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Abstract. Storytelling animation has a great potential to be widely
adopted by domain scientists for exploring trends in scientific
simulations. However, due to the dynamic nature and generation
methods of animations, serious concerns have been raised
regarding their effectiveness for analytical tasks. This has led
to interactive techniques often being favored over animations, as
they provide the user with complete control over the visualization.
This trend in scientific visualization design has not yet considered
newer algorithmic animation generation methods that are driven by
the automatic analysis of data features and storytelling techniques.
In this work, the authors performed an experiment which compares
feature-driven storytelling animations to common interactive
visualization techniques for time-varying scientific simulations. They
discuss the design of the experiment, including tasks for storm-surge
analysis that are representative of common scientific visualization
projects. Their results illustrate the relative advantages of both
feature-driven storytelling animations and interactive visualizations,
which may provide useful design guidelines for future storytelling
and scientific visualization techniques. c© 2016 Society for Imaging
Science and Technology.

INTRODUCTION
Animation is widely used to show trends in many data-
intensive applications. It also remains one of the most
popular choices for end users, since it is a natural and
attractive way to represent dynamic events. When studying
time-varying simulation data, domain scientists often use
animations to visualize temporal events. In fact, animation
has become an essential part of many scientists’ workflow for
analyzing simulations.

Despite its widespread use with domain scientists,
animation has never been a dominant or even popular
approach in the scientific visualization community. Part
of the reason for this trend is that animations are often
simplistically generated by connecting snapshots from in-
dividual time steps, which does not meet the requirements
of challenging research tasks. Another reason is that
while several methods have been developed for generating
animations for visualization, including user-driven editing
systems1 and automatic animation approaches,2–4 complex
animations have not been sufficiently evaluated with domain
users or compared to interactive approaches.

Received July 4, 2016; accepted for publicationNov. 5, 2016; published online
Dec. 7, 2016. Associate Editor: Thomas Wishgoll.

Research in visualization has also raised concerns
regarding the effectiveness of animation. A number of
studies have been performed to evaluate the effectiveness of
animation in different research fields, such as information
visualization,5–7 graph visualization,8–10 medical visual-
ization,11 hierarchical diagram differencing,12 and visual
tracking.9 The results from these studies are mixed. While
some researchers have found animation to be effective
in visualizations,5,11 others have concluded that alternate
methods such as small multiples should be used for analysis
tasks, regardless of the fact that animation is widespread
and engaging.6,13 The main concern is whether animation
facilitates accurate perception of changes in the data14 and
supports iterative analysis.6

To explore the gap between the popularity of animation
and concerns about its fitness for scientific analysis, we
designed an experiment to evaluate the performance of
feature-driven animation and interactive systems. Two
systems are described in the study design, one using
feature-driven storytelling animations and the other using
common interaction techniques. We describe an implemen-
tation of feature-driven animation designed to satisfy general
requirements for analyzing time-varying data visualization.
The experiment uses two similar hurricane/storm-surge
datasets and a corresponding set of tasks. The tasks are
designed to represent common studies users perform in
scientific visualization: examining event representation, data
exploration, and reasoning about relationships between
underlying data features.

Our results suggest that feature-driven storytelling
animations may consistently lead to more timely results,
and have comparable accuracy to interactive visualization
across a variety of tasks common to scientific visualization.
Given the scope of the study, we view our results as an
indication that feature-driven animation can and should play
a larger role in scientific visualization design, particularly as
a mechanism for providing an overview and amoderate level
of detail for the dominant features in time-varying scientific
simulations. Although this study is based on an application of
time-varying visualization (storm-surge analysis), the design
of our study, including both the feature-driven animation
approach and selection of visualization tasks, can be applied
to other scientific visualization domains.

The long-term goal of our study on storytelling anima-
tion is to explore new visualization and interaction mecha-
nisms that suit the changing environments of visualization
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applications, particularly the shorter simulation-to-analysis-
to-simulation cycle of domain scientists and the continual
increases in simulation size and complexity. Animation
will likely remain the dominant method domain scientists
use to explore time-varying simulation data. Therefore,
visualization researchers should focus on studying how users
work with animations and identifying where interaction is
most needed in order to improve visualization design.

The article is organized as follows.We first review related
work on animation, storytelling and narrative visualization,
and evaluation methods in Related Work. Then, we describe
our study design in Study Design and tasks for the user study
in Task.We continue to present the details of the experiment,
evaluation and discussion from the user study in Experiment
and Discussion respectively. At the end, we conclude the
work and present future work in Conclusion and Future
Work.

RELATEDWORK
Animation for Visualization
In scientific visualization, approaches related to anima-
tion have concentrated on creating animations and using
animations to highlight data features.3,15,16 For example,
Gershon17 presented methods for visualizing fuzzy data
in an animation loop. Viola et al.2 presented a method
to focus viewpoints automatically on data features. Akiba
et al.1 presented AniViz to create animations with templates
and operators. Yu et al.4 presented an automatic animation
generation approach for time-varying data visualization.
Animations were also used to visualize vector datasets.18,19

For information visualization, animation approaches
have also been explored. For example, Heer and
Robertson5 developed design guidelines for animated
transitions. Lundström et al.11 used animation to convey
uncertainty in medical visualization. Blumenkrants et al.20
created narrative visualization to study algorithms. Zongker
and Salesin21 proposed and discussed the principles and
guidelines of animation for slideshow presentations. In
general, given the abstract nature of data in information
visualization, animation is seen as effective for presentation
tasks but not for in-depth analytical tasks.

