
Ray Traced Volume Clipping Using Multi-Hit BVH Traversal
Stefan Zellmann; University of Cologne, Chair of Computer Science, Cologne, Germany
Mauritius Hoevels; University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne, Germany
Ulrich Lang; University of Cologne, Chair of Computer Science, Cologne, Germany

Abstract
Clipping is an important operation in the context of direct

volume rendering to gain an understanding of the inner structures
of scientific datasets. Rendering systems often only support vol-
ume clipping with geometry types that can be described in a para-
metric form, or they employ costly multi-pass GPU approaches.
We present a SIMD-friendly clipping algorithm for ray traced di-
rect volume rendering that is compatible with arbitrary geometric
surface primitives ranging from mere planes over quadric sur-
faces such as spheres to general triangle meshes. By using a
generic programming approach, our algorithm is in general not
even limited to triangle or quadric primitives. Ray tracing com-
plex geometric objects with a high primitive count requires the
use of acceleration data structures. Our algorithm is based on
the multi-hit query for traversing bounding volume hierarchies
with rays. We provide efficient CPU and GPU implementations
and present performance results.

Introduction
Clipping for 3-D direct volume rendering (DVR) plays an

important role in many scientific visualization contexts. Clipping
with spheres and planes can be a helpful tool in interactive scenar-
ios as they occur in virtual reality (VR) applications with tracking
devices. In such cases, volumetric datasets can be interactively
explored by navigating through the rendered volumetric region
and using the clip geometry as a virtual shield. In medical imag-
ing contexts, static clipping with a nonmoving geometry is impor-
tant e.g. in cases where neurologists have identified 3-D regions
of interest in a magnetic resonance imaging (MRI) dataset and de-
sire to suppress rendering for all content but that inside of those
regions. Engineering applications often rely on DVR to display
scalar or higher-order fields obtained from a simulation. For vi-
sualizations of this type it may be helpful to perform sub-voxel
accurate clipping with the bounding geometry that was used dur-
ing the simulation, especially if the volume dataset is blended and
then displayed together with the bounding geometry.
Traditional DVR applications, especially if they are intended to be
used in VR scenarios and if low latency is crucial, typically em-
ploy hardware accelerated texture-based rendering with rasteriza-
tion and a planar proxy geometry. Using this traditional pipeline,
sub-voxel accurate clipping is hard to achieve with geometry that
exposes irregular concavities. When using ray casting for vol-
ume integration, clipping with an arbitrarily shaped geometry can
however elegantly be described in terms of a simple two-pass al-
gorithm: in the first pass, intersect each primary viewing ray with
all opaque geometry that is set up for clipping and identify vis-
ible volume regions. In the second rendering pass, cast primary
rays through the volume density and consider only those voxels
that are not clipped. A ray tracing-based algorithm lends itself

well to this approach because intersecting rays with 3-D geome-
try can be efficiently implemented in a GPGPU program. In order
to determine the intersection information with a traditional raster-
ization pipeline, one would have to employ multiple render passes
just to identify the visible and invisible regions - one would have
to peel away consecutive depth layers as it is e.g. done to render
translucent surfaces in viewing order [3] and then construct the
visibility information from multiple render targets. On top of be-
ing hard to implement elegantly and being potentially inefficient,
this approach would also require that parametric surfaces such as
quadrics were rasterized and thus converted to polygon meshes in
advance.
Real-time surface ray tracing has in recent years been success-
fully ported to GPUs using general purpose GPU programming
(GPGPU). Because of its inherent inefficiency - the time com-
plexity of ray tracing grows with the product of the number of
primitives and the number of image pixels - a divide and conquer
strategy is mandatory for real-time ray tracing. This strategy is
typically implemented by a priori calculating a hierarchical spa-
tial or object subdivision to reduce the number of necessary ray
/ geometric object interactions in favor of testing the ray against
bounding objects surrounding a whole set of primitives. With this
kind of data structure it is possible to reduce the asymptotic be-
havior of surface ray tracing so that it is on average logarithmic
in the number of geometric primitives. In order to combine DVR
and clipping with an arbitrary surface geometry, it is necessary
to integrate a ray tracing acceleration data structure into the DVR
application.
In this paper we present an efficient approach for DVR and clip-
ping with an arbitrary surface geometry. Our technique allows,
amongst others, for clipping with triangle meshes that exhibit
multiple concavities. For this and in order to be able to man-
age large triangle meshes efficiently, we employ a bounding vol-
ume hierarchy (BVH) and the multi-hit ray traversal query to ef-
ficiently identify volume regions that are supposed to be clipped.
We provide an implementation that is optimized for both SIMD
x86 instructions and for NVIDIA GPUs and that is available as
part of an open source DVR software.
The paper is organized as follows. In the following section we
motivate the benefit of sub-voxel accurate clipping for neurosur-
gical visualization. In the section after that we review related
work from the fields of ray tracing and volume rendering with
clipping. Then we present a general framework to efficiently im-
plement clipping with possibly concave geometric objects in a
volume ray caster. We extend this approach by explicitly special-
izing it for triangle meshes and then present an implementation
that can run on both CPUs and GPUs. In the section after that we
propose a neurosurgical visualization aided by our method and
present performance results that we discuss afterwards. The last

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 89

https://doi.org/10.2352/ISSN.2470-1173.2017.1.VDA-392
© 2017, Society for Imaging Science and Technology



Figure 1. Various clipping scenarios supported by our algorithm. The image on the left shows the MRI volume data set without clipping. The second left most

image shows clipping with two spheres and a plane, where all surfaces overlap. The third image shows inverse clipping with a complex triangle geometry and

the fourth image shows our algorithm using the same geometry, but with ordinary clipping so that almost the whole interior of the MRI data set is excluded from

rendering.

section briefly concludes this publication.

