as the Tier 1 layer), and thus investigating
such an AS hierarchy gives us a hint on the structure of
specific sub-networks such as peer-to-peer (P2P) networks1
(Fig. 1(b)).

In this article, we present an algorithm for inferring such
hierarchical structures from available network flows through
constrained optimization.Our idea is to construct reasonably
consistent network hierarchy by referring to the ordering
of nodes along all the communication paths, regardless of
whether the associated paths are consistent or not. This is
accomplished by formulating the problem as mixed-integer
programming, where we incorporate several fundamental
design criteria as hard and soft constraints. As a post-process,
the visual readability of the hierarchical layout is improved by
rearranging nodes in the same hierarchical layer tominimize
edge crossings and overlaps.

The remainder of this article is structured as follows:
In the next section, we briefly summarize related work. We
then present an overview of our algorithm for laying out
networks in a hierarchical fashion. In practice, the proposed
algorithm consists of the extraction of network hierarchies
from both one-way and round-trip communication paths,
while nodes in the individual layers are further grouped and
rearranged both for reducing visual clutter and accelerating
the computation. Several experimental results are also
presented to demonstrate the feasibility of our formulation,
which are followed by the conclusion of this article together
with future work.

RELATEDWORK
Visualizing networks is one of the promising approach for
mining them for their specific characteristics.2 Among them,
real world networks are often ubiquitous and have long
been thought of as hierarchical in nature.3 This can be
easily imagined because networks often exhibit clustered
organization, as suggested by many recent studies.4–6
Nonetheless, the hierarchical structure implicitly embedded
in the network is usually more informative than the clustered
organization of network nodes, especially when the network
contains cycles that incur deadlocks in the dependency

relationships between them. For example, in the Internet, ASs
are considered as groups of routers that have the same routing
policy. As described in Gao et al.,1 these routing policies
are commonly constrained by the commercial strategies
between administrative domains, and the order of visiting
nodes along each communication path helps to infer AS
dependency relationships in the Internet. Despite this, we
sometimes cannot uniquely fix the dependency between
some pairs of ASs especially when they are in the same
network layer. It thus gives us a strong motivation to extract
reasonably consistent hierarchical structure even from such
possibly insufficient and inconsistent communication data,
so that we canmaximally clarify the underlying trend in data
communication over the multi-layered network.

For visualizing network structures in a hierarchical
fashion, directed graphs with layered drawing styles are
commonly used to reveal the node dependency. According
to the survey of hierarchical drawing algorithms,7 the
techniques can be categorized into two main groups: one
is for directed acyclic graphs (DAGs) and the other is for
general directed graphs. The pioneering and most popular
method for drawing DAGs is Sugiyama’s framework,8 which
distributes the network nodes to each layer by incorporating
several criteria such as uniform edge orientation. Various
extensions have been introduced to improve this framework,
which include edge crossingminimization byusing confluent
drawings9 and minimal insertion of dummy nodes10 for
better network layouts. An accelerated version of Sugiyama’s
framework was developed by Eiglsperger et al.,11 where they
kept the number of dummy nodes and edges linear in the
size of the graph without increasing the number of crossings.
Di Battista et al.12 proposed an experimental study for
comparing the performance of Sugiyama’s layer-based layout
and the grid-based layout,13 and showed trade-offs between
the two layout aesthetics and computation times. Afterward,
constrained versions of DAG drawing algorithms have been
devised, so that we can control the number of layers and that
of nodes at each layer in the network layout.14,15

Although drawing typical directed graphs as well as
constrained DAGs is NP-hard, several heuristic algorithms
have been proposed to tackle the problem. Themost intuitive
way is to break the cycles by cutting less important edges and
then apply conventional DAG layout algorithms.16 Selecting
edges to be removed is commonly known as a feedback arc
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Figure 2. Networks with two different types of dependency paths.
(a) One-way paths. (b) Round-trip paths. The sequences of nodes on the
top represent input dependency paths and network layouts on the bottom
show the inferred hierarchical structures of the networks.

set (FAS) problem17 and has been intensively studied so far.
In practice, this edge removal strategy allows us to identify
the backbone structure of the network as a tree, and then
employ the depth of each node in the tree as its layer number
in the network hierarchy.7,16 Another idea is to distribute the
network nodes to a set of concentric circles according to its
layer number.18,19 This concentric layout style can be further
sophisticated by taking into account the distinguished cycles,
which often appear as recurring processes in biosciences for
example.20,21 Of course, 3D versions of hierarchical drawing
techniques are also helpful for alleviating visual clutter in the
network layout, by taking advantage of depth perception.22,23

Rearranging the nodes at the respective layers for
aesthetic network layouts will also become a crucial issue
especially when we have to handle a large number of network
nodes and edges. Gansner et al.16 and Gange et al.24 devised
techniques for minimizing edge crossings while drawing
every flow path within the limited screen space will cause
severe visual clutter. For example, Dwyer et al.25 presented
a concept of power graph for alleviating this problem, where
they grouped a set of nodes into a cluster in order to reduce
distracting visual clutter in networks of general type. Onoue
et al.,26 on the other hand, propose edge concentration
techniques for contracting edge connectivities to enhance the
associated network readability.

