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Abstract 
A classical way of coloring a surface in order to create a still 

image is the application of a colored coating. The more recent 
digital printing systems enable depositing thick coatings or 
successive ink layers. The color rendering of the surface depends 
on the optical properties of the coated materials (optical index, 
spectral scattering and absorption coefficients) and their thickness. 
In order to predict its spectral reflectance as a function of these 
parameters, the so-called two-flux approach is to be tested in first 
since the model is simple and relies on analytical equations. It has 
a good chance to provide accurate predictions for coatings made 
of solid layers of strongly scattering or nonscattering media, or 
even complex stratified coatings obtained by stacking 
nonsymmetrical components such as printed films. The generalized 
Kubelka-Munk model summarized in this paper enables treating 
all these configurations with a unified mathematical formalism. 
But it has limitations and may provide poor color predictions for 
certain types of layered materials. We therefore propose a simple 
method based on parameters of the model to check the precision of 
the two-flux model for a given type of coating. 

1. Introduction 
Predicting the color or the spectral reflectance of prints has 

been a subject of investigation for several decades and color 
management for these types of surfaces can now be done with 
good accuracy [1]. The challenge today is to achieve comparable 
prediction accuracy in the case of colored objects made of several 
layers or stacked component, such as surfaces printed in relief with 
2.5D printer or with stacks of glass plates, which are becoming a 
favorite material for sculptors (see for example [2]). In order to 
predict the color variation of the object’s color as a function of the 
number of material slices, one needs an accurate and efficient 
model taking into account, rigorously but in a simple way, the 
optical properties of the materials. Flux propagation models are a 
promising to achieve this target.  

The simplest flux propagation model, to be tested in first 
when considering given layered material, is the two-flux model, 
either in its classical version proposed by Kubelka [3, 4] in the 
case of strongly scattering layers in optical contact with each other, 
or in its discrete version introduced in previous works in the case 
of stacks of nonscattering materials [5-8]. The continuous 
Kubelka-Munk formalism and the discrete formalism have been 
unified into a generalized two-flux model relying on a transfer 
matrix model that we will recall here.  

The main objective of this paper is to synthetically present the 
most general formulas related to the generalized two-flux model 
and its four versions: the continuous-symmetrical version for 
uniform scattering layers yielding the classical Kubelka-Munk 
formulas; the discrete-symmetrical version for piles of identical 
layers, films or plates having same reflectance on their two faces; 
the discrete-nonsymmetrical version for piles of identical layers, 

films or plate having different reflectances on their two faces; and 
the continuous-nonsymmetrical version for stacks of layers having 
different absorption and scattering coefficients according to the 
forward and backward flux directions. For the first time, we 
propose to gather the formulas associated with these four versions. 
A second objective of this study is to propose a simple and 
efficient method to check the validity of the two-flux model for a 
given type of layered material, thanks to the invariance of some 
parameters of the model according to the number of stacked 
components.  

2. Generalized two-flux model 
The generalized two-flux model addresses stacks of identical 

planar optical components such as layers of nonscattering media, 
layers of strongly scattering media and their eventual interfaces 
with air. The stacking may also be composed of more complex 
optical components such as colored films, alternations of ink 
layers, glass plates… The interesting point is that the macroscopic 
measurement of the reflectance and transmittance of one 
component suffices to predict the reflectance and transmittance of 
stacks of any number of similar components.  

The generalized two-flux equations can be easily derived  
thanks to a matrix formalism, based on flux transfer matrices, 
presented in detail in [7]. We propose to remind the main lines of 
this matrix model before presenting the general reflectance and 
transmittance equations, and various special cases, among which 
the Kubelka-Munk model for uniform layers of scattering material. 

2.1 Transfer matrix model 
Let us consider a planar optical component for example a 

sublayer of material with unit thickness, or a film with interfaces 
with air… When illuminated from the front side, its reflectance is 
R and its transmittance is T. When illuminated on the back side, it 
can have a different reflectance R’ and a different transmittance T’. 
All reflectances and transmittances are spectral quantities, even 
though their dependence upon wavelength is not explicitly 
mentioned in the following equations. 