Use Cases for Sub-Voxel Accurate Volume
Clipping

In minimal invasive neurosurgical (stereotactic) treatment
the planning process performed on medical workstations is an es-
sential and decisive part of the procedure. Currently available
treatment planning systems provide visualization options in dif-
ferent 2-D views, but offer only limited 3-D support. The plan-
ning process could benefit from additional visualization options
in the following concerns.
Inspection and visualization of tumor border: Any kind of surgi-
cal or radiological treatment can lead to sufficient results only if
the region to be treated can be precisely defined. Thus the delin-
eation of the target volume is an important step within the plan-
ning process. Usually it takes place in a couple of 2-D sections,
and further inspection again happens in orthogonal 2-D sections
or sections parallel or rectangular to the instrumentation (sur-
geon’s eye view). By using sub-voxel accurate clipping the border
of the tumor could be projected onto a canvas and be presented to
the user as a map. Irregular signal patterns such as signal enhance-
ment or reduction, or the change of texture within this map may
indicate inappropriate delineation and could suggest to revisit the
definition in the location in question. This approach could poten-
tially speed up the definition process and enhance the quality of
the resulting volume outline.
Vessel detection: In stereotactical surgical procedures hitting ves-

sels must be avoided, and detecting and avoiding vessels is a cru-
cial and time consuming task. Often the outer part of the tumor
– especially in metastases – exhibits the highest metabolism rate
and thus exposes a very intensive signal. It can be envisioned as
a bright rim surrounding the tumor volume and might hide the
presence of small vessels close to the tumor (cf. Figure 2). These
vessels could be visualized by unrolling the tumor border that was
clipped from the volume onto a canvas and show up as straight or
slightly curved continuous objects.
Intersections: Alongside the surgical path the surface of the sur-
gical instrumentation (radius from 1.3 to 2.5 mm) can be repre-
sented as a cylinder surface and be projected onto a canvas. In this
projection vessels that reside in the path might be visible as small
areas or points with enhanced signal value. Intersection with dif-

ferent objects, in particular fiber tracks can quantify potential risk
or benefit of the neuromodulation of neurological structures pro-
vided by the electrode in place (cf. Figure 2). Finally the tumor
surface intersection with a given dose distribution uncovers both
overdose and underdose regions of the tumor.

Related Work
A popular optical model for DVR in scientific visualization

applications is the emission plus absorption model [21], which
does not account for scattering phenomena but, because of its
simplicity, is the basis for many real-time applications [26, 22, 8].
Common DVR algorithms that implement the emission plus ab-
sorption model include hardware accelerated, texture-based slic-
ing [35] and ray casting [19, 16]. The ray casting algorithm to
evaluate the emission plus absorption model is usually based on
piecewise integration with a uniform step size, so that the mem-
ory access patterns of typical implementations can be expected
to be coherent because neighboring rays are likely to encounter
the same data items when traversing the volume density. Ray
tracing algorithms that exhibit this type of memory access pat-

Figure 2. Use cases where sub-voxel accurate volume clipping may en-

rich the operation planning process. On the image to the left, a tumor was

delineated by the neurosurgeon before the operation. By clipping the border

surface from the volume and projecting it to 2-D, the appropriateness of the

delineation could be reviewed faster. The image to the right shows the surgi-

cal path that is intersected with a fiber track. Intersections could be projected

to the surface of the cylinder representing the surgical path and would be

easier to identify than in conventional 2-D planning systems.

90
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017



tern can benefit from coherent ray packet approaches [29] which
perform best when the ray packet size is aligned with the width
of the single-instruction multiple data (SIMD) registers found in
modern processors [32]. Highly optimized CPU DVR ray casting
implementations thus employ coherent ray packet traversal [13].
Volume rendering with clip planes for navigation and cutting
has in the past been argued to be an effective tool in the field
of medical imaging and especially for radiation treatment plan-
ning [20, 33]. User interfaces have been proposed to incorporate
volume clipping in VR volume rendering applications for interac-
tion [14] and in medical imaging applications to perform quanti-
tative measurements [6].
Weiskopf et al. [34] have investigated volume clipping in the con-
text of texture-based slicing in 2002. Their algorithm proceeds
by consecutively rendering layers of the opaque clip geometry
to the hardware depth buffer in multiple render passes and then
performing clip operations on the currently active layer in a frag-
ment program. This approach is similar in nature to the depth
peeling approach [3] but alleviates the need for intermediate high-
precision GPU storage such as framebuffer objects or 32-bit float-
ing point textures, which were sparse GPU resources at that time.
The authors compared their method to an approach where clip re-
gions were precalculated and stored in an additional index texture
having the same resolution as the volume texture, with a binary
index indicating if the region was visible or not. The authors em-
phasized the increased quality obtained from sub-voxel accurate
clipping over the index texture approach, but also concluded that
“Depth-based clipping, however, is slower by a factor 3-4 (com-
pared to rendering without clipping)”.
Ray tracing of surfaces in contrast to volume ray casting is typi-
cally based on first building an index data structure that hierarchi-
cally groups the surfaces to be intersected based on spatial prox-
imity. While the principle of finding bounding volumes around
a set of neighboring primitives that are faster to intersect than
the whole set of primitives is always the same, acceleration data
structures differ in that some of them partition space and oth-
ers partition the set of primitives. k-d trees [4] fall in the for-
mer and BVHs [25] in the latter category. BVHs have in recent
years earned more attention from the scientific community than
k-d trees because they can be used to accommodate dynamic and
even fully deformable scenes [30]. Research in the recent years
has concentrated on fast ray / BVH traversal on GPUs [1] and
with incoherent rays [7], as well as on fast BVH construction on
CPUs and GPUs [31, 18]. It has been shown that meshes with
an uneven distribution of polygons with large and tiny areas can
be efficiently traversed by incorporating spatial splits in the BVH
construction scheme [27].
Ray tracing algorithms for image generation are often recursive in
nature [36, 12], so that typical ray traversal queries such as finding
the intersection closest to the ray origin, or finding any intersec-
tion with regard to a list of geometric objects, typically yield only
a single result instead of a list of results to iterate over. Only re-
cently have publications emerged that propose the multi-hit ray
traversal query [10], which returns a (typically fixed-size) list of
intersections sorted by distance (or provide a callback mechanism
to access elements of this list), where the set of geometric objects
the query is performed upon may e.g. be organized using BVHs
[2, 11].

Volume Ray Casting and Clipping
We propose a general volume clipping algorithm that allows

for arbitrarily many overlapping clip regions with arbitrary geom-
etry types. For that, we employ a two-pass ray tracing approach.
In a first pass, we generate primary viewing rays from the viewing
position and intersect them with the axis-aligned bounding box of
the volume data set and with a potentially populated depth buffer
from a previous render pass to support interoperability e.g. with
OpenGL rendering of opaque surfaces. We intersect the viewing
rays that have passed this first visibility test with the clip objects
that are active for the current frame in order to assemble a set of
clip intervals, which cover regions where the volume rendering
integral should not be evaluated. In a second pass we integrate
over the volume density with respect to the clip intervals. In an
actual implementation, the two passes can be combined in a sin-
gle compute kernel, so that the viewing rays do not need to be
regenerated.