Storytelling and Narrative Visualization
The word ‘‘storytelling’’ has a long history and it has been
introduced to visualization for improving visual commu-
nication.22–25 While the term of narrative visualization is
relatively new,26–29 it also refers to using data stories to
augment visualization as a communication medium.

Narrative structure is a central concept in both story-
telling and narrative visualization. It refers to ‘‘a series of
events, facts, etc., given in order and with the establishing
of connections between them’’ from the Oxford English
Dictionary and it is often simplified to structures like
beginning, middle, and end in visualization systems.26
The studies of narrative visualization have been performed
from several aspects. Segel and Heer26 investigated the
design space of narrative visualization, including the genres,

visual narratives, and narrative structures. Hullman and
Diakopoulos27 demonstrated visualization rhetoric as an
analytical framework for understanding the effects of design
techniques on end-user interpretation. Hullman et al.28 later
conducted a qualitative analysis of 42 professional narrative
visualizations to gain empirical knowledge on the forms
that structure and sequence took. Satyanarayan and Heer29
developed amodel of storytelling abstractions and instantiate
the model in Ellipsis with a graphical interface for story
authoring.

Research of storytelling and narrative visualization
has also been developed and applied to applications on
several fields. Yu et al.4 generated automatic animations
with narrative structures extracted from event graphs for
time-varying scientific visualization. Lee et al.30 presented
a visual data storytelling process with steps involved in
finding insights, turning these insights into a narrative,
and communicating this narrative to an audience. Andrews
and Baber31 designed a branching comic to compare how
readers recall a visual narrative. Pschetz et al.32 developed
TurningPoint to investigate narrative-driven talk planning in
slideware. Spaulding and Faste used studies to prototype and
build immersive design words.33

Evaluation of Animation and Storytelling
A number of studies have been performed to evaluate
the effectiveness of animation. For example, Tversky and
Morrison14 found that animation may be ineffective for
displaying events and it could be too complex and too fast
to be accurately perceived. However, they did acknowledge
that animation supported interactions such as close-ups,
zooming, alternative perspectives and control of speed,
were likely to facilitate perception and comprehension.
Archambault et al.34 performed user study on mental maps
with animation and smallmultiples and concluded that small
multiples performed significantly faster butwithmore errors.

In information visualization, several studies have com-
pared animation with different visualization methods such
as scatterplots7 and dynamic graphs.8,35 For example, Boy
et al.36 conducted experiments on the effectiveness of using
‘‘introductory stories’’ to engage users and found out that
providing a start point of exploration with an initial story did
not affect the user engagement. Heer and Robertson found
that animated transitions significantly improved graphical
perception.5 Robertson et al.6 evaluated the effectiveness
of animation in trend visualization and found that small
comparable visualization was the most effective approach.
They discovered that animation worked well in presentation
tasks but not as good as other techniques for analysis
purposes.

The evaluation work of animation in scientific visual-
ization is rare. Lundström et al.11 employed radiologists in
a study simulating the clinical task of stenosis assessment,
in which they found animation technique outperformed
traditional rendering in terms of assessment accuracy.
Boyandin et al.37 presented a user study analyzing findings
made while exploring changes in spatial interaction with
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Figure 1. The left figure shows the time step indicator—a small triangle shape. The right figure shows that animation is currently in the second of the three
events marked in different colors.

flow maps using animation and small multiples. They found
animation tended to enable more findings related to the
geographically local events and changes between years.

Different from standard animations, our feature-driven
storytelling animations are designed for interactive visualiza-
tion tasks. They can be used to visualize the overall temporal
trends or study the details of specific events. We believe
that for data with meaningful 3D structures like scientific
simulations, storytelling animation techniques can be used
to visualize temporal events effectively. To the best of our
knowledge, no significant work has been done to evaluate
the efficacy and effectiveness of animation in scientific
visualization.

STUDY DESIGN
To provide the necessary background of our study, we
start with a brief introduction of the storytelling animation
technique and application domain used in the study.

Storytelling Guidelines for Animation
For each task, an animation is generated based on the
associated events and features. All the animations used in the
study are generated by following three design guidelines:

• Start with an overview of entire duration
• End with a focused view in relevant time duration
• Include all relevant data attributes in at least one
segment of the animation sequence.

These guidelines are consistent with the procedure of
data exploration that is often followed in the visualization
community. They provide a storytelling feature to the
animations by introducing an event first and visualizing
additional details gradually.

We choose a typical application of scientific visualiza-
tion, hurricane, and storm-surge simulation, to study the
effects of storytelling animation. We follow the method used
in Ref. 4 to generate storytelling animations, which can
be applied to a wide range of hurricane and storm-surge
simulations. This approach characterizes temporal patterns
from different variables and scales in a time-varying
sequence to create an event graph. Based on the animation
design guidelines described above, the event graph is
traversed to determine the sequence of events shown in
the animation. Animations are generated automatically
with changing views and smooth transitions. As shown in
Figure 1, a time indicator is provided to show the current time
step number and a sequence duration bar is provided at the
bottomof the panel to show the remaining time in the current
event. Details of animations for each task in the experiment
are provided in Task.

Specifically, the animation system contains two panels:
a 3D rendering panel and a temporal trend panel, which
are the same as the interactive visualization system. The 3D
rendering panel adopts the same rendering scheme for all
the data attributes and time steps, in the sense that all the
rendering effects are exactly the same. The main difference
is that for the animation system, the 3D rendering panel
displays animation, while for the interactive system, the 3D
rendering panel displays the rendering from a selected time
step. The control panel is disabled for the animation system
to avoid the confusion of different animation effects.

