
Declarative Guide Creation
Joseph A. Cottam; CREST/Indiana University; Bloomigton, IN
Andrew Lumsdaine;CREST/Indiana University; Bloomigton, IN

Abstract
Correct guides, such as axes and legends, are an important

part of creating an understandable visualization. Guides con-
textualize the other visuals by providing information about the
source data and analysis process. Despite inherent ties to analy-
sis already specified, most visualization programming libraries do
reuse the existing specification. Automatic guide creation based
on the analysis specification can be performed if the visualiza-
tion program semantics are well defined and proper metadata is
supplied. This paper presents high-level execution semantics for
visualization-supporting analysis. These semantics are used with
selected metadata to automatically construct guides. The Stencil
visualization system includes an implementation of the presented
guide system. Stencil is used to explore advantages, limitations
and possible extensions to the proposed system. The principles
presented can be applied to other visualization frameworks that
include programmable analysis. Implementation of automatic
guide creation simplifies the construction of visualizations, and
can ultimately lead to higher quality visualizations.

Introduction
Reference marks provide the context required to interpret a

visualization. Axes, labels and similar guides have distinct se-
mantics from other marks in a visualization. Unfortunately, many
visualization frameworks do not use these distinct semantics to as-
sist in guide creation. In most circumstances, visualization frame-
works allow custom analysis to be specified for a visualization.
Unfortunately, tying that analysis to guides (even though they are
inherently related) is not supported. Instead, proper coordina-
tion of guides to analysis is left to good programming practices.
Escaping this system of manual guide construction requires use-
ful semantics for analysis processes and the ability to manipulate
analysis definitions. This paper describes such a system and an
implementation of declarative reference mark construction.

Simple construction of reference marks is achieved by visu-
alization applications (like Tableau [1] or Excel [25]) and widget
based libraries (like the InfoVis Toolkit [15]) by limiting the types
of producible visualizations. For each visualization type, appro-
priate reference mark generation is provided. This technique can-
not be applied in general purpose visualization libraries because
the produceable visualizations are impractically large. Some
state-based frameworks enable automatically producing guides by
synthesizing guides from the final data state before visualization
is performed (e.g., Prefuse [18] and ggplot2 [29] to various de-
grees), but this is a limited case. Going beyond the final data state
(e.g., to represent intermediate results) requires programmer dis-
cipline to ensure the custom created reference marks match the
rest of the visualization.

A visualization system with an appropriate language and
metadata has enough information to build guides. This paper

describes sufficient language semantics and metadata to achieve
guide creation in the general case. Our approach provides the abil-
ity to reason over multi-stage, stateful analysis using user-defined
transformations to produce a variety of reference marks. Refer-
ence marks produced using the described techniques hold many
desirable properties, including the potential to guarantee correct-
ness. The system we describe has been implemented in the Stencil
visualization system [12] to support declarative guide creation.

Declarative Guides
In general, reference marks can be divided into three classes:

Annotations, Direct Guides and Summarization Guides. Annota-
tions include subjective notes and comments; they relate a visu-
alization to external entities through a process orthogonal to the
visualization. By their nature, annotations cannot be automati-
cally generated and are not dealt with further. In contrast, guides
represent information inherent to the data and/or process of a visu-
alization. Direct guides represent the mapping between input data
(or its direct derivatives) and a visual effect. Axes and legends are
prototypical direct guides. Summarization guides focus on anal-
ysis results (but may include input data supplementally). Trend
lines and point labels are common summarization guides (point
labels may use input data to produce the label text, but position-
ing is in line with summarization style). Guides of both types are
(illustrated in Figure 1a) are treated in this paper.

Declarative programming specifies what is to be accom-
plished, instead of how to accomplish it [20]. Declarative guide
creation is achieved by having a guide request mechanism and a
system that can derive relevant analysis and infer other features.
Supporting derivation and inferential reasoning requires the abil-
ity to represent and reason over the data analysis program. For
example, regardless of the analysis or data involved in mapping
input data to the X-axis in Figure 2, the declaration on line 5
provides a suitable guide. The underlying system inspects and
modifies the program to determine how to construct guides. This
paper discusses the framework support required and the analysis
and modifications performed to enable declarative guide creation.

Guide Systems
We consider the following characteristics and capabilities

when discussing guide systems:

Complete: Reflects the complete analysis process. The guides
represent the analysis used to create the visualization, inde-
pendent of the data used. This includes taking transforms
into account and communicating discontinuities in the anal-
ysis, if there is a plausible impact on analysis.

Consistent: Reflects data. The guides represent data in the vi-
sualization at the time of rendering. This does not limit
the guides to just the data presented (e.g. axes may extend

22
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017

https://doi.org/10.2352/ISSN.2470-1173.2017.1.VDA-386
This work is licensed under the Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

(a) Anderson’s Flowers Cell

1 import B r e w e r P a l e t t e s
2 stream f l o w e r s (sepa lL , petalW , sepalW , p e t a l L , s p e c i e s , obs)
3

4 l a y e r F l o w e r P l o t
5 guide
6 t r e n d from ID
7 l e g e n d [X: 2 0 ,Y:−90] from FILL COLOR
8 a x i s [sample : ” L i n e a r ” , g u i d e L a b e l : ” P e t a l Length ”]
9 from Y

10 a x i s [sample : ” L i n e a r ” , g u i d e L a b e l : ” P e t a l Width ”]
11 from X
12

13 from f l o w e r s
14 ID : obs
15 X:∗ S c a l e [0 , 1 0 0] (p e t a l L)
16 Y:∗ S c a l e [0 , 1 0 0] (peta lW) −> Mult (,−1)
17 FILL COLOR : BrewerCo lo r s (s p e c i e s) −> Se tAlpha (5 0 ,)
18 REGISTRATION : ”CENTER”
19 SHAPE : ”CROSS”

(b) Anderson’s Flowers Program
Figure 1: A single cell part of the Anderson’s flowers trellis vi-
sualization [6], augmented with a trend line. Guide declarations
appear on lines 6-11. The legend in this program demonstrates
some of the design support by adopting the characteristic shape
(contrast with the legend shape in Figure 7).

beyond the actual data range to make a “nice” range), but
tighter bounds are generally preferable.

Subordinate: Influenced by analysis, but not vice-versa. The
analysis is the principle concern, guides support the inter-
pretation of that analysis. Therefore, using the guide system
should not modify the results of analysis.

Efficient: Places little pressure on runtime resources. A guide

(a) Rank-based Layout (b) Index-based Layout

(c) Wider Index-based Lay-
out

1stream s u r v e y (f r u i t)
2

3l a y e r p l o t
4guide
5a x i s from X
6from s u r v e y
7ID : Count ()
8X:∗ Rank (f r u i t) −> Mult (5 , r ank)
9/∗ X:∗ I n d e x (f r u i t) −> Mult (5 , i n d e x) ∗ /
10/∗ X:∗ I n d e x (f r u i t) −> Mult (1 0 , i n d e x) ∗ /
11Y: Count (f r u i t) −> Mult (−5 , c o u n t)
12REGISTRATION : ”CENTER”
13FILL COLOR : @Color {150 ,150 ,255}

(d) Stencil Program
Figure 2: A series of plots based on a simple survey of fruit pref-
erences. The input data is presented as a list of fruit names.
The visualization program is found in Figure 2d, with Fig-
ures 2a, 2b and 2c using lines 8, 9 and 10 respectively. Each time
the analysis used to construct the X-axis changes, but the guide
declaration in line 5 does not need to be updated.

system that requires fewer resources to produce the same
result is preferable to one requiring more.