1st Pass: Assembling Clip Intervals
In order to build up the set of clip intervals C for each view-

ing ray, we first determine tnear and t f ar, the distances from the
ray’s origin to the nearest and farthest intersection position with
the volume’s bounding box. We also consider a potential previ-
ous render pass with opaque planar geometry and thus also test
against a depth buffer that is obtained from the GPU rendering
API and then transferred to the volume rendering function. There
the individual depth buffer entries are converted to the volume co-
ordinate system using the transformation that is outlined in [14]
and are then transformed to ray parameter space using simple vec-
tor operations to obtain td . We then assign tnear := max(td , tnear)
and tmax := min(td , t f ar), which also remain valid for the render-
ing pass following clip interval assembly. If the test against tnear
and t f ar yields a valid intersection, we assemble C by intersecting
the viewing ray with the active clip geometry. For each active clip
object, let, without loss of generality,

1≤ . . .≤ i−1 < i < i+1 < i+2≤ . . .≤M (1)

and

t1 ≤ . . .≤ ti−1 ≤ ti ≤ ti+1 ≤ ti+2 <≤ . . .≤ tM . (2)

The variables from Equation 1 denote indices over M intersec-
tions, while the variables defined in Equation 2 denote distances
from the origin of the viewing ray to the respective intersection
position. In the case that is implied by Equations 1 and 2, where
the viewing ray that is intersected with the clip object hits at least
one concavity, in order to build up a set of clip intervals we con-
sider the geometric normal of the surface at the intersection posi-
tions to determine which two intersection distances form a valid
pair. Let V be the normalized direction vector of the viewing ray
and {Ni−1,Ni,Ni+1,Ni+2} the geometric normals. We then con-
struct the set of pairs of consecutive intersection distances which
form valid clip intervals

L = L∪L j, (3)

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 91



where

L j


[ti−1, ti], [ti+1, ti+2] V ·Ni−1 > 0
[−∞, ti−1], [ti, ti+1] V ·Ni−1 ≤ 0∧ i = 2
[ti, ti+1], [ti+2,∞] V ·Ni+2 ≤ 0∧ i+2 = M
[ti, ti+1] otherwise

(4)

by considering each intersection position with an even index i ∈
{2,4,6, . . .}. The special cases in Equation 4 where i = 2 or i+
2 = M occur if either the first or the last clip interval lies only
halfway inside the volume density. We need to determine if we
add indices to L that start with an odd or even intersection index
i to get the interval order right. The four possible cases we need
to consider are illustrated in Figure 3. We assume that a single
clip object may consist of one or many non-overlapping closed
surfaces, which implies that either

V ·Ni−1 > 0∧V ·Ni ≤ 0∧V ·Ni+1 > 0∧Ni+2 ≤ 0, (5)

or

V ·Ni−1 ≤ 0∧V ·Ni > 0∧V ·Ni+1 ≤ 0∧Ni+2 > 0. (6)

In the case that the intersection with the surface may yield only
a single intersection, e.g. if we intersect the volume with a plane,
Equation 4 is not applicable. We handle this case separately by
appending either [−∞, ti] or [ti,∞] to L (i in this case is the index
of the single intersection). We proceed similarly with the case
where up to two intersections may occur, e.g. when intersecting
the volume with a sphere.
Note that by changing the direction of the comparisons in Equa-

[ti-1,ti] [ti+1,ti+2] [- ,ti-1] [ti,tj+1]

[ti+2, ][ti,ti+1] [ti,ti+1]

tnear tfar tnear tfartnear tfar

tnear tfar tnear tfar

Figure 3. When evaluating M intersection positions for each clip object

along the direction of a viewing ray that is marched through the volume, we

need to decide if we construct new clip intervals starting at an odd or even

intersection index i. In the general case, where we have a surface without

holes and with one or more concavities, the cases depicted in the figure and

outlined in Equation 4 are to be considered.

tion 4:

L j


[ti−1, ti], [ti+1, ti+2] V ·Ni−1 ≤ 0
[−∞, ti−1], [ti, ti+1] V ·Ni−1 > 0∧ i = 2
[ti, ti+1], [ti+2,∞] V ·Ni+2 > 0∧ i+2 = M
[ti, ti+1] otherwise

, (7)

we can easily alter the behavior of the clipping operation so that
either the volume density on the inside or on the outside of the
surface is clipped. This is the primary reason why we chose to
base the construction of clip intervals on the geometric normal of
the clip surface.
Note further that the determination of the clipping order based on
the angle between geometric normals and the viewing direction
alleviates the problem of having to keep track of the intersection
order when constructing L. This allows for an efficient imple-
mentation using coherent packet traversal, where the intersection
count will in general differ per SIMD lane.
From the set L of clip intervals per geometry, we construct the set
C by clipping each interval [tm, tm+1] ∈ L with the volume bound-
aries tnear and t f ar

Ckl =



[tnear, t f ar] tm ≤ tnear ∧ tm+1 ≥ t f ar

[tnear, tm+1] tm ≤ tnear ∧ tm+1 < t f ar

[tm, t f ar] tm > tnear ∧ tm+1 ≥ t f ar

[tm, tm+1] tm > tnear ∧ tm+1 < t f ar

[∞,−∞] otherwise

(8)

and appending it to the set C:

C =
N⋃

k=1

Ok⋃
l=1

Ckl . (9)

N here denotes the number of active clip objects and Ok the (vari-
able) number of intervals per clip object. In an actual implementa-
tion, we will only append valid clip intervals to C and will neglect
intervals [∞,−∞], since those correspond to pairs of intersections
beyond the volume boundaries. Note that we need to separately
assemble the sets C and L because we in fact do not support mul-
tiple overlapping surfaces inside a single clip object, but however
allow for overlap between several clip objects. In that case, Equa-
tions 5 and 6 will not hold true.
Along with the clip intervals we store an additional list contain-
ing the surface normals pertaining to the respective interval. Out
of two intersection positions, we choose the (single) normal that
points into the opposite viewing direction.
With this clip interval construction scheme we can accommodate
arbitrary clip surfaces with multiple concavities, as far as they are
closed. The first algorithm pass leaves us with a set of potentially
overlapping intervals that we consider for clipping during render-
ing.