Datasets
Two storm-surge simulation datasets are used in the
experiment: Hurricane Isabel (2003) and Hurricane Irene
(2011). Several features of these two datasets make them
suitable for our study.

First, the two simulation datasets are similar. Both
datasets cover the same region, whose terrain model consists
of more than 260,000 vertexes and 520,000 triangles. They
also contain the same set of four key variables: elevation,
wind vectors, atmospheric pressure, and depth-average
velocity. The number of time steps from the two datasets are
also comparable; Isabel contains 396 time steps and Irene
contains 336. Based on these observations, we expect that
the choice of datasets did not affect the performance of
participants in the user study.

Second, because the two hurricanes not exactly alike,
we can design a set of comparable tasks with different
answers for each dataset. For example, the eye paths of
the two hurricanes differ completely. This means that the
participants will not be able to answer the questions for one
dataset by using the information they acquire from the other
dataset, ensuring that the order of the datasets does not affect
the results of the experiment.

Data Features
To generate animations for the evaluation, the relevant data
features need to be automatically modeled and computed. As
shown in Figure 2, storm-surge simulations provide complex
3D scenarios which simulate the behavior of water elevation
given different hurricane-related parameters. We describe
several data features that are important to our study in the
following.

Back Surge Modeling
Storm surge is an abnormal rise of water generated by a
storm, over and above the predicted astronomical tide. Near
the coast, people are especially concerned about ‘‘back surge,’’
which drives considerable amount of water back to the river
from the ocean and may cause serious flooding. Simply
speaking, the back surge travels in the opposite direction of
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Figure 2. Example visualizations of elevation, wind vector, atmospheric pressure, and velocity parameters.

Figure 3. The two images on the left show example renderings of normal and back surge conditions. The two images on the right provide the modeling
of back surge—one shows the vertexes in the grid and the other shows the elevation changes and tide directions.

normal surges. Back surge is an event that appears frequently
near the North Carolina coast, specifically near the Outer
Banks. It can generally be found after the eye has passed
and the overall water velocity is directly perpendicular to
the hurricane’s direction. Figure 3 provides examples of the
Outer Banks under normal and back surge conditions. We
use the temporal features of water velocity and direction to
model back surge with the following three steps.

First, we extract the boundary of Outer Banks by
selecting vertexes whose heights are close to sea surface
elevation. The water velocity directions at the boundary are
used to indicate the direction of surge. In Fig. 3 (the third
image), the grid of storm-surge model is shown. Second, the
direction of the tides is simulatedwith depth-average velocity
variable. We use these two angles to determine whether the
tides are traveling into land or going out from land. If the
angle between tide direction and the Outer Banks outgoing
direction is smaller than 90◦, we consider it to be water
coming out of the land as back surge; otherwise, water is
coming toward land. Fig. 3 (the fourth image) visualizes the
temporal changes of elevation values on all the boundaries.
Third, we accumulate the depth-average velocity by treating
outgoing directions positive and ingoing directions negative.
The back surge can be identified at the localmaximumpoints
beyond the range of normal water elevations.

Inundation
Inundation is another important feature in the simulation, as
it is crucial to emergency response and evacuation planning.

Figure 4. The inundation area of Isabel (left) and the path of Irene
extracted from simulations (right).

We compute the inundation area by comparing the water
elevation height of a vertex with the height of land. Figure 4
(left) shows the inundation area caused by Hurricane Isabel.

Hurricane path
The hurricane path can be computed by connecting the
centers of hurricane eye from all the time steps. We identify
the hurricane eye through the maximum wind velocity
attribute and smooth the path using a Gaussian function.
Based on the hurricane path we extracted, we further
calculate the speed and locations of hurricane eye along the
path. Fig. 4 (right) shows the extracted path of Irene.
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Figure 5. System interface—temporal trend panel shown at the top and
the control panel shown at the bottom.

Control System: Interactive Visualization
In order to evaluate how users can effectively analyze data
with animations, it is important to describe the supported
interaction techniques and animations and to ensure that
differences in the two compared methods are understood
with regard to the outcome of the study.

The interactive visualization is selected to compare with
animations as it is the most commonly used approach
to study time-varying scientific simulations. The design
of the interactive visualization system also adopts typical
visualization systemswith three panels: a 3D rendering panel,
a temporal trend panel, and a control panel. The last two
panels are shown in Figure 5.

Rendering Panel The 3D rendering panel visualizes
all the involved data attributes from a selected time step.
Standard interactions are provided, including rotation,
zooming in/out, viewpoint selection, selection of time step,
and selection of data attribute such as the examples in
Fig. 2. We only provide these standard interactions to direct
participants to focus on the tasks. We also provide a time
indicator to specify the selected time step.

Temporal Trend Panel The temporal trend panel presents
2D curves of data fluctuations. This panel is included in the
system to plot different variables of storm-surge simulations.
The temporal trend curves are updated automatically
according to the tasks. For example, for the task of visualizing
surges, the curve of averagewater elevation is displayed in the
temporal trend panel.

Control Panel The control panel is for selecting data
attributes, time steps, and reset 3D view. Our interactive
visualization system only enables relevant data attributes for
each task to direct the focus of participants on the same set
of data attributes.

Figure 6. Task 1—Left: An example of participant’s answer on a map
of the Outer Banks. Right: Overlapped image of ground truth image
with participant’s answer. This image was then used to compute a pixel
difference between the correct and participant’s answers.