Customizable: Permits data reformatting for presentation.
Many aspects of a guide often need re-formatting. For ex-
ample, a guide for the x-axis may need line weights adjusted
to be less obtrusive or labels abbreviated to fit a space. Guide
customization enhances the flexibility of an automatic sys-
tem.

Simple: Requires little additional work to create. The less work

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 23

required to create a guide, the more likely it will be created.
Similarly, if guides are easy to maintain and refine they will
more likely be of higher quality. Declarative specification
is one route to simplicity by supporting inference about the
guides from the declaration context. Ideally, only a specifi-
cation of the differences between analysis processes and the
guide creation process should be required.

Redundancy-aware: Combines redundant encodings. Redun-
dant encodings occur when two visual attributes are based
on a single input attribute. In such circumstances a single
guide presents both encodings.

Attribute-crossing: Represents multiple inputs in their combi-
nations. It is common for two visual attributes to be varied
based on different, but related, inputs. A guide that incor-
porates the cross-product of potential elements can aid in
interpretation. In an attribute-crossing legend, the legend it-
self is a grid of regularly space examples.

Separation-supporting: Can use separate guides for distinct en-
codings of value subsets. Even though redundancy-aware
and attribute-crossing guides are beneficial, separate guides
should still be possible.

Design-sensitive: Reflects design decisions not related to data
encoding. The guides produced should appear to “belong”
with the data they apply to. Characteristic colors, shapes and
sizes contribute to this cohesion. A guide system should
be capable of appropriately employing the visual attribute
constants used in a visualization program.

Though the above attributes are desirable, they are not all
essential. Completeness and consistency are the basis of any use-
ful guides, distinguish guides from an annotation. The other at-
tributes provide means of reasoning about the guide system and
effectively representing analysis details (e.g. per Wilkinson [30]).

These attributes can be placed into two major groups:
analysis-focused and presentation-focused. Analysis focused at-
tributes describe the process that goes into creating a guide, indi-
rectly touching on how it is actually displayed. Analysis focused
attributes are Complete, Consistent, Subordinate, Efficient, and
Customizable. These attributes will be addressed in abstract terms
in Section: Analysis Semantics and Metadata. Simplicity, Redun-
dancy awareness, Attribute-crossing, Separation-supporting and
Design-sensitivity are presentational-focused attributes. Indepen-
dent of how guide contents are determined, these attributes affect
how it can be displayed. They are discussed in Section: Display.

Related Work
Visualization creation has been examined on a number of

occasions. Bertin discusses the design space of visual construc-
tion [4], while Tufte focuses on guidelines for effectively em-
ploying that design space [27, 28]. These works are concerned
with the data and analysis types in relation to the properties of
visual representation. Understanding these concerns is important
in deciding how to represent data, including how reference marks
should be used to contextualize that representation.

One difficulty in treating visualization programs as objects of
analysis themselves is a lack of useful semantics in many frame-
works. Many frameworks rely on the complex underlying seman-
tics of the implementing language. Chi [11] provides general se-

Stencil Overview

Stencil is a coordination language for visualizations. This
overview will describe the parts of Stencil used in this paper; line
numbers are in reference to Figure 1 unless otherwise noted.

All Stencil operations are in response to incoming data. Data
are represented as streams of tuples. A stream schema is required
(line 2). Layers are the principle organization unit for both visu-
als and analysis (line 4). Layer declarations optionally include a
type and always include at least one from block (line 13) that tie
analysis to a declared stream. From blocks can include filters (see
Figure 6b, line 12) and rules that bind layer attributes (left of the
colon) to the analysis (right of the colon) (line 14). The dynamic
binding (indicated with a colon-star line 15), indicates that period-
ically repeat the analysis and binding to reflect changes in stateful
transformations. Analysis chains are composed of transformation
operators. The post-fix composition operator − > allows multi-
stage analysis (line 17). Most operators are loaded from provided
modules. New operators can be defined with the operator key-
word. Arguments are typically lists of values, though a prefixing
@ sign allows for special syntax (see Figure 6b, line 18). The un-
derscore is a shorthand for “the most recent value.” In line 17, it
refers to the color that the BrewerColros operator just produced.

Guides are declared as the layer they belong to (lines 6 to 11).
Guide declaration details are discussed in Section Stencil.

mantics, but insufficient details (for example, in operation order-
ing or memory handling) to afford the types of analysis required
for guide creation. However, Chi’s work demonstrates the value
of even partial semantics.

Prefuse is a prototypical visualization library [18]. Guides
are largely constructed by specifying a new analysis pathway that
mirrors (and often partially repeats) the analysis used in visual-
ization construction. Any type of guide can be created in this
way, since reference marks are one type of analysis based visuals.
However, guide correctness depends on programmer discipline.
No support is given to ensure that the guide-determining analysis
corresponds to the rest of the visualization. Prefuse does supply
limited support for automatically deriving guides when two con-
ditions are met: (1) the guide is an axis; (2) the last step in the
analysis conforms to an interface that allows access to a descrip-
tor object. When these two conditions are met, an axis can be
automatically created based on a generated descriptor (called a
ValuedRangeModel) that reflects the last step of the analysis. The
process of creating such abstract descriptors is the basis of the
work presented in this paper.

Protovis [5, 17] presents an alternative approach to creat-
ing visual guides. Guide support methods are built in to many
Protovis-provided objects. For example, pv.scale has a ‘ticks’
method, glyph types have ‘anchors’, and the data iterator is per-
vasively availability. Anchors and the data iterator are discussed
further in Section: Comparison as they can be used to approxi-
mate some of the functionality of the system in this paper.

In language-based approaches to visualization and analysis,
The Grammar of Graphics [30] (GoG) provides the most com-
plete discussion of reference marks. As here, GoG distinguishes
direct and summarization guides (though using different vocab-
ulary). The specification style for guides in GoG is declarative,
mirroring the one called for in this paper. However, the deriva-

24
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017

7→ Operation counterpart or process correspondence
G/A Process/operation chain (blackboard bold)
An An analysis operation
On An opaque analysis operation
Gn A guide operation
S/V /M Source/Visuals/Memory value sets
s/v Source/visual value

Figure 3: Description of notational elements.

tion of guides is not well described. It is unclear how to apply the
concepts outside of the frameworks that directly implement GoG.
One implementation of the concepts from GoG is ggplot2 [29].
ggplot2 provides concise production of many guide types. How-
ever, ggplot2 is limited by the data model of R, so it inherently
handles only the last stage of analysis. Correctly tying guide la-
bels to earlier stages of analysis or applying custom formatting
requires programmer discipline.

Some considerations relevant to guide creation have been ex-
plored in detail. For example, ColorBrewer explores how to select
and present color scales [10]. Proper selection of tick-marks on
axes and selection/placement of point-labels is a perennial topic
(examples include Talbot [26] and Luboschik [21]). Such work
provides details on parts of guide creation, but does not integrate
it within a larger guide framework.

This work builds on early work presented by Cottam and
Lumsdaine [13]. The earlier work was limited to categorical axes
and legends and required operator metadata that was sometimes
situationally dependent. The system presented here expands sup-
port to include continuosly-valued data, allows chaining multiple
categorical operations and supports summarization guides. The
required operator metadata has also been reduced and simplified.