2nd Pass: Rendering
During the rendering pass we evaluate the volume rendering

integral using ray marching with front-to-back compositing and
piecewise integration with a uniform step size and limits tnear and
t f ar. At each integration step, we calculate the distance from the

92
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017



ray origin t. We then trivially project t onto each interval Ci =
[tl , tm] ∈C, tl ≤ tm. If

tl ≤ t ≤ tm, (10)

we assign t := max(t, tm). If Equation 10 holds true for any Ci, we
continue integration at the newly assigned t.
We employ a local illumination scheme and for that calculate the
gradient at the integration position on the fly to use it as a place-
holder for the surface normal. In order to obtain a more consistent
visualization, we modulate the not well defined gradient at the
boundary tnear with the surface normal of the volume’s bounding
box. For clipping we proceed in a similar manner by modulating
the gradient at the clip boundaries with the front-facing geometry
normal that we stored along with the clip intervals Ci.

Clipping with Triangle Meshes
When dealing with clip objects that have a parametric rep-

resentation, we usually consider only a few objects that need to
be intersected with the viewing rays. If the clip object is however
a compound object that itself consists of many triangles or sim-
ilar primitives, we need to intersect each viewing ray with each
primitive. BVHs are employed to improve the efficiency of query
operations on the list of primitives from Θ(n) to Θ(logn), where
n denotes the number of primitives in the list.
We briefly review the four query types that are of interest when
traversing a list of primitives with a ray and calculating the ray’s
intersection with each primitive.
Closest-hit: intersect the ray with each primitive to determine the
intersection position closest to the ray’s origin.
Any-hit: intersect the ray with the list of primitives and break if
any intersection was encountered.
Multi-hit: intersect the ray with each primitive to determine the
N intersections closest to the ray’s origin. This query typically
yields a list of length N that is sorted with respect to distance t
along the ray. Evaluation of the multi-hit traversal query involves
an O(N) step to insert newly found, valid intersections into the
sorted list.
All-hit: intersect the ray with each primitive to determine all valid
intersections in sorted order. This is a special case of multi-hit, be-
cause it is in general not possible to a priori determine the amount
of memory required to store the query result.
For an overview of ray traversal queries, see [2]. One can emu-
late the behavior of the multi-hit query by repeatedly perform-
ing the closest-hit query and reassigning the ray’s origin o′ =
o+dt+d∆t, where o and d are the ray’s origin position and direc-
tion vector, and ∆ is some tiny real number. This however requires
∆ to be determined individual for each query, may in general be
the cause for rendering artifacts, and imposes an excessive num-
ber of unnecessary BVH depth traversals.
We employ the multi-hit query to determine the N closest inter-
sections of the viewing ray with compound clip objects that are
made up of geometric primitives organized using a BVH. We
therefore must a priori decide how many intersections with the
clip geometry may be considered valid in order to preallocate a
static memory array that can contain the result from the query
operation. We decided for the multi-hit query rather than the all-
hit query in order to avoid costly dynamic memory reallocation,
which would prohibit a real-time implementation. This is concep-
tually in line with the approach proposed by Weiskopf et al. [34]

who note that a fixed number of render passes to the hardware
depth buffer needs to be devised a priori and with the right balance
between the application’s performance and quality requirements
in mind. With the multi-hit query result, we perform the two-pass
algorithm outlined above. Our algorithm is in general applicable
to any type of compound geometry where the primitives are con-
tained in a BVH and is not limited to triangle meshes. In the fol-
lowing section we propose a cross-platform implementation that
can accommodate parametric surfaces such as planes and spheres,
as well as triangle meshes.

Implementation
In the following we present a real-time cross-platform im-

plementation of our clipping method by using the generic algo-
rithms and data structures provided by the ray tracing template
library Visionaray [28]. The implementation is published by inte-
grating it into the open source DVR library Virvo [26]. Virvo is
e.g. used to implement the DVR component of the VR renderer
OpenCOVER that is part of the open source visualization soft-
ware COVISE [24]. OpenCOVER is used for volume rendering
in virtual environments such as the CAVE [5].

Cross-Platform Ray Tracing
The Visionaray library advocates a cross-platform program-

ming approach that is based on wrapping the hardware-dependent
portion of the ray tracing algorithm using so called scheduler
classes, which provide an interface to the target hardware and
generate primary viewing rays in parallel given e.g. an OpenGL2
compatible pair of camera matrices. Ray traversal is then de-
scribed using entities called kernels. Visionaray provides a SIMD
optimized library for short vector math operations and provides
intrinsic functions e.g. to access textures or to traverse primitive
sets that can be used from within the kernel that is passed to the
scheduler for execution. Schedulers then call kernels with a single
ray or with a ray packet as parameter.
We build upon the Visionaray ray marching kernel that is already
present in the Virvo library by extending it with our clipping algo-
rithm. Our implementation targets x86 CPUs that support either
SSE or AVX instruction sets, as well as NVIDIA GPUs that can
run CUDA [23] programs, from a single kernel. On GPUs the
traversal kernel can make use of hardware accelerated texture ac-
cesses. We opted to additionally provide a CPU implementation
in order to also evaluate our algorithm with an optimized x86 vol-
ume rendering kernel. With CUDA, in accordance to what Aila
and Laine [1] proposed in their publication on BVH traversal per-
formance on GPUs, we use single ray traversal, while the opti-
mized SSE and AVX implementations for the x86 platform use
ray packets of size four and and eight, respectively.
Visionaray provides optimized 1-D and 3-D texture types and ac-
cess routines that are described in [38] and that map to dedicated
software implementations on the CPU side and to hardware ac-
celerated texture objects and accessors when using CUDA. We
use these primitive operations to implement the render pass of
our algorithm with front-to-back alpha compositing and post-
classification color and alpha transfer function lookups. In order
to update the ray distance parameter t, we use a uniform step size
∆, while conditionally performing larger steps when t falls in a
clip interval.