As shown in the survey papers by Nettleton,27 con-
ventional graph mining techniques focus on the analysis of
shortest paths among topological structures of networks. In
our approach, instead of such simple pairwise relationships,
we take observed path information between end nodes as
input, on the assumption that most paths go up and down
consistently with respect to the hierarchical levels. Unlike

Figure 3. Overview of the present framework.

conventional energy-based optimizations with soft con-
straints only,28–31 we employedmixed-integer programming
formulation to incorporate additional hard constraints in
addition to soft constraints for various application purposes.
Several relevant approaches are done16,24,32 in that they
also introduced mixed-integer programming, while it was
employed not for inferring optimal network hierarchies
but for optimizing the placements of network nodes at
given hierarchical levels. On the other hand, our approach
incorporates the mixed-integer programming in order to
infer the consistent network hierarchy, and also allows
us to adaptively design the hierarchical layout according
to the type and/or expected use of the target networks,
by introducing additional constraints and costs to our
formulation. We will further optimize horizontal ordering
of nodes at the respective hierarchical layers for better
readability of the network layout.

OVERVIEW
This section presents an overview of our approach to visu-
alizing network hierarchies by taking as input dependency
paths over the networks. A typical case of such network paths
corresponds to one-way dependency paths that are expected
to ascend or descend monotonously in a single direction
through the hierarchical layers, as shown in Figure 2(a).
Examples of this one-way type include predator–prey
relationships in ecosystems, course dependency in school
curricula, and task orderings in decision graphs. On the
other hand, we also encounter a different type of dependency
relationship especially in networks having a relatively small
number of hub nodes. In this case, a route is likely to compose
a mountain like path as shown in Fig. 2(b), since it often has
to travel between two end nodes by way of several hub nodes
at upper hierarchical layers. Railway transfer and flight plan
routes are examples of such round-trip paths as well as traffic
routes in the Internet. More details of the formulation will be
addressed in what follows.

Figure 3 represents the overall flow of the algorithm,
which primarily consists of two stages. On the left of the
figure, a conventional force-directed layout of the network is
exhibited. In the first stage, we extract network hierarchies
by inferring optimal partial orders of nodes from given
dependency paths as shown in the middle. After that, we
reorder the sequence of nodes at each hierarchical layer to
minimize edge crossings and overlaps for better readability
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(a) (b) (c)

Figure 4. Extracting hierarchy from one-way paths. (a) Consistent edge
orientations along a path. (b) Inserting an inconsistent path into the
network. (c) An optimized layout.

as shown on the right. Technical details of these two stages
will be covered in the next two sections.

INFERRING NETWORKHIERARCHIES
In this section, we first tackle one-way paths to extract
consistent network hierarchies, and then extend the idea to
handle round-trip paths.

Extracting Hierarchies from One-way Paths
Here, we formulate one-way hierarchy extraction problems
as the mixed-integer programming, which helps us visualize
the network structure by arranging its nodes in a single
hierarchical order. In our formulation, we employed three
criteria, each of which will be detailed below.

Consistent Hierarchical Ordering. Suppose that two nodes pi
and pi+1 appear in this order along a one-way dependency
path. A natural idea is to place these nodes in a way that pi+1
is higher than pi in the network hierarchy. This is achieved
by introducing the following constraint:

l(pi)− l(pi+1)≥ 1, (1)

where l(pi) represents a positive integer that corresponds
to the layer ID of node pi, and the constant 1 on the right
side corresponds to the minimal difference in the layer ID
between the neighboring nodes along the path. Here, we
assume that a higher hierarchical level has a smaller layer ID,
as shown in Figure 4. This formulation allows us to infer a
consistent ordering of nodes along each path with respect to
the hierarchical level.

Nonetheless, it is still possible that we have another
path that is inconsistent with the dependency relationships
of the existing paths. Fig. 4(b) shows such a case where the
node ordering in the new path H-D-F-A, which is drawn
by blue dotted arrows, conflicts with that of the previous
path H-F-D-A. Actually, incorporating such an inconsistent
path may let us find cycles in the dependency network. To
make this unexpected case still feasible in our framework, we
introduce an integer penalty value νi,i+1 into Eq. (1) as:

l(pi)− l(pi+1)≥ 1− νi,i+1. (2)