Analysis Semantics and Metadata
The general process for automatic guide creation is to derive

a subset of the analysis process that (1) reproduces the analysis
being preformed (2) in a manner that does not interfere with that
analysis and (3) executes the derived process over relevant data.
This section provides the groundwork to more formally define
what it means for an analysis process to be reproduced, how in-
terference is avoided and what the relevant data are. From a high
level, the analysis process is augmented with monitoring func-
tions that can supply samples of the input data. These monitors
are placed after the first operation that cannot be safely repro-
duced (referred to as ‘opaque’ operations) in an analysis chain.
This process is represented abstractly in Figure 4. This section in-
cludes discussion of execution semantics and operator meta data
that are sufficient to implement automatic guide creation. The
formal description pursued in this section is to provide definitions
that can be used independent of implementation. To simplify dis-
cussion, direct guides are used as the principle example, though
the definitions given cover summarization guides as well. The
notation for this section is summarized in Figure 3.

We treat a visualization program as a linear composition of
data transformation operators. This representation corresponds to
a single path through a data-flow network [2]. Memory is treated
as an input parameter, so all operators are functions, making the
composite an applicative transformation chain [19, 3]. As an ap-
plicative framework, control flow can be treated separately from

the computations involved, similar to the treatment done for co-
ordination languages [16]. In effect, the details of the transfor-
mation performed can be treated separately from the coordination
of the transformation. The linear composition representation does
makes transformations involving branches, merges and loops non-
obvious in implementation. We assume that all such non-linear
flow is either encapsulated in a single operator (branch and loop)
or handled by proper treatment of the memory arguments (merge).

For convenience, all operands are represented as immutable
tuples and all operators are assumed to take a list of such tuples as
a batch of requests. Therefore, all operations have two arguments
(tuple∗,M) and return two values (tuple∗,M′). In practice, these
batch request semantics can be achieved by wrapping a data-flow
operator accepting (tuple,M) in a for-each loop. The input and
output lists are assumed to be the same length and each tuple in
the results list corresponds to the input element at the same index.
These call semantics allow data-state or data-flow style operations
to be expressed [11] by modifying how memory states are treated
between calls and the contents of the input list [14]. An analysis
chain is given in Equation (1); in general, user-supplied analysis
chains start with a read from some source.

A : A5◦A4◦A3◦A2◦A1◦Read (1)

These semantics enable the the guide properties from Sec-
tion: Declarative Guides while remaining applicable to many pro-
gramming styles.

Transformation operators have two pieces of metadata. First,
all operators are expected to be able to provide a counterpart op-
erator. Definition 1 formalizes a counterpart’s behavior. Infor-
mally, if A creates a memory state and a result, then counterpart
G computes the same tuple (1.3) but does not modify the mem-
ory state (1.2). Additionally G should be a function (1.1). When
met, these conditions provide three important properties. First, by
conditions 1 and 2, G may be executed as often as needed without
changing the resulting guide, providing flexibility in scheduling
its execution. Second, by condition 2, G does not interfere with
A [22], making the resulting system Subordinate (as defined in
Section: Declarative Guides). Finally, by condition 3, using G
is the same as using A as it currently stands, which helps estab-
lish the Correctness and Consistency properties. A function CP is
defined such that CP(A) = G such that G corresponds to A.

Definition 1 G 7→ A if and only if, for all memory states M of
A for all x in the range of A and when G(x,M) = (y1,M) and
G(x,M) = (y2,M) then

y1 = y2 (1.1)

M = M= M (1.2)

G(x,M) = A(x,M) (1.3)

The second piece of metadata that all operators must pro-
vide is a categorization with respect to memory usage: Function,
Reader, Reader/Write, and Opaque. The first three categories fol-
low the standard definitions. Opaque operators are those operators
that use memory but that cannot provide a counterpart operator.
Operators that depend on external operations (network, keyboard,
mouse, etc) or randomness are typically opaque. Such operations

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 25

A1 A2 A4A3Monitor

Sample G2 G4G3

Layer

Guide
Display

Figure 4: The guide system constructs G given a precursor to
A. Construction is accomplished by inserting a Monitor opera-
tion and transforming all operations from Monitor forward into
counterpart operations. When executed, G passes its results to the
guide display system.

limit the repeatable parts of an analysis, and thus determine how
much of the analysis can be presented in a guide. From the stand-
point of guides, the other memory usage styles only determine
how difficult G is to construct given A.

Generation
With these execution semantics and metadata, it is possible

to create guides that properly present visualization transforma-
tions. In general, the guide process, denoted G, must produce a
description of the input and result space of some analysis, denoted
A. This guide descriptor is interpreted by a display system to pro-
duce an axis, legend, etc. This leads to two general parts: a trans-
formation and a display system. The transformations are slightly
different for direct and summarization style guides. Because di-
rect guides are more directly tied to analysis, they are treated first
in in Section: Direct Guides. Changes required to create summa-
rization guides are given in Section: Summarization Guides. The
shared display system is described in Section: Display.

Direct Guides
A correct guide descriptor for a direct guide, like Prefuse’s

ValuedRangeModel [18], depends on input data and analysis.
This descriptor generally includes a description of inputs to and
outputs from some G. Properly constructed, the outputs of the
guide system should meaningfully contain the outputs of the orig-
inal analysis (though they may extend beyond it for practical rea-
sons). Furthermore, the inputs to the guide system should be a
superset of the output of some intermediate analysis step. The
purpose of the transformation presented here is to create a G that
produces such a descriptor for a corresponding A.

Definition 2 G 7→ A if and only if

∀Gn ∈G : ∃Ax ∈ A such that Gn 7→ Ax (2.1)

∀Gn,Gm ∈G and ∀Ax,Ay ∈ A
if Gn 7→ Ax and Gm 7→ Ay then

Gn◦Gm⇒ Ax◦Ay (2.2)

∃Gn ∈G where Gn 7→ Ax
such that @Ax+1 ∈ A where Ax◦Ax+1 (2.3)

|G|> 0 (2.4)

Gn 7→ Ax and Gn 7→ Ay⇒ Ax = Ay (2.5)

Correspondence is expressed visually in Figure 4 and defined
in Definition 2. Condition (2.1) indicates that G may only contain

counterparts to operations in A. Condition (2.2) ensures that op-
erations in G appear in the same order and with the same depen-
dencies as their counterparts in A. Condition (2.3) indicates that
G must include the end of A. Conditions (2.2) and (2.3) combine
to indicate that the guide need not reflect the full analysis process,
but it must correspond to a tail of A. The final two conditions
stipulate that the guide system be non-empty and that analysis op-
erators are uniquely represented.

Acquiring G 7→A is the purpose of the counterpart metadata
relationship given earlier. A constructive solution to building a G
given an A is presented in Section: Stencil. Selecting a maximal
tail of A for G is the purpose of the Opaque designation in the
memory-related metadata. In short, no opaque operation can be
included in any guide creation process.

Before transformation can be performed, two support oper-
ations need to be described: Monitor and Sample. Monitor im-
plements the identity relation but also tracks information about
what has been observed in its state (Monitor(x,M) = (x,M)
with M not always equal to M). The memory state of Monitor
is used by Sample to produce a set of sample of tuples. (Pa-
rameters to Sample and values it observes determine the type
and contents of the sample). The Monitor/Sample pair is dis-
tinguished in that, even though they compute different functions,
CP(Monitor) = Sample if the Monitor is the first element in
a chain (otherwise CP(Monitor) = Identity). This special case
simplifies transformation and supports multiple guides from the
same analysis chain.