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 93



Clipping with Arbitrary Geometry Types
Prior to the rendering pass we clip the primary viewing ray

that was passed to the kernel with the clip geometry in order to
construct clip intervals. To avoid dynamic branching in the com-
piled assembly output of real-time ray tracing applications, ray
tracing APIs typically avoid switching over the supported primi-
tive type in the innermost traversal loop, because this is a major
source of performance degradation. For the same reason, geomet-
ric primitives in real-time ray tracing applications are typically
modeled as “plain old data” (POD) objects without virtual inher-
itance and costly run time vtable lookups. Maintaining POD ob-
jects in memory also spares an extra level of indirection imposed
by pointer dereferencing that is necessary with virtual inheritance.
Typical real-time ray tracing implementations thus often resort
to only supporting a single primitive type for performance rea-
sons [29].
Visionaray provides generic routines to perform ray traversal
queries which are unaware of the type of primitive that should
be traversed, as long as the primitive type implements a free C++
function intersect() that takes a ray or ray packet as first and an in-
stance of the primitive type as second parameter. That way, when
a ray traversal query such as closest-hit or multi-hit is called e.g.
only with triangles, the generic algorithm will only call intersect()
for that primitive type, so that no unnecessary dynamic branch-
ing will occur. Visionaray however provides a generic primitive
template type, which can be instantiated with a set of primitive
types that are managed by the generic primitive. In that case,
storage will be allocated to contain any of the primitive types the
generic primitive object was instantiated with, as well as a tag
identifying the actual primitive type of the generic wrapper ob-
ject. At run time, the intersect() method will perform branch-
ing over the tag to determine for a given set of primitives, what
type a specific one has in order to call the appropriate specialized
intersect() implementation. We employ a generic primitive type
encapsulating planes, spheres, and triangle meshes for clipping.
This implementation scheme allows for instances of each clip ob-
ject type to be stored with an optimized data layout as POD ob-
jects in any order in a C array that can be passed to the ray tracing
kernel for processing. Visionaray provides a BVH implementa-
tion based on the construction scheme from [31] that we use to
manage triangle meshes. The BVH construction algorithm can
optionally perform spatial primitive splits at the cost of slightly
higher construction times, which we however did not consider
for this implementation. We make use of Visionaray’s multi-hit
implementation which supports BVH traversal to implement clip-
ping with triangle meshes. Visionaray’s multi-hit implementation
allows to set the maximum size of the static array returned by the
query function to be set as a template parameter.

We provide a user interface to dynamically initialize and up-
date the clipping geometry interactively at run time (cf. Figure 4)
for planes and spheres, but assume that triangle meshes are static
objects that are initialized only once. Because of that, it is in
general possible to reset the triangle meshes for clipping with our
application, but we completely rebuild the BVH each time the
triangle mesh is changed. We consider support for deformable
triangle meshes or for triangle meshes that change position and
orientation dynamically interesting topics for future work.
Compared with a texture-based volume clipping approach using
slicing and hardware accelerated rendering of the clipping geom-

etry as it was proposed by Weiskopf et al. [34], our approach does
not require multiple rendering passes or a depth peeling step to as-
semble clip regions. Regardless of the different rendering strate-
gies and assuming a GPGPU implementation of our approach,
in an abstract sense our algorithm does not rely on an iterative
implementation with multiple render passes for clip interval con-
struction as Weiskopf et al. propose, and we also do not require
to intermediately store the clip intervals in GPU DDR3 memory,
as it would be necessary with an approach similar to depth peel-
ing. We instead precalculate the clip intervals with an optimized
GPGPU ray tracer and store them in on-chip GPU memory. That
implies faster access times from the GPGPU kernel, which we
however trade for an increased register demand per thread on a
shading multi processor (SM), which may also impact the perfor-
mance of the kernel. In the following section we investigate the
performance of our approach.

Results
In this section we present qualitative and quantitative results

obtained from evaluating our approach. We therefore apply our
clipping method to a neurosurgical use case. We further conduct
a quantitative evaluation and present performance measurements.

Application to Neurosurgery
In order to assess the qualitative appropriateness of our clip-

ping algorithm for neurosurgical use cases, we prepared the pa-
tient dataset depicted on the left hand side of Figure 2. The
figure shows results from manual brain tumor delineation con-
ducted during neurosurgical operation planning. The red dotted
line marks the boundary surface of the tumor. Shown is the delin-
eation for a single CT image, while delineation is typically per-
formed for each CT image where tumor tissue is visible. Figure 5
shows the hull of the tumor rendered as a triangle mesh that was

Figure 4. User interface for clipping with parametric surfaces in the VR

renderer OpenCOVER. The data set is clipped with two spheres that can be

repositioned interactively using 3-D widgets.

94
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017



reconstructed from the delineation through tesselation. In Fig-

Figure 5. Triangle geometry obtained from triangulating the hull of a man-

ually delineated brain tumor during neurosurgical operation planning. The

image shows direct volume rendering of a CT dataset and the volume of in-

terest defined by the delineated tumor’s hull. The images were rendered with

three different orthographic viewing configurations (top row, bottom left) as

well as from a perspective viewing position (bottom right).

Figure 6. The delineated tumor clipped from the CT volume data set using

our volume clipping approach. Various clipping modes are presented. In the

top left image region the volume of interest is obscured (the outlines of the

volume of interest are depicted for clarity). In the remaining image portions,

the volume of interest is clipped from the CT dataset and a clip plane through

the center of the volume of interest is used to expose it.

ure 6 our clipping algorithm was used to virtually excise the tu-
mor from the volume rendered CT image. This results in the outer
part of the tumor being projected to the surface of the clip geome-
try. In order to expose the volume of interest resulting from tumor
delineation, we used a vertical clip plane running through the cen-
ter of the tumor (top left and bottom row of Figure 6). From the
zoomed in view (bottom left image portion) the neurosurgeon can
assess the vessel penetration of the tumor hull. Furthermore, the
neurosurgeon can review the appropriateness of the delineation
and, if indicated, reiterate it. This process can be conducted more
accurately and directly as it is possible with mere 2-D imaging.

Rendering Performance

Figure 7. MRI data set used for the performance evaluation. We test with

a modality where most parts of the inside of the volume are clipped with

the teapot geometry (right) and compare with a modality where clipping is

deactivated (left).