Eq. (2) implies that we can place pi and pi+1 at the same
hierarchical layer or reverse the order of these two nodes

by increasing the penalty value νi,i+1. However, we may still
want to keep the monotonicity of the node ordering with
respect to the hierarchical level, even in the worst case, by
equalizing the layer IDs of neighboring nodes. This leads
to the idea of restricting the upper limit of νi,i+1 to 1 to
a certain extent, and then making the penalty value νi,i+1
optionally increase. This is accomplished by decomposing
νi,i+1 in Eq. (2) into two penalty integer values µi,i+1 and
δi,i+1 as:

l(pi)− l(pi+1)≥ 1−µi,i+1− δi,i+1, (3)

where 0≤µi,i+1 ≤ 1 and 0≤ δi,i+1.
As described earlier, setting the penalty value µi,i+1 to

1 amounts to placing pi and pi+1 in the same hierarchical
layer as shown in Fig. 4(c), and further increasing the value
δi,i+1 will reverse the original dependency ordering between
these two nodes. Thus, when defining the objective function
to be minimized, we assign a small weight value to µi,i+1 for
readily equalizing the hierarchical levels of the two nodes,
while we employ a large weight value for δi,i+1 to further
penalize for reversing their dependency relationship. Here,
we minimize the objective function E, which is defined as a
weighted sum of penalty values µi,i+1 and δi,i+1:

E =weCe+wrCr , where
Ce =

∑
k

∑
i,i+1∈Pk

µi,i+1, and

Cr =
∑
k

∑
i,i+1∈Pk

δi,i+1. (4)

Here,we andwr (we ≤wr ) are the weights forµi,i+1 and
δi,i+1, respectively, and Pk is the set of node indices along the
kth path.

Note that, in our formulation, we can adhere to
equalizing the layers of two nodes in conflict by raising the
relative ratio s = wr/we (Fig. 4(c)). On the other hand, we
can lower the ratio in order to respect the predominant
dependency relationship between them (Fig. 4(b)). Suppose
that we havem directed edges from pi to pi+1 and n edges for
its reverse. The cost E of Eq. (4) will be:

E =


(1+ s)wen if l(pi) > l(pi+1)

we(m+ n) if l(pi)= l(pi+1)

(1+ s)wem if l(pi) < l(pi+1).

(5)

This suggests that l(pi) > l(pi+1) when m > sn, l(pi) <
l(pi+1) when m< n/s, and l(pi)= l(pi+1) otherwise. We set
s = 1.5 by default to keep a fair balance among the three
cases.

Minimal Difference in Layer. On the other hand, we also
want to remove redundant layers in the hierarchical layout
of the network, by maximally reducing the difference in the
layer ID between each pair of neighboring nodes along the
path. Indeed, this allows us to keep the network hierarchy as
compact as possible. Toward this goal, we introduce another
integer value λi,i+1 to represent the absolute difference
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between a pair of successive nodes as follows:

l(pi)− l(pi+1)≤ 1+ λi,i+1,

l(pi)− l(pi+1)≥ − 1− λi,i+1, and
λi,i+1 ≥ 0. (6)

Note that, in this formulation, we allow theminimal absolute
difference 1 from the beginning, since we want to avoid any
conflict between the penalty values. We can minimize the
total number of hierarchical layers by summing up the values
λi,i+1 to the new cost term:

Cd =
∑
k

∑
i,i+1∈Pk

λi,i+1. (7)

This means that, in the case of one-way paths, the final
version of the objective function E can be defined as

E =weCe+wrCr +wdCd , (8)

wherewd is a weight value assigned to the term Cd in Eq. (7).
Number of Hierarchical Layers. Sometimes, we are forced
to excessively suppress the number of hierarchical layers in
designing the network layouts, especially when we have to
fit the entire network layout to the space of predefined size.
In our formulation, we can explicitly set the limit number of
layers to N , by restricting the layer ID of each node pi as

0≤ l(pi)≤N − 1. (9)

Extracting Hierarchies from Round-Trip Paths
Inferring network hierarchies from round-trip network paths
is more involved because this amounts to identifying the
hub node at the topmost layer along each communication
path. In the remainder of this section, we formulate the
constraints for the round-trip paths by extending the
previous formulation for the one-way case.
Valley-free Paths. As pointed out by several literature, the
routing policy under Border Gateway Protocol (BGP) is
usually valley-free.1,3,33 Figure 5(a) shows an example of
such a valley-free round-trip path G-E-B-A-C, which has
only one turning point at A with respect to the hierarchical
level. For example, in the case of distributed networks,
nodes G and C can be considered as end user nodes, while
other intermediate nodes correspond to routers provided
by Internet service providers (ISPs). The aforementioned
literature suggests that we can encode all communication
paths in this case as valley-free paths when inferring the
hierarchical structure of distributed networks.