With the definition of process correspondence and the sup-
port operations, the transformation process is given in Equa-
tions (2)-(5) (assuming the initial equation from Equation (1)).

A : A5◦A4◦A3◦O2◦A1◦Read (2)

A : A5◦A4◦A3◦Monitor ◦O2◦A1◦Read (3)

A′ : A5◦A4◦A3◦Monitor (4)

G : G5◦G4◦G3◦Sample (5)
The first step is to identify the opaque operations, yielding

Equation (2). Next, a Monitor operator is inserted per Equa-
tion (3). By default, Monitor will be placed as early in the anal-
ysis chain as possible. However, Monitor may be validly placed
anywhere after the last opaque operator, effecting a change in
source space but otherwise leaving the guide process unchanged.
After Monitor is placed, the guide system is only concerned with
the analysis from Monitor forward. Therefore, A is trimmed per
Equation (4). The operation chain is reduced is accordance with
the tail and contiguous conditions Definition 2.

After trimming, each analysis operation is replaced with its
counterpart guide operation using the CP relation. The result-
ing G is shown in Equation (5). Given the definitions of CP and
restrictions on the placement of the Monitor operator, these trans-
formations produce a guide process conforming to Definition 2.

With G constructed, it can be used to create a guide descrip-
tor. By construction, the first operator in G is always Sample. Op-
erator Sample is defined such that it which produces a list of val-
ues S in the source space. This source list is used for two purposes:
as the source-space information presented in the guide and as the
input to any transformations. Applied using the semantics de-
scribed earlier for analysis, G will result in a list of results V in the
same visual space as A (per the definition of process correspon-
dence). The sets S and V can be matched pair-wise because of the

26
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017

index correspondence rule given for invocation semantics. This
yields a basic guide descriptor of the form ((s1,v1),(s2,v2) . . .).
This descriptor is sufficient to produce many guide types; how-
ever, it can be refined to provide support for operator discontinu-
ities and multiple inputs mapping to the same output.

Operator discontinuities (such as divide by zero) can mod-
ify the interpretation of results and indicate potential problems in
a visualization. It is possible that a discontinuity was avoided in
original analysis, but discovered in guide creation. However, it
is undesirable for the guide process to generate errors when the
corresponding analysis did not. Working with sets of inputs and
producing sets of results gives each G the opportunity to iden-
tify discontinuities. To handle these discontinuities the expected
arguments to G are modified. Instead of taking a list of argu-
ments, G is changed to a pair where the first element is a list of
discontinuity warnings and the second element is the list of in-
puts as before. Operators that identify potential discontinuities
can append relevant information to the warnings lists. Therefore,
Sample must produce the pair ([],S). Other G operators produce
a similar output. If a sample input actually strikes a discontinuity,
the result is replaced with a sentinel NoValue to preserve the list
semantics. All G operators must therefore recognize NoValue and
simply echo it in that list position.

Ambiguous mappings occur when multiple source values
map to the same visual value. Handling ambiguity in the sam-
ple/result mapping requires labeling the result more than once.
Ambiguity identification does not require changes to the call se-
mantics of operators. However, because it is fundamentally an
analytical question it is best handled before the display system.
The S and V pair process is therefore extended to include identifi-
cation of duplicates of V . Such ambiguities are stored in the guide
descriptor as sets of values, yielding a final guide descriptor of the
form (discont,({s+},v1),({s+}v2) . . .).

Summarization Guides
Summarization guides produce a descriptor compatible with

that of direct guides. However, summarization guides primarily
provide information about the result set. Scatter-plot trend lines
are a common form of summarization guide.

The principle requirement of a summarization guide is
identity-based access to the result space and a unique identity for
each visual element. Acquiring an iterator of identities takes the
place of Sample and collecting entries from the iterator is the
whole of G. The resulting descriptor has an id as the input value
and all associated visual values as the results (the discontinuity
warning list is guaranteed to be empty).

Display
Since the display system is framework dependent, we only

discuss the framework independent requirements. The display
portion of the guide system is responsible for the presentation
of the guide descriptor generated from executing G. Generally
speaking, the source values become labels for the visual values.
However, there are additional considerations.

The first consideration for the display system is to determine
where guides are required. This may be achievable automati-
cally, or specified (preferably declaratively). Exact placement
of the Monitor operator may be part of this specification. Sec-
ond, the display system support is required for presentation el-

A1 F2 F4F3Monitor

Sample F2
query

F3
query

F4
query

Layer

In

In

...

Out

Out

...

Guide
DisplayPo

st
-

pr
oc

es
si

ng

St
en

ci
l R

un
tim

e

Figure 5: The guide process implemented by Stencil. The major
distinctions are the inclusion of post-processing and maintenance
of the input/output sets separate from analysis.

ements such as Redundancy-support and Design-sensitivity (see
Section: Declarative Guides).

Analysis and Extensions
The presented system provides many of the desirable at-

tributes given in Section: Declarative Guides. Provided with a
suitable display system, the guides produced will be Complete,
Consistent and Subordinate. The produced guide descriptor can
also support Attribute-crosses and Redundancy-reporting, though
display system support is required to take full advantage of the op-
portunities. Separation-support, Design-sensitivity and simplicity
depend on implementation details of the display and guide re-
questing systems; but are not precluded by the preceding process.

The ability to format data for presentation (i.e., supporting
Projecting) can be approached in a variety of ways. A general so-
lution is to use a post-processing step that operates on the guide
descriptor before application of the display system. In this way,
values can be reformatted in a presentation-friendly manner (e.g.,
limit decimal places, highlight outliers, etc). Post-processing can
be used to support the Projecting property, but it jeopardizes Cor-
rectness and Consistency. When arbitrary calculations are possi-
ble, the correspondence between G and A is violated if the post-
processor ignores its inputs. The alternative to post-processing is
a proliferating special cases for specific reformations (this can be
seen in part in R [23] with the multitude of optional formatting
arguments to many plotting functions). This tradeoff needs to be
carefully weighed: flexibility and parsimony vs. correctness and
verbosity.

Stencil
The core of the described guide system has been imple-

mented in the Stencil visualization system. Stencil is a declarative
language for specifying visualizations [12]. Stencil supports basic
guide descriptor creation (not including discontinuity or ambigu-
ity reporting) and arbitrary post-processing.

Figures 6a and Figure 6b demonstrate direct guides: axis and
legend. Lines 5-10 provide the guide declarations. Guides are de-
clared as a section of a layer declaration, initiated with the key-
word ‘guide’. Each guide declaration has four parts: (1) type, (2)
static parameters, (3) attribute selectors and (4) post-processing
instructions. Attribute selectors are interpreted with respect to the
current layer. Guides can inherit some graphic properties from
their parent layer (the default fill in Stencil is solid black, but the
guide inherits the clear center defined in line 18.