The incoming and outgoing fluxes at both sides of the 
component, defined in Figure 1, are related by a matrix M 

0 1

0 1

I I

J J

   
=   

  
M , (1) 

called the transfer matrix of the component, defined in terms of its 
reflectances and transmittances as: 

11 R

R TT RRT

′− 
=  ′ ′− 

M , (2) 

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Measuring, Modeling, and Reproducing Material Appearance 2016 MMRMA-369.1

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Measuring, Modeling, and Reproducing Material Appearance 2016 MMRMA-369.1

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Measuring, Modeling, and Reproducing Material Appearance 2016 MMRMA-369.1



 

 

 
Figure 1: Flux transfers between the front and back sides of an optical 
component. The incoming and outgoing fluxes are represented by red arrows, 
and the transfers by black dashed arrows.  

The diagonalization of M yields: 

1 / ρ 1 / ρ μ 0 α β 1 / ρρ

α β α β 0 ν α β 1 / ρ2β

− −     
= ⋅ ⋅     + − +     

M  

where 

( )

( )

2

1
α ,

2

β α 1,

ρ / ,

τ / ,

1
1 ,

1
1 .

RR TT

RR

R R

T T

RR
T

RR
T

′ ′+ −=
′

= −

′=

′=

 ′μ = − α + β 

 ′ν = − α − β 

 (3) 

Parameter α generalizes the parameter denoted a in the 
classical Kubelka-Munk model (see Section 3.1), whose inverse is 
sometimes called albedo of the scattering medium [9-10]. 
Parameters μ and ν are the eigenvalues of matrix M. They are 
related by the remarkable equalities: 

2/ 1 / τT T′μν = = . 

When k components are stacked with each other, the stack has 
a reflectance Rk and a transmittance Tk when illuminated on the 
front side, and a reflectance kR′  and a transmittance kT ′  when 
illuminated on the front side. The transfer matrix Mk of the stack, 
defined as 

11 k
k

k k k k kk

R

R T T R RT

′− 
=  ′ ′− 

M , 

is simply the matrix M raised to the power k. Matrix Mk is 
therefore given by: 

1/ ρ 1/ ρ μ 0 α β 1/ ρρ

α β α β α β 1/ ρ2β 0 ν

k
k

k k

  − −   
= = ⋅ ⋅     + − +    

M M  (4) 

and the eigenvalues of kM  are, for every k,  

μ μk
k =      and     ν νk

k = . (5) 

The reflectances and transmittances of the stack are derived 
from matrix Mk = {mij} by the following formulas: 

21 11

11

12 11

11 22 21 12 11

/ ,

1/ ,

/ ,

det / / .

k

k

k

k k

R m m

T m

R m m

T m m m m m

=
=

′ = −
′ = = −M

 (6) 

2.2 Main formulas of the generalized two-flux 
model 

After Kubelka’s early work on the staking of diffusing layers 
[4], it is known that the reflectances and transmittances of a 
stacking of two similar components are given by: 

2

2

2

2

2

2

,
1

,
1

,
1

.
1

TT R
R R

R R

T
T

R R
TT R

R R
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T
T

R R

′
= +

′−

=
′−

′ ′′ ′= +
′−

′′ =
′−

 (7) 

They are the special case for k = 2 of the following equations 
valid for any number k of similar components: 

( ) ( )

( ) ( )

,

2
,

,

,

k k

k k k

k k k

k k

k

k k

R
R

R

T

R
R R

R

T
T T

T

ν − μ=
′ ν α + β − μ α − β

β=
ν α + β − μ α − β

′′ =

′ ′ =  
 

  (8) 

where parameters α, β, ρ, τ, μ and ν are given in (3). Equations (8) 
are the results of equations (6) applied on the matrix kM  given in 
(4). By rearranging equations (8), we also obtain the following 
original equations, whose similarity with the classical Kubelka-
Munk reflectance and transmittance formulas can be noticed: 

( )[ ]
( )[ ] ( )[ ]

( )[ ] ( )[ ]
( )
( )

logτ

sinh log ντ
,

αsinh log ντ βcosh log ντ

β
,

αsinh log ντ βcosh log ντ

,

.