When evaluating the performance of our approach, we are
interested in the impact on total rendering time. Clipping with
single surfaces such as planes or spheres in general caused no
perceptible performance degradation and moreover even resulted
in a performance gain when large portions of the data set were
clipped and thus did not require to be integrated over. We thus
concentrate on the performance impact of clipping with triangle
meshes and multi-hit traversal. Our performance evaluation
considers how triangle count as well as the maximum number
of allowed multi-hit intersections influences the rendering
performance. We therefore render frames with a resolution of
1024× 1024 pixels of the MRI data set depicted in Figure 7 and
clip it with the well known Utah teapot 3-D model. The MRI data
set is the T1-weighted MNI152 standard brain that is available
from the Montreal Neurological Institute (MNI) under a license
allowing non-commercial use and can be downloaded as part of
the FSL FMRI tools [37]. The version that we use was sampled
with a 0.5mm3 voxel size at a resolution of 364× 436× 364
voxels. In order to determine the impact of mesh size on

Table 1. Triangle count and number of BVH nodes after subdi-
vision was applied to the teapot triangle mesh for clipping.

Level Triangles BVH Nodes
1 2,464 1,559
2 14,784 9,771
3 59,136 39,063
4 236,544 151,637

rendering performance, we apply subdivision surface mesh

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 95



Figure 8. In order to test how the performance of our algorithm varies with the complexity of the clip geometry, we employ four variants of the famous Utah

teapot for clipping, with different subdivision surface levels applied. From left to right: 1.: 2,464 triangles and 1,559 BVH nodes. 2.: 14,784 triangles and 9,771

BVH nodes. 59,136 triangles and 39,063 BVH nodes. 236,544 triangles and 151,637 BVH nodes.

refinement using a 3-D modeling tool to the teapot geometry. The
result of the refinement steps is shown in Figure 8. We report the
triangle count along with the number of BVH nodes created by
Visionaray’s BVH builder in Table 1. Because we are interested
in the impact of the clipping algorithm, for our tests we deactivate
gradient-based shading and opacity correction, because these
computations require evaluating a costly exponential function
and would falsify the performance measurements we are going to
report in this section.
We present performance results that we measure on a 1st genera-

Table 2. Register usage of the complete CUDA compute kernel
(clip interval assembly plus rendering) depending on the size
N of the multi-hit result array.

Multi-Hit N Registers Spill stores Spill loads
0 (disabled) 62 0 bytes 0 bytes
8 63 176 bytes 228 bytes
16 63 364 bytes 368 bytes
24 63 604 bytes 584 bytes
32 63 924 bytes 732 bytes

tion NVIDIA GTX Titan GPU. We therefore compile the CUDA
program for the sm 20 architecture. In order to gain a better
understanding of the resource demand of our implementation, we
report the number of local registers and potential register spilling
to local memory for different configurations. By completely
disabling clipping with the multi-hit query for triangle meshes we
define the baseline for the resource demand, the CUDA compute
kernel then uses 62 registers per thread and the optimizer does
not spill registers to local memory (which would impose a
higher memory access latency). We vary N, the size of the array
containing the multi-hit result, and report the register usage of
the respective compute kernels in Table 2. We present rendering
performance results for the CUDA implementation with varying
multi-hit N in Table 3. We also report performance measurements
for the respective modalities where we just compiled the clipping
algorithm into the CUDA compute kernel, but without actually
loading a clip geometry. We provide these numbers in order to
analyze the impact of the increased per thread resource demand
on rendering performance. In addition, we present results for
the CPU packet traversal implementation that was compiled

Table 3. Performance measurements in frames per second
(fps) obtained from clipping with the teapot geometry and four
different subdivision levels for varying multi-hit N with CUDA
on the GPU. Row one shows results for the baseline kernel
without multi-hit clipping and row two shows results for the
kernel compiled with multi-hit clipping but without actually us-
ing it.

N=8 N=16 N=24 N=32
No Multi-Hit (23.0) (23.0) (23.0) (23.0)
Unused 16.3 16.3 11.0 11.0
Subdiv. 1 11.4 9.3 5.4 4.7
Subdiv. 2 9.3 7.2 4.0 3.5
Subdiv. 3 7.6 5.7 3.1 2.6
Subdiv. 4 6.1 4.5 2.4 2.0

Table 4. Performance measurements in frames per second
(fps) when performing the performance tests on the CPU,
with SIMD SSE coherent packet traversal (packets occupy the
space of 2 by 2 pixels).

N=8 N=16 N=24 N=32
No Multi-Hit (3.1) (3.1) (3.1) (3.1)
Unused (3.1) (3.1) (3.1) (3.1)
Subdiv. 1 2.9 2.8 2.7 2.6
Subdiv. 2 2.8 2.6 2.4 2.3
Subdiv. 3 2.7 2.4 2.2 2.0
Subdiv. 4 2.5 2.2 2.0 1.8

for the SSE 4.1 instruction set architecture that is summarized
in Table 4. We performed the measurements on an Intel dual
socket server system with two Intel Xeon E5-2630 six core CPUs
running at a base frequency of 2.30 GHz. With Hyper-Threading
activated we allocate 24 independent threads for our tests. We
do not expect an impact as severe as on the GPU due to the
mere existence of the instructions associated with our clipping
algorithm because of the differing register allocation process. For
completeness’ sake and for better comparability, we report perfor-
mance measurement results for the respective modalities, anyway.