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 27

(a) Becker’s Barley Cell

1 import B r e w e r P a l e t t e s
2 stream B a r l e y (year , s i t e , y i e l d , v a r i e t y)
3

4 l a y e r B a r l e y S i t e
5 g u i d e
6 a x i s [X: 0] from Y
7 a x i s [sample : ”LINEAR” , round : ”T” ,
8 s eed . min : 1 0 , s eed . max : 1 0 0] from X
9 l e g e n d [X: 7 5 , Y:−60] from PEN COLOR

10

11 from B a r l e y
12 f i l t e r (s i t e =˜ ” U n i v e r s i t y Farm ”)
13 ID : C o n c a t e n a t e (v a r i e t y , y e a r)
14 PEN COLOR : BrewerCo lo r s [”PuRd” , ”BLACK”] (y e a r)
15 X:∗ S c a l e [0 , 100 , inMin : 1 0 , inMax : 1 0 0] (y i e l d)
16 Y:∗ Rank (v a r i e t y) −> Mult (−7 ,) −> Add(−5 ,)
17 REGISTRATION : ”CENTER”
18 FILL COLOR : @Color{CLEAR}

(b) Becker’s Barley Program
Figure 6: A single cell of the Becker’s Barley trellis. This ex-
ample shows the directness of the automatic guide system and
illustrates some weaknesses (discussed further later).

Part of the Crimean Rose visualization [8] and a program
listing are given in Figure 9 (minus custom operator definitions).
This visualization uses point-labels (a summarization guide) with
post-processing and a direct guide to create the legend. The point
labels by default use the ID as the text with positioning on the reg-
istration point of the associated glyph. Arbitrary post-processing
enables custom formatting and positioning of labels; these effects
are found on lines 7-10 of Figure 9b. An example of the trend-line
construction and presentation can be seen in Figure 7.

Redundancy and Attribute-crosses are achieved by specify-
ing two attributes in a guide definition. If the two attributes are
based on the same input data, then a redundancy-encoding guide
is created (like Figure 7). If the two attributes are based on sepa-
rate data, then an attribute-crossing guide is created (see Figure 8).

The implementation presented is efficient in that it requires
few additional operations, little memory and no additional itera-
tions of the input data. There are at most two monitor operations
inserted per guide (most guide types require just one). Monitoring
a continuous input space is a bounds check/update while a cate-

(a) Anderson’s Flowers: Redundancy Encoding Guide

1 import B r e w e r P a l e t t e s
2 stream f l o w e r s (sepa lL , petalW , sepalW ,
3 p e t a l L , s p e c i e s , obs)
4

5 l a y e r F l o w e r P l o t
6 guide
7 t r e n d from ID
8 l e g e n d [X: 5 , Y:−90] from FILL COLOR ,
9 from PEN COLOR

10 a x i s [sample : ” L i n e a r ” , g u i d e L a b e l : ” P e t a l Length ”]
11 from Y
12 a x i s [sample : ” L i n e a r ” , g u i d e L a b e l : ” P e t a l Width ”]
13 from X
14

15 from f l o w e r s
16 ID : obs
17 X:∗ S c a l e [0 , 1 0 0] (p e t a l L)
18 Y:∗ S c a l e [0 , 1 0 0] (peta lW) −> Mult (,−1)
19 FILL COLOR : BrewerCo lo r s (s p e c i e s)
20 −> Se tAlpha (5 0 ,)
21 PEN COLOR : BrewerCo lo r s (s p e c i e s)
22 −> Se tAlpha (8 0 ,)
23 REGISTRATION : ”CENTER”

(b) Stencil Program
Figure 7: Anderson’s flowers with species encoded in both fill and
pen-color. The redundancy encoding guide is defined in line 9.
The definition is the same as that used for the redundancy guide
in Figure 8, but since both fields are based on the same input the
redundancy encoding style is used. Separate guides could also be
requested by adding a second ‘legend’ request.

gorical space employs a hash-table lookup/insert. In either case,
monitoring only introduces a constant time overhead. Additional
memory costs are: maintenance of the input space descriptor (at
worst, linear in the data size but often constant) and storage of the

28
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017

(a) Anderson’s Flowers: Attribute Cross Guide

1PEN COLOR : Round (petalW) −#> H e a t S c a l e ()

(b) Modified line 18
Figure 8: Anderson’s flowers with a petal width encoded in pen-
color. Only the definition of pen color changed from the program
show in Figure 7b but Stencil determines that a cross product is
required since the fill and outline are based on different inputs.

visual elements of the guide representation (linear in the sample
size produced). By monitoring the input data as it is loaded, the
guide can be created with zero additional iterations of the data.

Stencil’s implementation presents one way to satisfy the
metadata and display systems requirements. In the display sys-
tem, guides are requested with the keyword guide and followed by
a type, construction parameters and a path to the requested anal-
ysis. Guide declarations may include post-processing statements.
The post-processing statements admit any valid computations,
and thus have the power and risks discussed in Section Analy-
sis and Extensions (the input tokens to post-processing are the
entries of the guide descriptor). The requested guide type and pa-
rameters determine the Sample and Monitor operators used. De-
fault Sample placement is over-ridden with a special composition
operator −# > in a targeted analysis.

Stencil’s metadata system is rooted in the operator libraries,
so metadata is specified by the library creator for use by Stencil
sub-systems. All of the metadata used for guide generation is used
by other sub-systems as well. The required metadata are provided
in two ways. First, a memory category (Function, Opaque, etc.) is
provided in a per-operator instance metadata object. Second, all
operators in Stencil are required to provide a query operation that
satisfies the counterpart requirements (from Definition 1). Since
transformations are implemented as objects, this means a query
method must be supplied. Many operators explicitly provide this
method; however, it can be inferred using the metadata and Clone.
For Function and Reader operators, query is an alias for the de-
fault transformer. Opaque operators by definition do provide a

reasonable query operator. Reader/Writer operator can provide
support query by performing a deep-clone and then calling the
stateful transformation on the clone.

Stencil operators do not take the batch list arguments de-
scribed in Section Generation. Therefore, the control flow is
slightly is slightly modified (see Figure 5). In brief, the Stencil
framework runs each sample through G individually, collating re-
sults at the end of the process. This is the principle reason why
discontinuity reporting is not supported at this time. Full discon-
tinuity reporting support could be achieved by adding a discont
method that either has the call semantics for G described earlier
but built using Stencil’s query facets or simply performs discon-
tinuity analysis. Concurrent support for both data-flow and data-
state style operators has been explored in Stencil [14] and could
be extended to support discontinuity reporting.

Scheduling of guide system execution has an important im-
pact on overall system performance. The described system is
suitable for both static and dynamic data systems. In static sys-
tems, the calculations can be deferred until all data is loaded.
However, in dynamic data systems such a clear-cut schedule is
not available. An optimal recalculation schedule will recalculate
guides only when executing the guide system will change the re-
sult. Stateful Stencil operators provide a stateID access method
to check for possible new results. StateID takes no arguments
and returns a value associated with the internal state of the oper-
ator. If at any time A(xM) = (y,M′) where M 6= M′ then StateID
should change. (This definition differs from earlier discussions of
StateID [13], but provides for the more general scheduling used
in [14].) The Stencil runtime monitors StateID for all operators
in G and its post-processing. Before scheduling G recalculation,
the runtime queries for new StateIDs. If no StateID has changed,
the re-calculation can be skipped. This yields generally effective
scheduling, though it tends to over-approximate the need (some
unnecessary recalculations are still performed).

The Stencil implementation currently restricts the placement
of Monitor beyond the restrictions given in Section Generation.
In a general Stencil analysis pathway, all prior computed values
are available to all later computations. Executing G requires that
all incoming values must be supplied by the sample. This implies
that a Monitor operator acts as a partition in value accesses: no
later operation may use values computed earlier than the monitor.