Recall that Eq. (3) corresponds to the constraint that
node pi+1 is higher than node pi in the network hierarchy
along an ascending path. If two nodes pi and pi+1 are on
a descending path instead, we can write the corresponding
constraint as:

l(pi)− l(pi+1)≤−1+µi,i+1+ δi,i+1. (10)

However, along a valley-free round-trip path, we have to
switch the constraint from Eqs. (3)–(10) when we pass

(a) (b)

Figure 5. Extracting hierarchy from Round-trip paths. (a) A path with
reversed direction at a certain node. (b) Computing α values along the
path.

through the turning point, such as node A in Fig. 5(a) for
example. This requires us to encode the orientation of each
edge along the path with respect to the hierarchical level.
In our approach, we employ two binary values αi,i+1 and
βi,i+1, where αi,i+1 becomes 1 if the corresponding edge
pipi+1 is ascending while βi,i+1 is 1 if the edge is descending.
Introducing these two binary values allows us to rewrite
Eqs. (3)–(10) as:

l(pi)− l(pi+1)≥ αi,i+1−M(1−αi,i+1)−µi,i+1− δi,i+1

l(pi)− l(pi+1)≤−βi,i+1+M(1−βi,i+1)+µi,i+1+ δi,i+1,

(11)

where M is some large value and used to validate the two
inequality constraints when αi,i+1 and βi,i+1 vanish. Since
the edge pipi+1 is either ascending or descending,

αi,i+1+βi,i+1 = 1. (12)

Now we are ready to formulate the criterion for valley-free
paths as a constraint, which can be written as:

Nk−2∑
i=0

∑
i,i+1,i+2∈Pk

(αi,i+1⊕αi+1,i+2)= 1,

α0,1 = 1, βNk−2,Nk−1 = 1,

(13)

where αi,i+1⊕αi+1,i+2 is defined as an ‘‘XOR’’ operation on
αi,i+1 and αi+1,i+2, and Nk represents the number of nodes
on the kth path Pk. Clearly, the above equation ensures that
each path has only one turning point between ascending and
descending phases. Fig. 5(b) shows an example of the kth
path, where α2,3⊕α3,4 = 1 in this case. Note that we set the
first edge of Pk as ascending by α0,1 = 1, and the last edge as
descending by βNk−2,Nk−1 = 1.

DRAWING NODES AT EACHHIERARCHICAL LAYER
After having distributed the network nodes to the hierar-
chical layers, our next task is to seek better ordering of
the nodes at each individual layer to maximally reduce the
visual clutter arising from edge crossings and overlaps as
shown in the middle of Fig. 3. We carry out this layout
enhancement as a post-process, by taking advantages of
conventional algorithms developed by Gange et al.24 and
Gansner et al.16
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Rearranging nodes at hierarchical layers. (a) Initial network layout. (b) Dummy nodes added. (c) Grouping nodes into clusters at each layer.
(d) Node clusters rearranged. (e) Nodes rearranged within each cluster. (f) Space adjustment between neighboring nodes.

Grouping and Rearranging Nodes
In this approach, we incorporated a new step for grouping
the network nodes, which allows us to accelerate the
layout computation by reducing the number of primitive
components in the network as well as to improve visual
readability by concentrating edges between these groups.
This means that the new step lets us optimize the horizontal
orders of node clusters at each layer first, then rearrange
those of nodes inside the respective clusters, and finally
conduct fine adjustment of space between every pair
of adjacent nodes. This visualization pipeline effectively
provides us with better readability of the network layout,
especially when the network has a large amount of nodes.
The overall optimization process consists of three steps as
described below.

Inserting Dummy Nodes. After having inferred partial orders
of network nodes, it is possible that two nodes are not
immediate neighbors in the network hierarchy, which means
that the corresponding edge inevitably passes across one
or more intermediate layers in between. In this case, we
insert dummy nodes as intersections of the edge with the
intermediate layers to guide the shape of that edge in the final
layout. Now the edge is replaced by an alternating sequence
of intermediate dummy nodes and edges, which is bounded
by original two end nodes. The corresponding process is
illustrated in Figure 6(a) and (b).

Grouping Nodes into a Set of Clusters. In the second step,
we consider nodes sharing common neighbors (including
dummy nodes) as similar, and group them into a set
of clusters. Indeed, this process successfully reduces the

Figure 7. Dendrogram interface that represents the hierarchical clustering
of nodes at the respective layers in Fig. 6.

complexity of network connectivity and thus leads to
accelerate optimization of node ordering at the respective
layers. For grouping the network nodes at each hierarchical
layer, we introduced the conventional Jaccard coefficient
as the similarity for evaluating every pair of nodes at the
same layer,34 which is defined as J (A,B)= |A∩ B|/|A∪ B|.
Here, A and B represent the sets of network nodes at
the neighboring layers that are incident to the two nodes,
respectively. For grouping nodes at each hierarchical layer,
we conduct hierarchical clustering based on the Jaccard
coefficient,35 which selectively groups the most similar
pair of nodes one by one until the total number of node
clusters is no larger than the predefined number c, where
c = 10 by default. Fig. 6(c) shows such a case where the
nodes are grouped into three clusters, which are drawn
in red, green, and blue, respectively. Note that we can
adjust the number of clusters at each layer by interactively
controlling the similarity threshold (indicated in green) over
the dendrogram that represents the hierarchical clustering of
nodes. Figure 7 shows such an interface where dendrograms
(from left to right) correspond to the hierarchical clustering
of nodes at the respective hierarchical layers (from top to
bottom) in Fig. 6.
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(a) (b) (c) (d) (e)