96
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017



Discussion
We demonstrated the usefulness of our clipping method in

the context of neurosurgical operation planning. By mapping the
outer part of a brain tumor to the concave surface of the delineated
tumor hull, the neurosurgeon can better assess vessel penetration
as well as the appropriateness of the delineation itself. This pro-
cess is especially aided by means of 3-D imaging in contrast to
reviewing the delineation in 2-D. However, in order to review the
tumor hull in 3-D, an additional interaction component is neces-
sary. In the example we presented, an additional clip plane run-
ning through the tumor center was used to expose the volume of
interest. As an alternative means of interaction one could have
moved the viewing position inside the delineated tumor. How-
ever, with both interaction modes, only a portion of the delineated
tumor is visible at a single instance of time. For the visualization
to be more useful in the context of the time-critical neurosurgical
operation planning process, we therefore envision unrolling the
tumor hull and projecting it to 2-D, possibly in a manner simi-
lar to the technique presented by Kretschmer et al. [15], as help-
ful and consider an implementation and evaluation of additional,
more application centric user interfaces interesting future work.
The two implementations we provide differ by an order of mag-
nitude in terms of run time performance, which was to be ex-
pected due to the higher parallelism, memory bandwidth, and due
to hardware support for 1-D and 3-D texture lookups on the GPU.
The downside of a GPU implementation that we propose is the
influence of high resource demands on the register optimization
level on rendering performance - for a high-quality clipping mode
with many intersections allowed and with a complex clip geom-
etry, the measured performance of the two implementation con-
verges. At the point of convergence, frame rates of both imple-
mentations are however no longer interactive.
We would further like to point out the good scalability of our algo-
rithm with triangle mesh complexity. Due to the Θ(logn) search
pass over the BVH, the performance does not degrade linearly
with triangle count, which would have to be expected in a sce-
nario as that proposed by Weiskopf et al. [34], where the clip ge-
ometry is rasterized to the hardware depth buffer. From a perfor-
mance optimization standpoint, the two approaches (ours and that
of Weiskopf et al.) differ in an interesting way. Weiskopf et al.’s
approach stores clip information in GPU DDR memory, while our
approach stores clip information in registers and in thread-local
memory, which can be accessed much faster. On the other hand,
the CUDA programming model and the GPU scheduler allow to
efficiently hide memory access latency behind parallel computa-
tions, so that we believe it is undecided how an approach storing
clip information in GPU DDR memory at the benefit of lower re-
source demand compares to our approach on contemporary hard-
ware. Storing clip intervals in GPU DDR memory could e.g. be
implemented using a wavefront approach [17]. Because on to-
day’s GPUs texture memory is no longer as limited as it was as
of 2002, we argue that an approach storing the whole clip interval
array (per viewing ray) in GPU DDR memory might be worth-
while for further investigation. We have shown that clipping with
triangle meshes with a limited number of concavities can be per-
formed interactively with our method, which compares well with
state-of-the-art GPU techniques based on rasterization and con-
sider a comparison with wavefront approaches interesting future
work.

Conclusions
We have proposed a sub-voxel accurate volume clipping

method that fits into a ray tracing-based pipeline and that com-
pares well with state-of-the-art texture-based methods that use
rasterization on graphics hardware. Sub-voxel accurate clipping is
a highly relevant operation in the context of neurological imaging
and for stereotactic operation planning. Our approach does not
require the clip geometry to be converted to triangles. If however
the clip geometry is available as a mesh, our method incorporates
multi-hit ray / BVH traversal to efficiently identify clip intervals.
Because of the Θ(logn) time complexity of ray / BVH intersec-
tion our method scales well with triangle count. The performance
of our algorithm is however bounded by the number of allowed in-
tersections of rays with the geometry, and thus by the number of
concavities that can be displayed. This is in line with approaches
based on rasterization, where each concavity causes an additional
render pass. We provide a cross platform implementation of our
algorithm as part of an open source visualization software and
conducted performance measurements on both CPU and GPU. In
the future we would like to evaluate if an implementation based
on wavefront ray tracing, where the clip intervals are temporar-
ily stored in GPU DDR memory and the two passes of our al-
gorithm are implemented in two different kernels, can improve
performance through reduced register pressure so that a higher
number of concavities can be rendered in real-time.

References
[1] Timo Aila and Samuli Laine, Understanding the Efficiency of Ray

Traversal on GPUs, Proceedings of High-Performance Graphics
2009, pg. 145. (2009).

[2] Jefferson Amstutz, Christiaan Gribble, Johannes Günther, Ingo Wald,
An Evaluation of Multi-Hit Ray Traversal in a BVH using Existing
First-Hit/Any-Hit Kernels, Journal of Computer Graphics Techniques
(JCGT), 4, 4 (2015).

[3] L. Bavoil and K. Myers, Order independent transparency with dual
depth peeling, Technical Report, NVIDIA Coorp. 124, 127 (2008).

[4] Jon Louis Bentley, Multidimensional binary search trees used for as-
sociative searching, Communications of the ACM, 18, 9 (1975).

[5] Carolina Cruz-Neira, Daniel J. Sandin, Thomas DeFanti, Robert V.
Kenyon, John C. Hart, The CAVE: Audio Visual Experience Auto-
matic Virtual Environment, Commun. ACM, 35, 6 (1992).

[6] Y. Dai, J. Zheng, Y. Yang, D. Kuai, X. Yang, Volume-Rendering-
Based Interactive 3D Measurement for Quantitative Analysis of
3D Medical Images, Computational and Mathematical Methods in
Medicine (2013).

[7] Holger Dammertz, Johannes Hanika, Alexander Keller, Shallow
Bounding Volume Hierarchies for Fast SIMD Ray Tracing of Incoher-
ent Rays, Computer Graphics Form (Proc. 19th Eurographics Sympo-
sium on Rendering, pg. 1225. (2008).

[8] Thomas Fogal and Jens Krüger, Tuvok, an Architecture for Large
Scale Volume Rendering, Proceedings of the 15th International Work-
shop on Vision, Modeling, and Visualization, pg. 139. (2010).

[9] P. Ganestam, R. Barringer, M. Doggett, T. Akenine-Möller, Bon-
sai: Rapid Bounding Volume Hierarchy Generation using Mini Trees,
Journal of Computer Graphics Techniques (JCGT), 4, 3 (2015).

[10] Christiaan Gribble, Alexis Naveros, Ethan Kerzner, Multi-Hit Ray
Traversal, Journal of Computer Graphics Techniques (JCGT), 3, 1
(2014).

[11] Christiaan Gribble, Node Culling Multi-Hit BVH Traversal, Euro-

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 97



graphics Symposium on Rendering - Experimental Ideas and Imple-
mentations, (2016).

[12] James T. Kajiya, The Rendering Equation, SIGGRAPH Comput.
Graph., 20, 4 (1986).

[13] Aaron Knoll, Sebastian Thelen, Ingo Wald, Charles D. Hansen,
Hans Hagen, Michael E. Papka, Full-Resolution Interactive CPU Vol-
ume Rendering with Coherent BVH Traversal, Proceedings of IEEE
Pacific Visualization, pg. 3. (2011).

[14] A. Kratz, M. Hadwiger, R. Splechtna, A. Fuhrmann, K. Bühler,
GPU-Based High-Quality Volume Rendering For Virtual Environ-
ments, Proceedings of AMI-ARCS, pg. 1. (2006).