k

k

k

k k

k
k k

kR
R

R k k

e
T

k k

R R R R

T T T T

= ⋅
′ +

=
+

′ ′=

′ ′=

  (9) 
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R

T
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J1

R ′
T ′ Component

Front side

Back side
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Equations (8) and (9) are valid for any positive integer 
number k, provided the two-flux theory is adapted to the 
considered layered material which is generally the case of the 
media are strongly scattering or nonscattering, and nonfluorescing. 
We can verify that for k = 2, they yield equations (7). By 
extension, we can consider any real number k, which makes sense 
for example in the case of homogeneous layers of paints: if one 
component represents a layer of thickness 1 mm, we have k = 2.34 
for layer of thickness 2.34 mm. 

The parameters defined in equation (3) only depend on the 
reflectances and the transmittances of the elementary component. 
One remarkable result of the generalized two-flux theory is that α 
and ρ remain constant if the reflectances and transmittances of one 
component, R, R′ , T and T ′  are respectively replaced with the 
ones of k stacked components, kR , kR′ , kT , kT ′ , for any k (it is 
not the case for τ). We advocate that this invariance property is a 
way of assessing the validity of the generalized two-flux theory for 
a given layered material, as we will explain in Section 4. 

When the number of stacked components tends to infinity, the 
transmittance trends to zero and the reflectance tends to a limit 
expressed as: 

( )1
α β

α β

R R
R

R R∞ = = −
′ ′+

 (10) 

3. Special cases 
The generalized two-flux model can be developed under 

various forms according to the considered type of layered material. 
One special case is a uniform layer of strongly scattering medium, 
illuminated by Lambertian fluxes. The model becomes equivalent 
to the Kubelka-Munk model, which forms a continuous version of 
the generalized two-flux model. A second special case is a stack of 
similar nonscattering components illuminated by collimated light, 
for example a stack of colored films; the reflectance and the 
transmittance of each film includes the internal transmittance of 
the film bulk and the flux transfers at the air-film interfaces. The 
number of films being an integer number, the model form a 
discrete version of the generalized two-flux model.  

Table 1 gives a synthetic view of the formulas attached to the 
continuous and discrete version of the generalized two-flux model, 
in the case of either symmetric or nonsymmetric layers. 

3.1 Continuous model for homogenous scattering 
layer 

Let us consider a homogenous layer of strongly scattering 
medium, of thickness h0, illuminated by Lambertian fluxes. This 
layer can be considered as the elementary component of the 
generalized two flux model. Its reflectances R and R’ are generally 
equal, and its transmittances T and T’ are also equal: the layer is 
said to be symmetric. Then, thanks to the equations given in 
Section 2.2, we can compute by using equations (8), or 
equivalently by equations (9), the reflectance and the transmittance 
of a layer of any thickness h made with this material, by 
considering it as a stack of k elementary layers of thickness h0, 
with 0/k h h= . In this case, k may be any positive, real number. 

We can show that equations (8) or (9) are mathematically 
equivalent to the classical Kubelka-Munk reflectance and 
transmittance formulas. For that purpose, we consider a layer with 
thickness h for which we want to compute the reflectance Rh and 
transmittance Th. We select as elementary component a sublayer 
with thickness h/k. The whole layer is therefore a stack of k 

identical sublayers. If k is large enough, the sublayer’s thickness 
can be assumed infinitesimal. Therefore, according to the Kubelka-
Munk model, its reflectance is /Sh k , where S is the scattering 
coefficient of the material, and its transmittance is 1 – (K + S)h/k, 
where K is the absorption coefficient of the material. The general 
formulas (3) and (9) therefore apply with  

( )1

h

k

h

k

R R S

T T K S

′= =

′= = − +
   

Obviously, we have ρ = τ = 1.  
As k tends to infinity, we have:  

2

limα ,

limβ 1 .

k

k

K S
a

S

a b

→∞

→∞

+= =

= − =
,  

Moreover, knowing the following classical result for the 
exponent function [11]:  

lim 1
k

x

k

x
e

k→∞

 = + 
 

,  

we also have: 

( )
( )

( )1 α β
lim logν lim log log

1

kSh b a Sh
k

k aShk k h

k

e
k bSh

eK S

−

−→∞ →∞

 − −   = = = 
  − + 

. 