Figure 8. Rendering node clusters and contracted edges. (a) Initial network layout. (b) Nodes are grouped into clusters at each layer. A dendrogram
on the left shows how we can adjust the similarity for controlling the number of node clusters. (c) Edges are contracted by referring to the node clusters.
(d) Concentrated edges between clusters where the cross mark corresponds to a biclique (i.e., complete bipartite subgraph). (e) Symbolic representation
that reveals how each node in the cluster is connected with the adjacent node clusters.

Rearranging Horizontal Ordering of Nodes. The third step
is to rearrange the order of node clusters (including single
nodes) at each hierarchical layer, so that we canminimize the
edge crossings between neighboring layers and edge overlaps
within the same layer. For this purpose, we employ the
mixed-integer programming formulation of Gange et al.,24
while we improved the associated algorithm by introducing
a two-step optimization approach. Fig. 6(d) and (e) provide
steps of this process, where we first rearrange the ordering of
node clusters, and then optimize the order of nodes inside
each cluster, respectively. Note that each optimization step
reduces distracting edge crossings.
Adjusting Horizontal Spacing Between Nodes. Once the
overall order of the nodes has been fixed, we minimize a
horizontal displacement between end nodes for each edge if
it bridges neighboring layers. Here, we incorporated another
mixed-integer programming formulation byGansner et al.,16
while we again assigned different weights to the edges
according to the types of their end nodes. More specifically,
we assigned relatively larger weights for edges having dummy
end nodes so that we can strictly penalize the horizontal
displacements of those edges. This effectively allows us to
align edges that bridge two dummy nodes as vertical as
possible while minimizing their intersections with other
edges of the same type, which helps us enhance our rendering
style as described later. Additionally, so as to allow users
to effectively explore a specific path in the networks, we
newly incorporated constraints that keep the selected path,
which is colored in red, as straight as possible, byminimizing
horizontal displacements of edges along the path as shown in
Fig. 6(f).

Edge Concentration Based on Node Clusters
Grouping nodes into clusters at each layer permits us to
enhance the visual readability of the network by reducing
the number of node primitives such as single nodes and node
clusters, while it also incurs a different type of visual clutter
arising from high degree of such node primitives. Thus, we
newly invented rendering styles for the node clusters and
their associated edges using edge concentration techniques
(e.g. Ref. 26).
Rendering Node Clusters. As described earlier, we apply
hierarchical clustering to the nodes at each layer by taking

advantage of the Jaccard coefficient, so as to group similar
nodes into clusters. We reflect the node clustering results
into our representation of the hierarchical network. Suppose
we have a hierarchical network as shown in Figure 8(a). In
this case, we actually draw each node cluster as a region that
encloses the associated nodes as shown in Fig. 8(b). Recall
that the number of node clusters at each layer can be adjusted
by vertically sliding the similarity threshold bar with our
interface as shown on the left of Fig. 8(b).

Rendering Concentrated Edges. Once we enclosed node
clusters by green regions, we draw each traversal path passing
through the node primitives. However, in this process, we
just draw a single edge if two node primitives at adjacent
levels share multiple edges. Fig. 8(c) shows such an example
where multiple edges between two node primitives are
concentrated in a single edge. Our aforementioned clustering
policy decomposes the edge crossing problem into cluster
ordering problems together with node ordering problems.
Based on this strategy, we can effectively reduce the number
of edges and crossings by further incorporating the edge
concentration technique.26 In our implementation, a greedy
algorithm has been incorporated for finding complete
bipartite subgraphs, i.e., biclique covers, in order tomaximally
reduce the number of edges in the hierarchical network
layout. You can find an example of a biclique within a red
rectangle in Fig. 8(c), which will be bundled by the cross
mark icon node around the midpoints of the edges as shown
in Fig. 8(d). Note that this edge concentration process is
performed independently for each pair of two adjacent layers.

Although this network representation maximally avoids
visual clutter arising from the edge crossings and overlaps,
it is too simplified to explore the details of the associated
network flows. In our implementation, we also prepared an
option to associate a visual metaphor that offers a symbolic
representation on how each node in the cluster is connected
with adjacent node clusters, as shown in yellow in Fig. 8(e).
In practice, in Fig. 8(e), we draw red edges from the nodes
G, H , and I to the right yellow node at the top of the cluster,
since they originally have connections with the right cluster
(containing L, F , and M) at the upper layer, while only one
edge to the left yellow node fromG only becauseH and I has
no connections with the left cluster (containing N and E) at
the upper layer.
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(a) (b)

(c) (d)

Figure 9. Designing curricula in the department of computer science. (a) Network layout obtained using the conventional spring-based method. (b)
Hierarchical layout with we = 100, wr = 100, and wd = 1. (c) Hierarchical layout with we = 100, wr = 150, and wd = 1. (d) Additional constraints
are imposed for equalizing the number of credits at the respective layers.