TASKS
Our user study consists of three categories of tasks,
including representation, exploration, and reasoning tasks,
which are problems that users frequently encounter in
scientific visualization. Each category contains two tasks. The
categories are designed and presented in increasing difficulty
during the user study. In the following, we describe each task
in detail and how the storytelling animations are generated
to support the tasks.

Category 1—Representation
One important usage of visualization is to facilitate the
accurate representation (and subsequent perception) of
features in the data.6 The purpose of these tasks is to examine
how well participants understand data features from the
storytelling animation or interactive visualization.

Task 1: The instruction to the participants for this task
is: ‘‘Use the interactive visualization system or animation to
visualize the hurricane, and draw the path of the hurricane
on the map manually.’’ As shown in Figure 6, the subjects
are provided with a map on an A4 paper. They can mark
locations of the hurricane eye at different time steps and
connect them as a line. The participant’s answer is further
compared with the ground truth shown as the red line for
evaluating accuracy.

The storytelling animation was designed to use the tem-
poral trend panel to show two main attributes: atmospheric
pressure and wind strength, as they were the most relevant
factors related to this task. The animation consisted of two
phases. Each phase displayed the hurricane wind strength
and atmospheric pressure with a bird’s-eye view of the entire
grid of the entire time duration respectively.

Task 2: The instruction to the participants is: ‘‘Use the
interactive visualization system or animation to examine the
inundation areas, and mark all the inundation areas within a
blue circle.’’

The storytelling animation was designed to use the
control panel to show the water elevation, as it was the only
attribute related to this task. The average of elevation of
every time step was shown in the temporal trend panel. The
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animation of inundation along North Carolina was shown
in three phases. We start with an overview of the North
Carolina coast through the entire time duration. The second
phase showed a more focused view on areas around Outer
Banks: the Pamlico and Albemarle Sound. The last phase
displayed a view on North Carolina coast after the surges.
The participants were asked to report the storm-surge time
duration and where the highest possibilities of inundations
were.

Category 2—Exploration
This category focuses on analyzing data with storytelling
animation and interactive visualization. Participants are
asked to explore the data to determine whether certain
features or events existed in the simulation. In addition, the
participants are asked to explore the relationships between
different variables, such as wind vectors and elevations.

Task 3: The instruction to the participants for this task
is: ‘‘Did you find back surge during the storm surge? If yes,
write down the starting time step and ending time step of
the back surge, and mark where back surge appeared on the
map.’’ In this task, the participants were given the definition
of back surge and the average value of elevation of every time
step was displayed. Participants were asked to find specific
time steps and locations of the beginning and ending of back
surges. Two sample answers from participants were shown in
Figure 8.

The storytelling animation was designed to contain
three phases: the first showed an overview of the North
Carolina coast for the entire time duration; the second
phase used a focused view around the back surge area
detected by our algorithm and displayed velocity vectors
along with elevation surfaces; the last phase showed the
elevation changes after the hurricane passed through the
coastal area.

Task 4: The instruction to the participants for this task is:
‘‘Describe the relationships (location, strength, and height)
between the hurricane eye and the highest elevation.’’

In this task, the participants were asked to identify
and explain relationships between wind vectors and water
elevations. The wind vectors clearly showed the hurricane
eye and eye wall and the elevation surface showed when and
where the ocean level changed. Two sample answers from the
participants of this task were shown in Figure 9. Temporal
curves of elevation and atmospheric pressure changes were
displayed as hints to the participants. The interactive system
enabled participants to explore elevation surface and wind
vectors.

The storytelling animation was designed to use two
phases to describe this event. First, the elevation and wind
direction were rendered using a focused view on North
Carolina coast. The secondwas a dynamic view following the
hurricane eye to observe the wind in the second phase.

Category 3—Reasoning
In this category, the participants examined low level details
to determine various relationships for certain locations

in the simulation. We focused on if and how fast the
participants could identify reasons for different patterns of
two locations during the hurricane. The overall changes of
relevant variables in the detailed area were also shown to the
participants.

Task 5: The two locations were NOAA water level
observation stations on the Outer Banks. One is Oregon
Marina Inlet, the other is Beaufort. The vertexes around these
two areas were extracted and the overall changes of water
level were shown to the participants. An overview of how
the hurricane traveled was presented to the participants and
then the relevant variables during the storm-surge time were
displayed. The instruction to the participants for this task is:
‘‘Why are the elevation and pressure changes different from
each other for those two locations?’’

Figure 10 showed the locations of observation stations
on Outer Banks and the temporal trends of two different
attributes. The storytelling animationwas designed to display
a focused view of these two locations rendering relevant
variables with the locations highlighted. The animation
duration included overall changes followed by changes
during the storm-surge time period using three phases. The
first phase displayed the overall changes over the entire time
period. The second phase showed the elevation with velocity
vectors to help participants find the reason for the differences
in the elevation curves. The last phase displayed the wind
vectors with atmospheric pressure to help participant inspect
the pressure changes.

Task 6 : There are two canals in North Carolina which
could be dramatically affected by storm surge. One was
the Pungo River Canal; the other was Adam Creek Canal.
The two canals were impacted differently in the hurricane
datasets because of their relative locations to the hurricane
path. The vertexes around these two areas were extracted
and the overall changes of these vertexes were shown to
the participants. The participants were asked to explain the
reason why the two canals were affected differently during
the storm surge. The instruction to the participants for this
task is: ‘‘Why does the Pungo River Canal and Adam Creek
Canal have different changes in elevation?’’

Figure 11 showed the locations of the two canals in
North Carolina and the temporal trends of two different
attributes. The storytelling animation was designed to show
an overview of changes during the entire time duration,
changes of elevation surfaces, and elevation and water
velocity of each location during the surge time duration with
a closer view.