By introducing the limits obtained above into equations (9), 
we retrieve the classical Kubelka-Munk formulas: 

( )
( ) ( )

( ) ( )

sinh
lim ,

αsinh βcosh

lim .
αsinh βcosh

h k
k

h k
k

bSh
R R

bSh bSh

b
T T

bSh bSh

→∞

→∞

= =
+

= =
+

  (11) 

When the layer’s thickness tends to infinity, the general 
reflectance expression given by (10) simplifies as 

R a b∞ = −  (12) 

which is a famous result of the Kubelka-Munk theory.  
 

3.2 Continuous model for nonsymmetrical 
scattering layers 

Even though it is physically difficult to conceive, the 
mathematical model enables imagining a scattering medium in 
which an infinitesimal layer would have different reflectances and 
transmittances according to the illuminated side. This would result 
in different absorption and scattering coefficients for the forward 
flux (respectively denoted K and S) and the backward flux (K’ and 
S’). As shown in appendix of [7], the Kubelka-Munk formulas 
easily extend to this configuration.  
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Table 1. Main formulas of the generalized two-flux model .  
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The parameters defined in (3) become: 
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and the reflectance and transmittance expressions for a layer of 
thickness h become: 
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3.3 Generalized Saunderson correction 
In sections 3.1 and 3.2, we considered a stacking of planar 

diffusing components. The model does not apply as it is if the first 
and last components have an interface with air while the other 
components do not: due to the optical effect of the interfaces, the 
bordering components could not be considered as similar to the 
other ones. This is the case for example when stacking several 
layers of a same paint. The optical effect of the bordering 
interfaces is to be considered separately, in a similar manner as the 
correction by Saunderson of the Kubelka-Munk model [12].  

The reflectances and transmittances of the interfaces at the 
air-side and the medium-side are computed by using the Fresnel 
formulas according to the angular distribution of the incoming 
light and the geometry of the detectors. Table 1 in [7] gives these 
reflectances and transmittances for different geometries. Let us 
consider here that the fluxes coming from air are Lambertian, and 
that the whole outgoing light in air is collected by an integrating 
sphere (so called diffuse-diffuse geometry, denoted d:d according 
to the recommendations by the CIE). By denoting as R01(θ) the 
Fresnel reflectance of the interface for a light ray coming from air 
at angle θ, and as R10(θ) the one for a light ray coming from the 
medium at angle θ’, the air-side reflectance of the interface, rs, the 
air-to-medium transmittance Tin, the medium-to-air transmittance 
Tex, and the medium-side reflectance ri, are respectively given by: 
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With the interfaces, the stack of layers, whose intrinsic 
reflectances and transmittances are given by (13) in the most 
general case, has now the reflectances and transmittances (denoted 
with a capping ~ symbol): 
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  (14) 

These reflectance and transmittance expressed by (14) are the 
quantities which can be measured. From them, by using the 
following equations, we can deduce the intrinsic reflectances and 
transmittances of the stack of layers: 
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with 

( ) ( ) 2Δ in ex i h s in ex i h s i h hT T r R r T T r R r r T T  ′ ′= − − − − −      . 

3.4 Discrete model for stacks of symmetrical 
nonscattering components 

The generalized two-flux model also applies with stacks of 
nonscattering components illuminated by collimated light. These 
components may be clear or colored glass plates or polymer films.  

The reflectance and transmittance of one plate considered 
alone result from a multiple reflection process of light between the 
two air-medium interfaces. When stacking the plates, a slice of air 
should remain between them in order to be sure that each plate has 
similar reflectance and transmittance as a single one. This is the 
case when the plates are simply deposited on top of each other, 
without optical contact. If a liquid is used to make the optical 
contact between the plates, the present model does not apply 
because the relative refractive index of the interfaces, thereby the 
multiple reflection process within the plates is modified.  

Experiments with stacks of nonscattering colored acetate 
films, illuminated by collimated light according to their normal 
direction, have already be presented in [13] and [8]. Other 
experiments based on transparency films printed in inkjet, with 
different reflectances on the inked and noninked faces due to a 
bronzing effect [14], have also been presented in [15]. In these 
studies, other mathematical methods than the present one were 
used to derive the reflectance and transmittance equations of stacks 
of films, which were however mathematically equivalent to 
equations (8).  