The presented implementation of the guide system supports
all of the guide-system features presented in Section Declarative
Guides, though some trade-offs are made. A basic guide can be
declared in as few as four tokens (guide < type > from < att >),
with customization options available. Therefore, guide creation is
simple by building on Stencil’s declarative nature. Redundancy,
attribute-crossing, separation support and design-sensitivity are
all represented in various examples.

The guides are guaranteed to be complete (reflect the analy-
sis), consistent (reflect the data) and subordinate, provided that
post-processing is not used. Post-processing supports enables
customizable guides, but makes it possible to violate these other
properties. Use of post-processing does not necessarily invalidate
any of these properties, but it must be used with care. For exam-
ple, manipulating the labeling in a guide could be used to abbre-
viate (”December” from the data becomes ”Dec” in the guide in
Figure 9), a transformation that is consistent with the data. How-
ever, an alternative operator on line 7 could change “December”

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 29

(a) Nightingale’s Crimean Rose

1 stream Deaths (da t e , type , c o u n t)
2

3 l a y e r Rose [”SLICE”]
4 guide
5 l e g e n d [X: −75, Y: −50] from FILL COLOR
6 p o i n t L a b e l s from ID
7 TEXT : MakeLabel (ID)
8 (X,Y) : MinRadius (5 0 , X, Y, OUTERX, OUTERY)
9 REGISTRATION : ”CENTER”

10 FONT: @Font{4}
11

12 from Deaths
13 l o c a l (month , y e a r) : P a r s e D a t e (d a t e)
14 ID : C o n c a t e n a t e (type , ” : ” , month)
15 FILL COLOR : ColorBy (t y p e)
16 PEN : @Stroke { . 5}
17 PEN COLOR : @Color{Gray70}
18 HEIGHT:∗ S c a l e [min : 0 , max : 2 5 0] (c o u n t)
19 Z : Mult (−1 , c o u n t)
20 (X,Y) : (0 , 0)
21 (START , END) : Sub1 (month) −> P a r t i t i o n ()
22

23 operator ColorBy (t) −> (C)
24 (t =˜ ” wounds ”) => C : @Color{L i g h t P i n k }
25 (t =˜ ” o t h e r ”) => C : @Color{DarkGray}
26 (t =˜ ” d i s e a s e ”) => C : @Color{L i g h t B l u e }

(b) Crimean Rose Program
Figure 9: Recreation of Florence Nightingale’s casualty causes
in the Crimean war visualization. A Point-label guide with post-
processing was employed. (Some operator definitions have been
omitted for space).

into “June” just as easily, invalidating the consistency. A similar
hazard is present with respect to the guides being subordinate if
memory mutating operations are used in the guide system. There
are no firm rules for when a manipulation invalidates the com-
pleteness, consistency or makes a guide non-subordinate. The
Stencil design favors the flexibility of post-processing over the
guarantee of completeness and consistency. However, all default
constructions provide complete and consistent guides.

Comparison
The ability to construct guides in a framework supported,

disciplined fashion ends up saving effort in the long run. This
section compares the Stencil implementation of automatic guide
generation to other frameworks. Stencil is used as the reference
point because it provides the broadest support for the items dis-
cussed in Section: Declarative Guides. and generally provides
compact ways. In several cases, Stencil provides only conditional
or partial support because of conflicting requirements in the de-
sirable attributes. For example, support for customization makes
it possible to introduce inconsistency in Stencil. Section: Stencil
discusses the conditions, trade-offs and omissions in detail.

Figure 10 provides a capabilities inventory with regards to
Section: Declarative Guides. Vega is a rich framework, with a
well-defined guide system (expressed through the ’legend’ and
’axis’ components). However, the system does not include at-
tribute crosses or multiple encodings and no examples were found
that included them. Vega directly provides for conditional com-
pleteness (depending on how transforms are defined) and consis-
tency. D3, Protovis and Prefuse, generally re-use their existing
graphics capabilities to create guides, and thus use guide defini-
tions have complexity comparable to the definition of the related
analysis. This flexibility means that redundancy-aware, crossing
or separate guides are supported to the degree that the program-
mer is willing to construct them. With the exception of some axes
in Prefuse, neither completeness nor consistency are provided by
these non-declarative graphics frameworks. ggplot2 provides a
capable automatic guide system. Consistency is guaranteed if de-
fault labeling is used. However, completeness (e.g. representing
the analysis) is not provided because only the last-produced value
results are used for labeling, not the original inputs. Stencil im-
plements the majority of the system described in this paper.

The remainder of this section examines the graphics frame-
works in more detail. To compare verbosity, several visualiza-
tions were implemented in each framework, and the guide por-
tions were isolated. For example, a Protovis guide description is
given in Figure 11, this corresponds guides found in the Stencil
program in Figure 6b. The number of tokens used to build the
guides in each program were counted, the results are summarized
in Figure 12. Stencil was used as the reference point because it
was the most familiar and most capable system. However, Vega
and ggplot2 compare favorably on many plots in terms of required
tokens. This is not surprising since all three are declarative sys-
tems. Prefuse was omitted from this analysis because (1) its ap-
proach to analysis made it difficult to isolate the items that were
dedicated to guides and (2) the general verbosity of the Java lan-
guage made the counts performed absurdly large. Prefuse is also
the oldest framework of the bunch, and thus not indicative of cur-
rent practice.

For Vega, D3 and Protovis, source code was taken from

30
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017

C
om

pl
et

e

C
on

si
st

en
t

S
ub

or
di

na
te

E
ffi

ci
en

t

C
us

to
m

S
im

pl
e

R
ed

un
da

nc
y

A
tt.

C
ro

ss

S
ep

ar
at

io
n

D
es

ig
n

Vega ? Y Y Y Y ? Y Y
D3 ? Y ? ? ?

Protovis ? Y ? ? ?
Prefuse - - Y ? ? ?
ggplot2 ? Y Y ? - Y Y
Stencil ? ? Y Y Y ? - - Y Y

Figure 10: Table comparing guide systems of various visualization systems. An ideal system would hold all the listed characteristics
and capabilities. A Y indicates an attribute held by a system; a star (?) indicates a conditionally present attribute; a dash (-) indicates a
partially present attribute; and a blank items indicates an attribute missing from the system.

1 /∗ X− t i c k s . ∗ /
2 v i s . add (pv . Rule)
3 . d a t a (x . t i c k s ())
4 . l e f t (f u n c t i o n (d) 90 + Math . round (x (d)))
5 . bo t tom (−5)
6 . h e i g h t (5)
7 . s t r o k e S t y l e (” # 9 9 9 ”)
8 . an ch o r (” bot tom ”) . add (pv . Labe l) ;
9

10 /∗ A l e g e n d showing t h e y e a r . ∗ /
11 v i s . add (pv . Dot)
12 . e x t e n d (d o t)
13 . d a t a ([{ y e a r : 1 9 3 1} , { y e a r : 1 9 3 2}])
14 . l e f t (f u n c t i o n (d) 260 + t h i s . i n d e x ∗ 40)
15 . t o p (−8)
16 . an ch o r (” r i g h t ”) . add (pv . Labe l)
17 . t e x t (f u n c t i o n (d) d . y e a r) ;

Figure 11: Protovis program fragment for producing guides on
Becker’s Barley [7]. Line 3 provides Sample by using x, an op-
erator used for X-layout in the visualization. This explicit coordi-
nation is avoided in the declarative system. Axis formatting con-
stitutes lines 3-8 and the legend for year coloring is in lines 11-17

their respective websites. ggplot2 examples were produced in-
ternally. When multiple versions were available for D3, the
simplest found was used. In all cases, punctuation was con-
sidered a separator, and non-punctuation groups were consid-
ered tokens. Therefore, numbers, parameters, procedures and
mathematical symbols are all tokens but parenthesis and dots are
not. Strings were considered a single token, even if they con-
tained multiple words. Operators that used math-like notation
were considered tokens and separators (“3+4” is three tokens).
Only tokens used exclusively for the guide creation were consid-
ered as tokens (so for D3 and Vega, when a ’scale’ is created
and used in the both data mapping and guide creation, tokens
used to create that scale are not counted). Some programs in-
cluded optional programmatic “furniture” (like the optional var
keyword or function (x,y) { return ...} vs (x,y) => {...} syn-
tax in javascript). When a clear shorter syntactic substitution was
possible, the shorter substitution was used instead of the program
found on the website.