EXPERIMENT
Using the previously described tasks, we conducted an in-lab
controlled experiment to compare our two visualization
systems for time-varying data visualization: feature-driven
animated visualization and interactive visualization.

Participants
Participants consisted of undergraduate and graduate stu-
dents from the Computer Science department. There were
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Table I. Average time (seconds) spent on one task and accuracy of animation (A) and
interaction (I) systems of each participant (P).

P A Time I Time A Acc I Acc

1 114.5 340.17 52.44 58.15
2 86.67 144.67 44.55 30.38
3 91.17 276.17 38.26 32.56
4 224.33 185.83 52.12 74.42
5 189.33 422 42.01 55.26
6 160.33 214.33 59.29 51.53
7 130.33 221.33 51.07 38.04
8 311.67 237.17 51.08 69.47
9 124.5 301.33 57.33 56.35
10 266.17 172 90.41 79.62
11 185.83 337.83 81.26 55.01
12 167 191.5 53.44 65.23

12 participants (10 male, 2 female) with an average age of
26.5 and standard deviation of 2.94 (maximum29,minimum
19). Estimated total participation time (training, tasks, and
debriefing) was 45 minutes. During the tasks, participants
were asked to work as quickly and accurately as possible.
However, due to the complexity of the tasks, no strict time
limit was given.

Procedure
A training session was provided before the tasks. In training,
example snapshots of each variable and a demo animation
were shown. Each participant was also given several minutes
to learn the interactions for the animation and control
systems.

Each of the six tasks contained two sections: one with
the animation and the other with the interactive system.
The order of the two datasets was randomly chosen at the
beginning of the participant’s session, and it was alternated
between interaction/animation sections. Furthermore, the
order of systems presented (animated/interactive) was ran-
domly chosen. Although no task was dependent on another,
each participant completed them in the same order (tasks
1–6) for consistency.

The same procedure was used for administering each
task. First, participants were given time to read the task and
questions were encouraged before starting the task.

During the animation section, participants watched the
animation repeatedly (with pause, fast-forward, and rewind
controls) until they completed the task. For the interactive
section, participants utilized the provided controls to explore
different views and variables in order to complete the tasks.
To better compare the systems, data variables that were not
directly relevant to the task were disabled in the interactive
sections.

All experiments were conducted in the same room
and on the same machine (resolution 1920× 1280). Upon
completing a section, participants were given answer sheets
to record their results before moving to the next task.

Table II. Task completion time (in seconds) and standard error.

Task A (M) I (M) A (SD) I (SD) p

All 170.99 257.36 102.21 127.62 5.04E−06

1 94.75 190.92 55.57 63.14 0.0025
2 171.17 238.5 124.32 112.16 0.1056
3 162.83 218.92 80.84 110.34 0.1058
4 168.67 279.83 135.23 154.14 0.0489
5 222.83 321.58 91.01 152.64 0.0407
6 205.67 294.42 71.52 126.33 0.0095

Results
Our study adheres to a within-subjects design, since partici-
pants completed the same tasks with both the animation and
interactive systems. We use paired t-test38 throughout this
section to compare values across tasks, as it is commonly used
to compare two population means when they are correlated
(the samples are the matched pairs in our study).

The average data for all participants is included in
Table I. We divide our analysis into two parts: completion
time and accuracy. The implications of the results are
explored further in the discussion.

Completion Time
This study includes 144 completion times, 2 for each
of the 6 tasks (one for animation, one for interaction)
and 12 participants. A strong significant effect is found
for completion time with p-value 5.04E−06, indicating
that animation tasks are being completed more quickly
than interaction tasks (M = 170.99, SD = 102.21 and
M = 257.36, SD = 127.62, respectively). This result sup-
ports our hypothesis that animation supports more timely
performance than interactive visualizations.

Table II shows the average completion time, standard
deviation, and t-test results of each task. The t-test results
show significant differences in overall completion time and
for tasks 1, 4, 5, and 6.While the average completion times for
tasks 2 and 3 are still lower for animation than the interactive
system, the differences are not significant (see Table II).
Figure 12 shows the average completion times and standard
error for each of the tasks.

The average completion time for tasks using the Isabel
dataset is 3 minutes and 31 seconds, while for Irene it was
3 minutes and 39 seconds. The closeness of these values
indicates that our results were not affected by using different
datasets.

The average completion time for each task category
(representation, exploration, and reasoning) is 176, 207, and
262 seconds, respectively. These results are consistent with
the difficulty of each category.

Accuracy
We describe how we scored each task before presenting the
analysis of task accuracy.
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Figure 7. Task 2—two examples of participants’ answers. Among each pair, the left image shows the answer of the participant, and the right image is
our processed result with the participant answers painted black. These images were then compared with the ground truth image.

Figure 8. Task 3—example answers from participants. Participants
marked back surge area and wrote down the time duration.

Representation (1 & 2): Since both tasks in this category
require participants to draw answers manually, we use the
following pixel-based method to compare their answers with
the ground truth. For task 1, 20 points are evenly sampled
along the path of ground truth. Then, for each of the 20
points, we search for the closest point from the participant’s
drawing. The sum of the distances between all the point pairs
gives a quantitative result for task 1. For task 2, we compare
the areas (number of pixels) fromparticipant answers and the
ground truth. The ground truth and a sample answer for task
2 is shown in Figure 7.