RESULTS ANDDISCUSSION
This section provides implementation details, experimental
results, and discussion on limitations of this approach.

Implementation Details
For demonstrating the feasibility of our approach, we have
developed a visualization system that infers the underlying
consistent hierarchies of the given network data. Note that
our system has been implemented on a desktop PC with
Quad-Core Intel Xeon CPUs (3.7 GHz, 10 MB cache) and
12 GB RAM, and the source code was written in C++
using OpenGL for drawing network hierarchies, OpenCV
for handling images, IBM ILOG CPLEX for solving MIP
optimization problems. To explicitly clarify the direction of
network flow, we followed the design principles collected
by Ware,36 where we incorporated the gradient color from
yellow to purple for guiding the flow direction. Moreover,
we assigned different depth values to the network edges
according to the types of their end nodes, so that we can
effectively hide edges associated with dummy nodes behind
other types of edges. We also introduced halo effects37 to
our rendering style for further visual clarity, and maximally
aligned dummy edges as vertical as possible to reduce their
visual conflict with other types of edges spanned by regular
end nodes.

Application Examples
Here we demonstrate three application examples, course
dependency in a school curriculum, accessibility zones of
metro networks, and communications over peer-to-peer
(P2P) networks. The first case illustrates howwe can visualize
network hierarchies by investigating one-way ordering paths,
while the last two cases are more involved in the sense that

Table I. Computation times (in seconds) at steps of inferring hierarchical layers (layer),
minimizing visual clutter (cross), and optimizing node spacings (space). #{N }, #{E }, and
#{P } are the numbers of nodes, edges, and paths, respectively.

Example Layer Cross Space #{N}/#{E}/#{P}

Fig. 1(b) 2.65 10.72 0.01 61/136/156
Fig. 10(a) 12.68 0.11 0.00 151/160/31
Fig. 11 36.99 2.57 0.01 116/306/525

we have to infer the network hierarchies from round-trip
paths on the assumption that the majority of the paths
are valley-free. Note that we set we = 100, wr = 150, and
wd = 1 in Eq. (8) and choose the number of layers N to be
sufficiently large unless specifically stated otherwise. Table I
shows computation times for optimizing the network layouts,
where we employed node clustering only in the last case on
P2P networks.

Course Dependency in School Curriculum. Dependency
relationships among courses in the university curriculum
lead to a typical network example, from which we can
infer consistent hierarchical structures using the proposed
approach. Suppose that we are currently designing the
hierarchy of courses in a computer science 6-semester
curriculum,where we expect to take as input a set of students’
course completion records. Figure 9(a) shows the network of
course nodes arranged using the conventional force-directed
algorithm, while from this layout, unfortunately, we cannot
retrieve any meaningful structures hidden behind the
dependency among courses intuitively. By taking advantage
of our formulations described in ExtractingHierarchies from
One-way Paths, we can design the hierarchy of courses. We
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(c)

Figure 10. Tokyo metro network. (a) Layered representation of the Tokyo metro network where interchange stations are annotated with ‘‘T ’’. (b) Accessibility
zones deduced from the hierarchy of the metro network, where downtown areas are rendered in brighter colors. (c) Visualization with node clusters and
contracted edges.

first employ the weight assignment we = 100, wr = 100, and
wd = 1 to design the curriculum as exhibited in Fig. 9(b).
By increasing wr to 150, we can allow more courses to be
included in the individual semesters (i.e., semesters) as given
in Fig. 9(c).

We can also maximally equalize the number of course
credits students can take in each semester. Let us denote the
number of credits approved for the jth course by sj. We also
define the binary value τi,j so that τi,j = 1 if the jth course is
scheduled at the ith hierarchical level; otherwise τi,j = 0. This
setup makes it possible to count the total number of credits
available for the ith hierarchical level as Si, which can be given
by:

Si =
∑
j
sjτi,j,

N−1∑
i
τi,j = 1, and

N−1∑
i

i · τi,j = l(pj).

(14)
If we constrain the number of credits so that it decreases as
the hierarchical level goes higher by applying Si+1 − Si ≥ 0
(0 ≤ i ≤ N − 2), we can obtain the revised layout of the
courses as demonstrated in Fig. 9(d), where the sums of

credits are 14, 16, 17, 17, 17, and 17 as the layer ID increases
(from top to bottom).