Vega is a relatively new framework [24], with an empha-

sis on declarative construction. It is a JSON framework, and the
Vega designers chose to rely heavily on named arguments (repre-
sented as dictionaries). Therefore, the majority items are actually
encoded as name/value pairs. Vega is highly declarative and in-
cludes an extensive transformation library. Notably, Vega only
admits pure functions. This means that much of the metadata
requirements presented earlier for Stencil are removed (for ex-
ample, pure functions can be their own counterparts, and there is
no need for snapshots). Unfortunately, there are fewer examples
available for Vega than other frameworks. There are several Vega-
lite examples of corresponding plots, but Vega-lite is a separate
product, one level higher up an abstraction hierarchy. In the ex-
amples found, Vega consistency matches Stencil in terms of token
count, occasionally beating it as well. This demonstrates that the
declarative approaches are (to some degree) comparable between
the two systems. Subjectively, the Vega system is a touch less
flexible (requiring greater verbosity when flexibility is required)
but in many ways simpler than the Stencil system (in part due
to the more functional nature of Vega). One place that Vega is
clearly more complex is in working with partial analysis. In Sten-
cil, a ‘-*¿’ is used to indicate where the guide monitor should be
placed. In Vega, a separate transformation is defined. The Vega
technique requires no special syntax but is slightly more verbose
and breaks up something that is otherwise logically a single unit.

D3 is the most popular javascript visualization library. D3
has different goals that Protovis, focusing on transforming data
into DOM elements and re-using web-standards such as DOM el-
ements and CSS [9]. Guide creation in D3 is generally done in the
same style as any other part of the visualization, by mapping data
to a visual representation. The difference is there are many con-
venience functions in D3 to produce that dataset, deriving from
the original source data in many cases. This is still a separate
definition, but less prone to errors that a constructing the guides
completely separately. As the D3 library has evolved, support
for guides has also expanded significantly (this paper reflects ver-
sion 3). Figure 12 includes a comparison of the number of tokens
dedicated to guide creation. In general, D3 guides were longer
than their Protovis counterparts. Much of the additional length
was caused by CSS selectors or needing to create essential SVG
DOM furniture (such as ‘g’ tags). These are relatively simple ele-
ments, but are often repetitive and thus good targets for future ab-
straction. Some guide construction code reproduced source data
(for example, the Becker’s Barley legend hard-codes the years).

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 31

Visualization Stencil Protovis Ratio ggplot2 Ratio D3 Ratio Vega Ratio
Bar Chart 44 55 4:5 34 5:4 59 2:3 28 3:2

Bckrs. Barley 33 64 1:2 34 1:1 70 1:3 49 2:3
Andrs. Irises 7 26 1:4 9 1:1 57 1:8 – —

Scatterplot 15 69 1:5 29 1:2 81 1:5 15 1:1
Line Chart 14 60 1:5 20 3:4 53 4:15 13 1:1

Point Labels 5 14 1:3 7 1:1 21 1:4 28 2:11
Crimean 110 36 3:1 104 1:1 48 2:1 – —

Crimean*** (27) 36 (2:3) 104 (1:4) 48 (1:2) – —
Figure 12: Total tokens dedicated to the guide creation in selected examples and ratios of stencil vs other frameworks. The “Andrs. Irises”
line is just the legend, not the axes (which were compared using scatter plot instead). ***The parenthesized values on this line exclude
a Java function definition used only in the guide creation. The hight number of tokens is indicative of a need for a better ad-hoc bridge,
such as the one D3 or Protovis provide.

Tieing guides to the data already present is tricky in D3, requiring
manually transforming the dataset, then passing the transformed
version to the guide creation code. This type of manual passing
of data is avoided in a declarative system.

The Protovis visualization framework supports many declar-
ative constructs [5]. This includes some support for guides. For
axes, for example, the data iterator and Anchors provide access
to the input and result space respectively. Similar concepts exist
for many Protovis objects (e.g., the ‘ticks’ method from pv.scale
objects). However, guides themselves are not distinguished as
separate entities; combining the various relevant components is
done using standard analysis operators. Having input and output
space information available provides near feature-parity with the
described system and combined with the declarative basis, makes
Protovis a natural target for comparison. Subjectively, the Sten-
cil definitions were consistently more general than the Protovis
ones. Like D3, some Protovis definitions explicitly encode in-
formation about the input data. Both Protovis and Stencil defini-
tions included explicit guide positioning instructions, principally
for legends. The shortest Protovis declarations occurred for cat-
egorical axes, where anchors and the data iterator provided all
necessary information. Transformations on the input data or the
sampling over continuous spaces were the most verbose parts of
Protovis guide creation. In contrast, graphic design specification
was the most verbose part of Stencil guides. This source of Sten-
cil verbosity may be ameliorated by having guides inherit graphic
attributes from the layers they are applied to. Protovis provides
such inheritance through its scene graph mechanism.

ggplot2 is a popular visualization library for the R statical
environment. ggplot2 automatically constructs many guides in an
acceptable fashion. However, the data model of R is data-state
based and ggplot2 operates on these state objects. This makes
it easy for ggplot to create consistent guides (reflect the data),
but since only analysis results are available it is more difficult to
construct complete guides (reflecting the analysis) that look any
earlier than the final analysis stage. A token-based comparison of
ggplot2 to Stencil is also presented in Figure 12. The R’s native
handling of formulas helps ggplot2 use little syntactic furniture to
automatically construct guides, generally resulting in little or no
required code for basic definitions. However, non-standard guides
quickly become cumbersome to construct, especially if the cus-
tomization involves introducing data states not originally present
in the analysis (such as abbreviated names). Furthermore, since
custom labeling is based on row-matching in the data frame it is

incumbent on the programmer to indicate a row that the results be-
ing presented actually depend on (thus, consistency is only condi-
tionally supported in Figure 10). A zero-token solution for Stencil
would require improving the default placement of the monitor op-
erator to respect the need to cleanly divide the data dependencies.
However, the default guide definitions themselves are trivial.