Exploration (3 & 4): The grading for task 3 is achieved
as follows: for each of the answers on the starting time step,
the ending time step, and location, credits are weighted as
33%. We allowed a ±5 time step differences in answering
time step values. The answers for task 4 were that there
were several different phases of the relationship between the
highest elevation and hurricane, such as highest elevation

Figure 9. Task 4—Example answers from participants. Participants draw
a red line to indicate the hurricane path and wrote down the answers. The
first answer was: ‘‘The fore front shore: Highest elevation a little ahead
of the hurricane eye. The middle shore: Highest elevation along with
the hurricane eye. The back shore: Highest elevation a little behind the
hurricane eye.’’ The second answer was: ‘‘Highest elevation is at 250
ahead of the hurricane eye. Some places reduces its climax, a little after
the hurricane eye passed at 290.’’

appeared both before and after the hurricane eye along the
path. We gave partial credits to each correct description.

Reasoning (5&6):Both tasks 5 and 6 require participants
to describe differences in the apparent impact of the
hurricane on variables such as water elevation or pressure
in two areas. Correct answers described the relative position
of the hurricane eye, as well as the time when the hurricane
passed.
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(a) (c)

(b)

Task 5

Elevation

Atmospheric pressure

Figure 10. Task 5: (a) The two locations in task 5 on the Outer Banks, marked with numbers and in red or blue box. (b) and (c) show the temporal trends
of elevation changes and atmospheric pressure of these two locations.

(a)

(b)

Task 6

(c)
Elevation

Water velocity

Figure 11. Task 6: (a) The locations of the two canals in task 6, marked with numbers and in red or blue box. (b) and (c) show the temporal trends of
water velocities and elevation changes of these two locations.

Task 5 required the participants to figure out two
features of the hurricanes. The first feature is that one
storm passed both locations. The second feature is that the
hurricane eye is closer to one location than the other which
causes the effects of different pressure. For scoring, 50 points
were removed for each error.

Task 6 asked for two features: one that one storm created
big splats on one canal and the other is that two canals
are laying at different directions. Each of the reasons were
credited 50 points.

The accuracy study includes 144 scores, 2 for each of
the 6 tasks (one for animation, one for interaction) and
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Figure 12. Task completion time and standard errors.

Table III. Task accuracy and standard deviation.

Task A (M) I (M) A (SD) I (SD) p

All 56.10 55.50 34.01 34.96 0.43
1 80.07 84.07 17.61 17.68 0.3381
2 63.97 61.86 9.40 6.97 0.3025
3 60.75 52.5 29.94 34.58 0.2479
4 52.67 51.25 39.00 41.62 0.3961
5 58.33 62.5 27.64 29.76 0.3371
6 20.83 20.83 37.96 32.00 0.5

12 participants. No significant effect was found for overall
accuracy (p-value 0.43) with animation and interaction
having similar scores (M = 56.10, SD = 34.01 and M =
55.50, SD = 34.96, respectively). This result does not sup-
port our hypothesis that interactive visualization supports
more accurate performance than animated visualizations.

Table III shows the average accuracy, standard deviation,
and t-test results of each task. The t-test results show no
significant differences at neither the overall nor the task level.
Figure 13 shows the average accuracy scores and standard
error bars for each of the tasks.

The average accuracy for tasks using the Isabel dataset
was 52.87%, while for Irene it was 58.74%. Similar to the
completion time, the accuracy results indicate that our study
was not affected by using different datasets.

The average accuracy for each task category (represen-
tation, exploration, and reasoning) was 72.49%, 54.29%, and
40.63%, respectively. These results are also consistent with
the difficulty of each category.

DISCUSSION
This section reviews the results of our experiment and
touches on some fundamental questions about the role of
animation and interaction in visualization.

We hypothesized that interaction would lead to more
accurate results on Exploration and Reasoning tasks, and the
feature-driven animation would lead to more timely results.
While we did find that feature-driven animation consistently

Figure 13. Task accuracy and standard error bars.

led to faster results (p < 0.001), the accuracy between
the animation and interactive systems was comparable
(p> 0.05).

The similarity in accuracy does not indicate that
animation can simply be substituted for interaction. Instead,
it indicates that for several tasks in which interaction is
commonly used, feature-driven animation may support the
user equally well. In addition, the experiment required the
exploration and reasoning tasks to be well defined, and it
is likely that tasks which are less defined will benefit from
interactive capabilities.

Tasks using the animation system were completed faster
than those using the interactive system. This effect held
regardless of whether animation or interaction was first
used on the task, since the order of the systems presented
was random. Since accuracy between the systems was
comparable, this supports our contention that feature-driven
animation can and should play a larger role in the design of
scientific visualizations.

Similar to the previous studies of animation, users
often described animation as fun and engaging. This is
important to visualization for directing user attention and
designing effective analysis approaches. Particularly for
time-varying data research, where temporal changes are
pervasive, animation remains a natural way to represent and
analyze the characteristics of data changes across time.

Identifying suitable ways to generate animations and
incorporating animation into the interactive exploration
process should prove valuable for time-varying data visual-
ization. While many feature-driven approaches for scientific
visualization have been developed, the problem of how to
incorporate domain knowledge and advanced computing
models is still open. Finally, beyond our basic design of
feature-driven animation, additional storytelling techniques
should be studied to explore methods for generating
animations that is yet more intuitive for users to interpret.

CONCLUSION AND FUTUREWORK
This article presents an experiment to compare feature-
driven storytelling animations to interactive visualization
for studying time-varying 3D simulations. Two systems
are compared using three categories of visualization tasks,

108
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017



including simple representation, exploration, and reasoning
tasks. The results of experiment show that feature-driven
animations consistently led to more timely results with
comparable accuracy to the interactive system. Since inter-
active visualization has been the dominant approach used in
scientific visualization, the results highlight the promise of
feature-driven animation for future design.