Accessibility Zones of Metro Networks.As the first application
example of handling round-trip paths, we employed metro
lines running in the Tokyo area and tried to infer the
underlying accessibility zones from the city center. This is
made possible by assuming that every metro line in Tokyo
leaves a station in the suburb, runs throughout the center
of Tokyo, and finally reaches another station in the suburb.
Figure 10(b) shows the Tokyometro map, where 225 stations
are connected by 13 metro lines.

In our experiment, we tried to infer the accessibility
zones of stations by taking as input all the 13 metro lines
as round-trip paths. Fig. 10(a) presents an optimized layout
where we finally obtained 28 hierarchical layers due to the
effect of Eq. (7), where we employed the default setting
of weights we = 100, wr = 150, and wd = 1 in Eq. (8)
to discriminate between station zones. Note that nodes
annotated with ‘‘T ’’ correspond to interchange stations at
which two or more metro lines meet. We also rendered
the background of the Tokyo metro map in Fig. 10(b) by
classifying the inferred layer IDs into six groups, in order
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to visualize accessibility zones from the city center. Here, we
assign a different color to the Voronoi cell of each station
according to its corresponding zone, where brighter colors
are assigned to stations closer to the center.

We asked an expert in cartography to evaluate this
visualization result. He found this zone partitioning inter-
esting in that we can intuitively identify hub stations in the
metro network. He also suggested that the result will serve
as a basis for planning new public transportation service,
and can be further augmented by incorporating statistics
on the numbers of passengers along the lines. Fig. 10(c)
shows the result with our visualizationwith node clusters and
contracted edges, and allows users to trace the paths more
easily.

Peer-to-Peer (P2P) Networks.As the last application example,
we tackle the visualization of P2P networks by inferring the
underlying hierarchical layers from communication paths,
which was obtained through the measurement method in
Ref. 38. In this example, we assume that almost all the
available communication routes are non-valley round-trip
paths,1,3,33 in the sense that each path starts from some end
node to ascend through theAS hierarchy and then descend to
reach another end node, while having a single turning point
with respect to the hierarchical layer. Fig. 1(b) exemplifies an
optimal layout of a relatively small-sized P2P network from
round-trip communication paths.Note that, in this figure, we
always annotate end nodes by icons of computer monitors,
while other intermediate nodes by those of server PCs.

In the same way, we can infer the hierarchical structure
of another medium-sized P2P network as shown in Fig-
ure 11(a). Here, we try to sophisticate the network layout
by seeking suggestions from domain experts. First, we tried
to adjust the overall shape of the network hierarchy to look
like a pyramid. This can be accomplished by penalizing the
network nodes at the higher layers by incorporating a new
cost term as follows:

Cl =
n−1∑
i=0

(N − l(pi)), (15)

where N represents the predefined number of hierarchical
layers as described earlier. Domain experts also suggested a
common principle that network nodes at higher hierarchical
layers are more likely to have a larger number of connections
with other nodes. This suggestion enables us to formulate an
additional cost term as follows:

Cg =
n−1∑
i=0

deg(pi) · l(pi), (16)

so that we can penalize nodes having more incident edges if
they stay in lower hierarchical layers. Note here that deg (pi)
represents the degree of the ith node in the P2P network. By
employing the new combination of cost terms:

E =weCe+wrCr +wdCd +wlCl +wgCg , (17)

Table II. Comparison of crossing number and computation times (in seconds) at steps
of node ordering optimization by us, Gansner et al.,16 and Gange et al.,24 while the
formulation provided by Gange et al. cannot solve the problem in a reasonable time.

Examples Ours Gansner et al. Gange et al.
Cross Time Cross Time Cross Time

Fig. 1(b) 1129 10.73 1267 0.01 N/A N/A
Fig. 10(a) 3 0.041 86 0.01 41 4.53
Fig. 11 7445 2.57 6292 0.01 N/A N/A

where we = 102, wr = 104, wd = 1, wl = 10, and wg = 2, we
can rearrange the network layouts as shown in Fig. 11(b).

Another visualization example of concentrated a large-
sized P2P network is demonstrated in Fig. 11(c), where
we can still identify global trends of data communication
among end nodes as a set of non-valley routes over the
network. Fig. 11(c) shows our final result with node clusters
and contracted edges. We also applied the node ordering
algorithm by Gange et al.24 and Gansner et al.16 to the same
dependency data, and the result is summarized in Table II.

Discussions
In the previous subsections, we detailed the algorithm and
demonstrated several application results of our approach. In
this subsection, we provide side-by-side comparison showing
how the choice of path and topological structures will
affect the visualization results. To provide some intuition
on the relationship between the hierarchy of a graph
and its topological connectivity, we compared our inferred
hierarchy of the respective node with its accumulated
geodesic distances over the graph.39 Figure 12 provides
comparison between the hierarchical levels and accumulated
geodesic distance at the respective nodes over the P2P
network that is the same as that in Fig. 11. Note that
the corresponding color legend in the figure indicates the
hierarchical layer and accumulated geodesic distance at each
node, respectively. The comparison suggests that the nodes
at the top hierarchical layer, which are colored in red, are
relatively far away from the geodesic center of the network
in this specific case of the P2P network. This implies that the
dominant nodes in the network hierarchy can be different
from those for the ordering of distances from its topological
center.