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Measuring, Modeling, and Reproducing Material Appearance 2016 MMRMA-369.5

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Measuring, Modeling, and Reproducing Material Appearance 2016 MMRMA-369.5

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Measuring, Modeling, and Reproducing Material Appearance 2016 MMRMA-369.5



 

 

We can mention here the reflectance and transmittance 
expressions corresponding to a stack of k symmetrical plates, for 
which we have: R = R’ and T = T’. Equations (8) can be written as: 
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R
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In the case of nonscattering components, the two-flux model 
applies only with collimated light (for any incidence angle in air), 
due to the principle of directionality stated in [16]. If the incident 
light is Lambertian, the reflectance of the stack of plates, rk, is 
obtained by integrating its angular reflectance ( )θkR , expressed as 
a function of the incident angle or measured for all angles from 0 
to π/2: 

( )π/2

θ 0
θ sin2θ θk kr R d

=
=   

The reflectance at the back side, and the front-side and back-
side transmittances are given by similar integrals, where ( )θkR  is 
respectively replaced with ( )θkR′ , ( )θkT  and ( )θkT ′ . 

4. Using the invariant parameters to check the 
validity of the two-flux model 

The reflectance and the transmittance of a stack of similar 
components generally vary as a function of the number k of 
stacked components,  whereas parameter α of the model is 
independent of k. Indeed, we can show that for every k value, we 
have: 

 
1 1

α α
2 2

k k k k
k

k k

R R T T RR TT

R R RR

′ ′ ′ ′+ − + −= ≡ =
′ ′

 (16) 

where R, R’, T, and T are the reflectances and transmittances 
attached to one components, and kR , kR′ , kT , and kT ′  the ones 
attached to k components. According to (5), we also have, for 
every k value: 

( ) ( )1/ 1 1
μ 1 1k

k k k k k
k

R R RR
T T
   ′ ′= − α + β ≡ − α + β = μ.     (17) 

The aim of this section is to see how these invariant properties 
can help to estimate whether the two-flux model is able to provide 
good reflectance and transmittance predictions for a given type of 

layered material. For that purpose, we selected sheets of various 
materials, stacked them incrementally, and measured their 
reflectance and transmittance.  

Nonscattering materials 
The following nonscattering materials were tested: sheets of 

cyan acetate (1 to 5 sheets, similar as the ones used for [13]), and 
transparency films printed by inkjet with a green or a magenta 
color (1 to 16 sheets, similar as the ones used for [15]). Their 
reflectances and transmittances, displayed in Figure 2-a, 
respectively Figure 2-c, were measured by using the X-rite Colori7 
spectro-photometer based on the diffuse:0° geometry. However, 
since these materials are nonscattering, all incident radiances 
except the one normal to the samples are ignored; the effective 
geometry is therefore the 0°:0° geometry [17].   

Figure 2 gathers various graphics issued from our experiments 
with these three types of materials. Each column of graphics 
corresponds to one material, and contains the following graphs. 

In row (a) are plotted the spectral front-side reflectances of 
the materials (the back-side reflectances are not displayed in this 
figure). The black solid line corresponds to the measured spectral 
reflectance of one sheet, and the red solid lines to the ones of k ≥ 2 
sheets. The reflectance progressively increases as k increases. The 
black dashed lines correspond to the spectral reflectances of k ≥ 2 
sheets predicted by equations (9) from the measured reflectances 
and transmittances of one sheet. The graphs in row (b) give for 
each stack the deviation between the measured and predicted 
spectral reflectances, assessed by the visual metric CIELAB ΔE94 
(obtained by converting both spectra into CIE-1931 XYZ 
tristimulus values then into CIELAB color coordinates, by using 
the D65 illuminant as a white reference). The model is fairly 
accurate with these materials since the ΔE94 value does not exceed 
0.5 unit.  