Future Work
Using the guide creation system in Stencil demonstrated the

practicality of the approach. It also illuminated two shortcom-
ings, both stemming from a need to re-state important information
about guide attributes. The first, and more significant, is an insen-
sitivity to sample spaces that are independent of the input data.
This can be seen in Example 6b where the Scale operator’s on
line 15 has its max and min arguments manually copied and repre-
sented as ‘seed’ arguments in the guide declaration on line 8. This
manual transfer is dictated by the fact that the provided Monitor
and Sample operators (which together constitute the sample op-
erator of Section: Generation) are based entirely on input data.
However, the Scale operator in the analysis is parameterized to
indicate an input space that exceeds the data presented. A work-
around includes using shared constants, but this only hides the
problem. Ideally, some means of communicating that an operator
expands the input range would be provided. The earlier iteration
of the guide system [13] allowed categorical operators to provide
a sample instead of the dedicated seed/sampler pairs. This was re-
moved from the current system to simplify the operator interface
and transformations but a similar system could be re-introduced to
allow for operators to determine the sample space. Alternatively,
introducing a means for operators to communicate an expected
sample space would achieve the same effect. The relative merits
and implementation details of these techniques are not know.

The guide creation process described in Section: Genera-
tion relies on non-interference, and is thus simple, in many ways.
A guide process that can modify memory could be used to per-
form some optimizations discussed in earlier work [13]. This
requires a more complex set of semantics than was provided in
Section: Analysis Semantics and Metadata and complicates rea-
soning about guide/analysis interaction by removing the Subor-
dinate property. However, these same issues are shared by pro-
viding arbitrary post-processing. Investigating the effects of non-
subordinate guides may provide insight into further useful seman-
tics for visualization frameworks.

32
IS&T International Symposium on Electronic Imaging 2017

Visualization and Data Analysis 2017

Conclusions
Guides provide essential support for the interpretation of a

visualization. Existing library-based visualization software does
not provide abstractions to support semantically-aware guide cre-
ation. Creating guides in an abstract fashion requires an encoding
of the execution semantics of an analysis process and the seman-
tic role that guides play in a visualization. We have presented
a formalization of execution semantics and used that to develop
a declarative guide creation process. The concepts of this paper
have been implemented in the Stencil system, demonstrating that
the concepts are sufficient and practical. We believe these creation
concepts can be applied in other frameworks to improve guide
creation and visualization frameworks in general.

References
[1] Tableau software: Business dashbaords.

http://www.tableausoftware.com/business-dashboards,
March 2008.

[2] G. Abram and L. Treinish. An extended data-flow architec-
ture for data analysis and visualization. In VIS ’95: Pro-
ceedings of the 6th conference on Visualization ’95, page
263, Washington, DC, USA, 1995. IEEE Computer Society.

[3] J. Backus. Can programming be liberated from the von neu-
mann style?: a functional style and its algebra of programs.
page 1977, 2007.

[4] J. Bertin. Semiology of Graphics. Reprinted by University
of Wisconsin Press, 1967.

[5] M. Bostock and J. Heer. Protovis: A graphical toolkit for vi-
sualization. IEEE Transactions on Visualization and Com-
puter Graphics, 15(6):1121–1128, 2009.

[6] M. Bostock and J. Heer. Protovis: Anderson’s flowers exam-
ple. http://vis.stanford.edu/protovis/ex/
flowers.html, March 2010.

[7] M. Bostock and J. Heer. Protovis: Beckery’s barley exam-
ple. http://vis.stanford.edu/protovis/ex/
barley.html, March 2010.

[8] M. Bostock and J. Heer. Protovis: Nightingale’s rose exam-
ple. http://vis.stanford.edu/protovis/ex/
crimea-rose.html, March 2010.

[9] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven
documents. IEEE Trans. Visualization & Comp. Graphics
(Proc. InfoVis), 2011.

[10] C. A. Brewer. Color use guidelines for data representation.
In Proceedings fo the Section on Statistical Graphics, pages
55–60, Alexandria, VA, 1999. American Statistical Associ-
ation.

[11] E. H. Chi. A Framework for Visualizing Information
(Human-Computer Interaction Series). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2002.

[12] J. A. Cottam and A. Lumsdaine. Stencil: A conceptual
model for representation and interaction. Information Vi-
sualisation, International Conference on, 0:51–56, 2008.

[13] J. A. Cottam and A. Lumsdaine. Algebraic guide genera-
tion. In IV ’09: Proceedings of the 2009 13th International
Conference Information Visualisation, pages 68–73, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

[14] J. A. Cottam and A. Lumsdaine. Automatic application of
the data-state model in data-flow contexts. In IV ’10: Pro-
ceedings of the 2010 14th International Conference Infor-

mation Visualisation, Washington, DC, USA, 2010. IEEE
Computer Society.

[15] J. Fekete. The InfoVis toolkit. In Proceedings of the 10th
IEEE Symposium on Information Visualization, pages 167–
174, Piscataway, New Jersey, 2004. IEEE Press.

[16] D. Gelernter and N. Carriero. Coordination languages and
their significance. Commun. ACM, 35(2):97–107, 1992.

[17] J. Heer and M. Bostock. Declarative language design for in-
teractive visualization. IEEE Trans. Visualization & Comp.
Graphics (Proc. InfoVis), 2010.

[18] J. Heer, S. K. Card, and J. A. Landay. Prefuse: A toolkit
for interactive information visualization. In Proceeding of
the SIGCHI Conference on Human Factors in Computing
Systems (CHI’05), pages 421–430, New York, NY, USA,
2005. ACM Press.

[19] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances
in dataflow programming languages. ACM Comput. Surv.,
36(1):1–34, 2004.

[20] J. Lloyd. Practical advantages of declarative programming.
In Joint Conference on Declarative Programming (GULP-
PRODE’94), 1994.

[21] M. Luboschik, H. Schumann, and H. Cords. Particle-based
labeling: Fast point-feature labeling without obscuring other
visual features. IEEE Transactions on Visualization and
Computer Graphics (InfoVis’08, pages 1237–1244, 2008.

[22] S. S. Owicki and D. Gries. An axiomatic proof technique
for parallel programs i. Acta Inf., 6:319–340, 1976.

[23] R Development Core Team. R: A language and environ-
ment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria, 2005.

[24] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Re-
active vega: A streaming dataflow architecture for declara-
tive interactive visualization. IEEE Trans. Visualization &
Comp. Graphics (Proc. InfoVis), 2016.

[25] R. Scheck. Create Dynamic Charts in Microsoft Office Excel
2007. Microsoft Press, 2008.

[26] J. Talbot, S. Lin, and P. Hanrahan. An extension of wilkin-
son’s algorithm for positioning tick labels on axes. IEEE
Trans. Visualization & Comp. Graphics (Proc. InfoVis),
2010.

[27] E. Tufte. The Visual Display of Quantitative Information.
Graphics Press, Cheshire, Connecticut, 1983.

[28] E. Tufte. Envisioning Information. Graphics Press,
Cheshire, Connecticut, 1990.

[29] H. Wickham. ggplot2: Elegant Graphics for Data Analy-
sis. Springer Publishing Company, Incorporated, 2nd edi-
tion, 2009.

[30] L. Wilkinson. The Grammar of Graphics. Springer-Verlag,
New York, 2nd edition, 2005.

IS&T International Symposium on Electronic Imaging 2017
Visualization and Data Analysis 2017 33

http://vis.stanford.edu/protovis/ex/flowers.html
http://vis.stanford.edu/protovis/ex/flowers.html
http://vis.stanford.edu/protovis/ex/barley.html
http://vis.stanford.edu/protovis/ex/barley.html
http://vis.stanford.edu/protovis/ex/crimea-rose.html
http://vis.stanford.edu/protovis/ex/crimea-rose.html