Besides path information, difference in the topology of
the network also influences on the inferred hierarchy in the
generated visualization. For this purpose, typical network
structures were investigated using the proposed approach.
Figure 13 demonstrates the results on several representative
topological structures, including a (16, 5)-banana tree, a
small-world network, a scale-free network, and a random
network. To generate a set of traversal paths, we randomly
select the starting node of the individual path and recursively
perform a random walk on non-visited incident edges under
certain probability until all edges are covered. Note that
these four networks have the same number of nodes for
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(a) (b) (c)

(d)

Figure 11. Visualizing hierarchical structures of P2P networks using our approach. (a) Clusters distributed at each hierarchical layout. (b) Cluster connectivity
graph. (c) Optimized layout of another relatively large-sized P2P network.

(a) (b)

Figure 12. Comparison between the (a) hierarchical levels obtained
using our approach and accumulated geodesic distances at the respective
nodes of the P2P network.

the comparison. Moreover, the color of the network node
in the figure ranges from red to purple according to the
corresponding hierarchical level, and the number indicates
the ID assigned to each node cluster.

In the case of the (16, 5)-banana tree in Fig. 13(a)
and (b), top layer nodes, colored in red, are very close to
the topological center. Simultaneously, nodes with the same
cluster ID aremore likely to share their parent at the adjacent
layer due to the similarity based on the Jaccard coefficient.
Basically, the same can be applied to the small-world network
in Fig. 13(c) and (d), while more number of conflicts among
the paths were resolved since the networks cycles this time,
which increases the number of nodes at intermediate layers
as a result. The scale-free network in Fig. 13(e) and (f), on
the other hand, produces more complicated hierarchy where
high-degree nodes stay around high layers, while nodes

with low degree again share the same cluster if they are
connected to the same adjacent node. Finally, the random
graph again produced a complicated hierarchy while it has
a relatively large number of nodes at the intermediate layers
since it contains more conflicts among traversal paths over
the network as shown in Fig. 13(g)–(h). Of course, the
resulting network hierarchy strongly depends on the given set
of parts over the network while the topology of the network
also influences on the appearance of the network hierarchy
to a certain extent.

The scalability of the proposed approach is primarily
limited by the number of dependency relationships between
pairs of nodes in the network. A naive approach for
clustering the network nodes may alleviate the problem by
simplifying the network complexity, although at the risk of
overlooking important local dependencies among network
nodes. Another possibility suggested by our experiments is
that we first spare a sufficient number of hierarchical layers
N in our optimization, and then merge multiple layers into
one according to the given requirements later. Indeed, this
considerably accelerates the overall computation because we
can maximally avoid penalizing inconsistency in the partial
ordering of nodes along each path, while a new algorithm
for fitting the entire network hierarchy to a smaller number
of layers remains to be carefully formulated. Another option
is to permit feasible solutions as well as fully optimal ones
in the mixed-integer programming optimization, especially
when we are forced to optimize a large network layout
within a certain period of time. Prior knowledge obtained
from domain experts can also allow us to sophisticate the
formulations of constraints and objective functions, and thus
further accelerate the computation, which is again left as
future work.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13. Networks with different topological shapes. This includes (a) a banana tree with #{N} = 81, #{E } = 80, and #{P } = 45, (c) a small-world
network with #{N} = 81, #{E } = 81, and #{P } = 43, (e) a scale-free network with #{N} = 81, #{E } = 170, and #{P } = 72, and (g) a random graph
with #{V } = 81, #{E } = 183, #{P } = 70.

CONCLUSION
This article has presented an approach to inferring network
hierarchies from available dependency relationships among
nodes. Our algorithm can calculate consistent hierarchical
structures hidden behind the input network even from
possibly inconsistent orders of nodes, both from one-way

and round-trip paths. The contribution of this article lies in
the formation of constrained optimization for inferring such
consistent hierarchies in the network, by taking advantage
of the mixed-integer programming formulation. Visual
clutter arising from the network layouts has been further
suppressed by rearranging the horizontal order of nodes at
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each hierarchical layer. We tested our proposed formulations
on three application examples, which demonstrated the
robustness of our approach against various types of networks.

Incorporating further improvements in terms of scala-
bility is still an important theme for future research. Semantic
reasoning of the network hierarchies also helps us devise
new formulations of constraints and objective functions for
better clarifying the underlying hierarchies in the network.
More aesthetic rendering styles will enhance our visual
understanding of hierarchical structures irrespective of the
complexity of the network.
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