In the future, we plan to conduct an experiment with
students and faculty from our Meteorology Department
to explore the differences in animation and interactive
visualization for participants who have varying levels of
domain knowledge. We believe that animation, as one of the
most popular tools for scientists working with simulation
data, should be studied and improved in order to become a
more effective part of time-varying visualization.

ACKNOWLEDGMENTS
The authors thank the reviewers for their helpful comments.
This material is based upon work supported by DHS Center
of Excellence—Natural Disasters, Coastal Infrastructure and
Emergency Management (DIEM).

REFERENCES
1 H. Akiba, C. Wang, and K.-L. Ma, ‘‘Aniviz: A template-based animation
tool for volume visualization,’’ IEEE Comput. Graph. Appl. 99 (2009).

2 I. Viola, M. Feixas, M. Sbert, and M. E. Gröller, ‘‘Importance-driven
focus of attention,’’ Proc. IEEE Visualization (IEEE, Piscataway, NJ, 2006),
pp. 933–940.

3 J. Woodring and H.-W. Shen, ‘‘Incorporating highlighting animations
into static visualizations,’’ Proc. SPIE 6495 (2007).

4 L. Yu, A. Lu, W. Ribarsky, and W. Chen, ‘‘Automatic animation for
time-varying data visualization,’’ Comput. Graph. Forum 29, 2271–2280
(2010).

5 J. Heer and G. Robertson, ‘‘Animated transitions in statistical data
graphics,’’ IEEE Trans. Vis. Comput. Graphics 13, 1240–1247 (2007).

6 G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko, ‘‘Effective-
ness of animation in trend visualization,’’ IEEE Trans. Vis. Comput.
Graphics 14, 1325–1332 (2008).

7 N. Elmqvist, P. Dragicevic, and J.-D. Fekete, ‘‘Rolling the dice: Multidi-
mensional visual exploration using scatterplot matrix navigation,’’ IEEE
Trans. Vis. Comput. Graphics 14, 1539–1148 (2008).

8 M. Farrugia and A. Quigley, ‘‘Effective temporal graph layout: a compar-
ative study of animation versus static display methods,’’ J. Inf. Vis. 10,
47–64 (2011).

9 F. Chevalier, P. Dragicevic, and S. Franconeri, ‘‘The not-so-staggering
effect of staggered animated transitions on visual tracking,’’ IEEE Trans.
Vis. Comput. Graphics 20, 2241–2250 (2014).

10 B. Bach, J.-D. Fekete, and E. Pietriga, ‘‘Graphdiaries: Animated transi-
tions and temporal navigation for dynamic networks,’’ IEEE Trans. Vis.
Comput. Graphics 20, 740–754 (2014).

11 C. Lundström, P. Ljung, A. Persson, and A. Ynnerman, ‘‘Uncertainty
visualization inmedical volume rendering using probabilistic animation,’’
IEEE Trans. Vis. Comput. Graphics 13, 1648–1655 (2007).

12 L. Zaman, A. Kalra, and W. Stuerzlinger, ‘‘The effect of animation, dual
view, difference layers, and relative re-layout in hierarchical diagram
differencing,’’ Proc. Graphics Interface 2011, GI ’11 (Canada, 2011),
pp. 183–190.

13 C. A. Blok, ‘‘Interactive animation to visually explore time series of
satellite imagery,’’Proc. 8th Int’l. Conf. Visual Information and Information
Systems, VISUAL’05 (Amsterdam, 2006), pp. 71–82.

14 B. Tversky, J. B. Morrison, and M. Betrancourt, ‘‘Animation: can it
facilitate?,’’ Int. J. Hum.-Comput. Stud. 57, 247–262 (2002).

15 E. B. Lum, A. Stompel, and K. L. Ma, ‘‘Kinetic visualization: a
technique for illustrating 3d shape and structure,’’ VIS ’02: Proc. Conf. on
Visualization ’02 (Boston, 2002), pp. 435–442.

16 C. D. Correa and D. Silver, ‘‘Dataset traversal with motion-controlled
transfer functions,’’ IEEE Vis. Conf. 0, 46 (2005).

17 N.D. Gershon, ‘‘Visualization of fuzzy data using generalized animation,’’
VIS ’92: Proc. 3rd Conf. on Visualization ’92 (Boston, 1992), pp. 268–273.

18 W. Lefer, B. Jobard, and C. Leduc, ‘‘High-quality animation of 2d steady
vector fields,’’ IEEE Trans. Vis. Comput. Graphics 10, 2–14 (2004).

19 S. Bachthaler andD. Weiskopf, ‘‘Animation of orthogonal texture patterns
for vector field visualization,’’ IEEE Tran. Vis. Comput. Graphics 14,
741–755 (2008).

20 M. Blumenkrants, H. Starovisky, and A. Shamir, ‘‘Narrative algorithm
visualization,’’ SoftVis ’06: Proc. 2006 ACM Symposium on Software
Visualization (Brighton, 2006).

21 D. Zongker, D. Zongker, M. Agrawala, B. Curless, D. H. Salesin, D. H.
Salesin, P. David, and H. Salesin, ‘‘Creating animation for presentations,’’
ACMSIGGRAPH/Eurographics Symposium on Computer Animation (San
Diego, 2003), pp. 298–308.

22 M. Riedl and R. Young, ‘‘From linear story generation to branching story
graphs,’’ IEEE Comput. Graph. Appl. 26, 23–31 (2006).