[15] Jan Kretschmer, Grzegorz Soza, Christian Tietjen, Michael
Suehling, Bernard Preim, Marc Stamminger, ADR - Anatomy-Driven
Reformation, IEEE Transactions on Visualization and Computer
Graphics (TVCG), 20, 12 (2014).

[16] Jens Krüger and Rüdiger Westermann, Acceleration techniques for
GPU-based volume rendering, Proceedings IEEE Visualization 2003,
pg. 287. (2003).

[17] Samuli Laine, Tero Karras, Timo Aila, Megakernels Considered
Harmful: Wavefront Path Tracing on GPUs, Proceedings of the 5th
High-Performance Graphics Conference, pg. 137. (2013).

[18] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, D. Manocha,
Fast BVH Construction on GPUs, Comput. Graph. Forum, 28, 2
(2009).

[19] Marc Levoy, Efficient Ray Tracing of Volume Data, ACM Trans.
Graph., 9, 3 (1990).

[20] M. Levoy, H. Fuchs, S.M. Pizer, J. Rosenman, E.L. Chaney,
G.W. Sherouse, V. Interrante, J. Kiel, Volume Rendering in Radia-
tion Treatment Planning, Proc. First Conference on Visualization in
Biomedical Computing, IEEE Computer Society Press, pg. 4. (1990).

[21] Nelson Max, Optical models for direct volume rendering, IEEE
Transactions on Visualization and Computer Graphics, 1, 2 (1995).

[22] Jennis Meyer-Spradow, Timo Ropinski, Jörg Mensmann, Klaus
H. Hinrichs, Voreen: A Rapid-Prototyping Environment for Ray-
Casting-Based Volume Visualizations, IEEE Computer Graphics and
Applications, 6, 29 (2009).

[23] John Nickolls, Ian Buck, Michael Garland, Keven Skadron, Scalable
Parallel Programming with CUDA, ACM Queue, 6, 2 (2008).

[24] D. Rantzau, U. Lang, R. Lang, H. Nebel, A. Wierse, R. Ruehle,
Collaborative and Interactive Visualization in a Distributed High Per-
formance Software Environment, High Performance Computing for
Computer Graphics and Visualization, Springer London, 1996, pg.
207.

[25] Steven M. Rubin and Turner Whitted, A 3-dimensional Represen-
tation for Fast Rendering of Complex Scenes, SIGGRAPH Comput.
Graph, 14, 3 (1980).

[26] Jürgen Schulze-Döbold, Uwe Wössner, Steffen P. Walz, Ulrich
Lang, Volume Rendering in a Virtual Environment, Immersive Pro-
jection Technology and Virtual Environments 2001: Proceedings of
the Eurographics Workshop, pg. 189. (2001).

[27] Martin Stich, Heiko Friedrich, Andreas Dietrich, Spatial Splits in
Bounding Volume Hierarchies, Proceedings of High-Performance
Graphics 2009, pg. 7. (2009).

[28] Visionaray - A Cross Platform Real-Time Ray Tracing Kernel
Framework, http://vis.uni-koeln.de/visionaray.html, ac-
cessed August 10, 2016.

[29] Ingo Wald, Philipp Slusallek, Carsten Benthin, Markus Wagner, In-
teractive Rendering with Coherent Ray Tracing, Computer Graphics
Forum, pg. 153. (2001).

[30] Ingo Wald, Solomon Boulos, Peter Shirley, Ray Tracing Deformable
Scenes Using Dynamic Bounding Volume Hierarchies, ACM Trans.
Graph., 26, 1 (2007).

[31] Ingo Wald, On fast Construction of SAH-based Bounding Volume
Hierarchies, Proceedings of the 2007 IEEE/Eurographics Symposium
on Interactive Ray Tracing, pg. 33. (2007).

[32] Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, Man-
fred Ernst, Embree: A Kernel Framework for Efficient CPU Ray
Tracing, ACM Trans. Graph., 33, 4 (2014).

[33] Chen Wei , Hua Wei , Bao HuJun , Peng QunSheng, Real-time
ray casting rendering of volume clipping in medical visualization, J.
Comput. Sci. and Technol., 18, 6 (2003).

[34] Daniel Weiskopf, Klaus Engel, Thomas Ertl, Volume Clipping via
Per-fragment Operations in Texture-based Volume Visualization, Pro-
ceedings of the Conference on Visualization ’02, pg. 93, (2002).

[35] Rüdiger Westermann and Thomas Ertl, Efficiently using graphics
hardware in volume rendering applications, SIGGRAPH ’98: Pro-
ceedings of the 25th annual conference on computer graphics and
interactive techniques, pg. 169. (1998).

[36] Turner Whitted, An Improved Illumination Model for Shaded Dis-
play, Commun. ACM, 23, 6, (1980).

[37] M.W. Woolrich, S. Jbabdi, B. Patenaude, M. Chappell, S. Makni, T.
Behrens, C. Beckmann, M. Jenkinson, S.M. Smith, Bayesian analysis
of neuroimaging data in FSL, NeuroImage, 45, 1 (2009).

[38] Stefan Zellmann, Yvonne Percan, Ulrich Lang, Advanced texture
filtering: a versatile framework for reconstructing multi-dimensional
image data on heterogeneous architectures, Visualization and Data
Analysis 2015, pg. 1. (2015).

Author Biography
Stefan Zellmann is with the Chair of Computer Science at the University
of Cologne since 2009. Before that, he graduated from the University of
Cologne in information systems. In 2014, he received his doctor’s degree
in computer science, with a PhD thesis on high performance computing
and direct volume rendering for scientific visualization.

Mauritius Hoevels is medical physicist at the University Hospital
of Cologne, Department of Stereotaxy and Functional Neurosurgery.
He graduated in medical physics in 1991 and is working in the field of
stereotactic surgery, radiosurgery, and deep brain stimulation.

Ulrich Lang holds a chair of Computer Science at the University
of Cologne since 2004. He is at the same time director of the Regional
Computing Center at the University of Cologne. Before that, he was
deputy director of HLRS, a German national supercomputing Center
in Stuttgart, where he also headed the visualization department. He
graduated from the University of Stuttgart as Dr.-Ing. At HLRS he
coordinated the development of COVISE, a COllaborative VIsualization
and Simulation Environment, that supports e.g. the analysis of simulation
results in virtual environments.

98
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017