23 K.-L. Ma, I. Liao, J. Frazier, H. Hauser, and H.-N. Kostis, ‘‘Scientific
storytelling using visualization,’’ IEEE Comput. Graph. Appl. 32, 12–19
(2012).

24 R. Kosara and J. Mackinlay, ‘‘Storytelling: The next step for visualization,’’
Computer 46, 44–50 (2013).

25 B. Lee, N. Riche, P. Isenberg, and S. Carpendale, ‘‘More than telling a
story: Transforming data into visually shared stories,’’ IEEE Comput.
Graph. Appl. 35, 84–90 (2015).

26 E. Segel and J. Heer, ‘‘Narrative visualization: Telling stories with data,’’
IEEE Trans. Vis. Comput. Graphics 16, 1139–1148 (2010).

27 J. Hullman and N. Diakopoulos, ‘‘Visualization rhetoric: Framing effects
in narrative visualization,’’ IEEE Trans. Vis. Comput. Graphics 17,
2231–2240 (2011).

28 J. Hullman, S. Drucker, N. H. Riche, B. Lee, D. Fisher, and E. Adar, ‘‘A
deeper understanding of sequence in narrative visualization,’’ IEEETrans.
Vis. Comput. Graphics 19, 2406–2415 (2013).

29 A. Satyanarayan and J. Heer, ‘‘Authoring narrative visualizations with
ellipsis,’’ Comput. Graph. Forum 33, 361–370 (2014).

30 B. Lee, R. H. Kazi, and G. Smith, ‘‘Sketchstory: Telling more engaging
stories with data through freeform sketching,’’ IEEE Trans. Vis. Comput.
Graphics 19, 2416–2425 (2013).

31 D. Andrews and C. Baber, ‘‘Visualizing interactive narratives: employing
a branching comic to tell a story and show its readings,’’Proc. 32ndAnnual
ACM Conf. on Human Factors in Computing Systems (ACM, New York,
NY, 2014), pp. 1895–1904.

32 L. Pschetz, K. Yatani, and D. Edge, ‘‘Turningpoint: narrative-driven
presentation planning,’’ Proc. 32nd Annual ACM Conf. Human Factors in
Computing Systems (ACM, New York, NY, 2014), pp. 1591–1594.

33 E. Spaulding and H. Faste, ‘‘Design-driven narrative: using stories to
prototype and build immersive design worlds,’’ Proc. SIGCHI Conf. on
Human Factors in Computing Systems (ACM, New York, NY, 2013),
pp. 2843–2852.

34 D. Archambault, H. Purchase, and B. Pinaud, ‘‘Animation, small multi-
ples, and the effect of mental map preservation in dynamic graphs,’’ IEEE
Trans. Vis. Comput. Graphics 17, 539–552 (2011).

35 C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. Yee,
‘‘Graphael: Graph animations with evolving layouts,’’ 11th Symposium on
Graph Drawing (2003), pp. 98–110.

36 J. Boy, J.-D. Fekete, and F. Detienne, ‘‘Storytelling in information
visualizations: Does it engage users to explore data?,’’ Proc. 33rd ACM
Conf. on Human Factors in Computing Systems (CHI 2015) (ACM, New
York, NY, 2015).

37 I. Boyandin, E. Bertini, and D. Lalanne, ‘‘A qualitative study on the
exploration of temporal changes in flow maps with animation and
small-multiples,’’ Comput. Graph. Forum 31, 1005–1014 (2012).

38 M. O’Mahony, Sensory Evaluation of Food: Statistical Methods and
Procedures (CRC Press, New York, NY, 1986).

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 109

https://doi.org/10.1111/j.1467-8659.2010.01816.x
https://doi.org/10.1109/TVCG.2007.70539
https://doi.org/10.1109/TVCG.2008.125
https://doi.org/10.1109/TVCG.2008.125
https://doi.org/10.1109/TVCG.2008.125
https://doi.org/10.1109/TVCG.2008.153
https://doi.org/10.1109/TVCG.2008.153
https://doi.org/10.1109/TVCG.2008.153
https://doi.org/10.1109/TVCG.2014.2346424
https://doi.org/10.1109/TVCG.2014.2346424
https://doi.org/10.1109/TVCG.2014.2346424
https://doi.org/10.1109/TVCG.2013.254
https://doi.org/10.1109/TVCG.2013.254
https://doi.org/10.1109/TVCG.2013.254
https://doi.org/10.1109/TVCG.2007.70518
https://doi.org/10.1006/ijhc.2002.1017
https://doi.org/10.1109/TVCG.2004.1260754
https://doi.org/10.1109/TVCG.2008.36
https://doi.org/10.1109/MCG.2006.56
https://doi.org/10.1109/MC.2013.36
https://doi.org/10.1109/MCG.2015.99
https://doi.org/10.1109/MCG.2015.99
https://doi.org/10.1109/MCG.2015.99
https://doi.org/10.1109/TVCG.2010.179
https://doi.org/10.1109/TVCG.2011.255
https://doi.org/10.1109/TVCG.2013.119
https://doi.org/10.1109/TVCG.2013.119
https://doi.org/10.1109/TVCG.2013.119
https://doi.org/10.1111/cgf.12392
https://doi.org/10.1109/TVCG.2013.191
https://doi.org/10.1109/TVCG.2013.191
https://doi.org/10.1109/TVCG.2013.191
https://doi.org/10.1109/TVCG.2010.78
https://doi.org/10.1109/TVCG.2010.78
https://doi.org/10.1109/TVCG.2010.78
https://doi.org/10.1111/j.1467-8659.2012.03093.x