In row (c) are shown the measured and predicted spectral 
transmittances of the stacks. Similar color code as for reflectance is 
used to indicate measured and predicted spectra. The transmittance 
progressively decreases as the number of stacked sheets increases. 
For each stack, the ΔE94 values assessing the deviation between the 
measured and predicted transmittance spectra are displayed in row 
(d). The predictions for the blue acetate sheets and the green 
printed films are satisfying, even though they becomes poorer 
when the number of stacked films is too high, mainly because the 
stack is opaque in some wavelength domains, thus more sensible to 
measurement noise. The problem of opacity is more striking with 
the magenta printed films, more absorbing than the two other ones; 
the spectral transmittance predictions are clearly less accurate than 
for the other films.  

In row (e), the spectral αk  parameter is computed according 
to (16) for all k ≥ 1. As expected, we observe that the spectral αk  
parameter is almost independent of k: the different plotted curves 
are very close to each other. The rms deviation between the 
spectral curves of ( )α 1k k ≠  and ( )α 1k =  is shown in the graphs 
of row (f). It is lower than 2% for all tested samples.  

In row (g), the spectral parameter 1/μ k
k  is computed according 

to formula (17) for all k ≥ 1. As αk , it is almost independent of k 
except small deviations around 550 nm for the magenta printed 
films, most probably due to the fact that the transmittance ( )λkT  
trends to zero in this spectral domain as k increases. The rms 
deviation between the spectral curves of ( )1/μ 1k

k k ≠  and ( )μ 1k =
, shown in the graphs of row (h), is again below 2% except for the 
magenta films where it is much higher for the reason mentioned 
above.  
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Figure 2: Spectral properties of stacks of k nonscattering sheets: transparent blue acetate (left column), and transparency films printed with a green color (middle 
column) and with a magenta color (right column); (a) Measured (solid line) and predicted (dashed line) front-side reflectances for an incremented number of 
sheets; (b)CIELAB ∆E94 color difference computed from the predicted and measured spectral reflectances for the different stacks of k sheets; (c) Measured (solid 
line) and predicted (dashed line) transmittances for an incremented number of sheets; (b)CIELAB ∆E94 color difference computed from the predicted and 
measured spectral transmittances for the different stacks of k sheets; (e) spectral curve of the parameter αk computed for the different numbers k of sheets;(e) rms 
deviation between the spectral curve of the parameter αk (k ≠ 1) and the one of α (k = 1); (f) spectral curve of the parameter μk

1/k computed for the different 
numbers k of sheets;(e) rms deviation between the spectral curve of the parameter μk

1/k (k ≠ 1) and the one of μ (k = 1).  
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Figure 3: Spectral properties of stacks of k scattering sheets: supercalendered high quality paper (left column), nonfluorescent office paper (middle column) and 
usual, fluorescent office paper (right column); (a) Measured (solid line) and predicted (dashed line) front-side reflectances for an incremented number of sheets; 
(b)CIELAB ∆E94 color difference computed from the predicted and measured spectral reflectances for the different stacks of k sheets; (c) Measured (solid line) and 
predicted (dashed line) transmittances for an incremented number of sheets; (b)CIELAB ∆E94 color difference computed from the predicted and measured spectral 
transmittances for the different stacks of k sheets; (e) spectral curve of the parameter αk computed for the different numbers k of sheets;(e) rms deviation between 
the spectral curve of the parameter αk (k ≠ 1) and the one of α (k = 1); (f) spectral curve of the parameter μk

1/k computed for the different numbers k of sheets;(e) 
rms deviation between the spectral curve of the parameter μk

1/k (k ≠ 1) and the one of μ (k = 1). 
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Scattering materials 
Strongly scattering material were also tested: a nonfluorescent 

super-calendered high quality paper (1 to 5 sheets), a nonfluo-
rescent office paper (1 to 5 sheets) which was less homogeneous 
than the supercalendered paper especially in transmission, and a 
usual office paper containing optical brighteners. The reflectances 
and transmittances were also measured with the Colori7 
instrument; in this case the measuring geometry is the diffuse:0° 
geometry, almost equivalent to the diffuse:diffuse geometry since 
the sample are almost Lambertian. Similar graphs as for the 
nonscattering sheets are shown in Figure 3.  

Regarding first the two types of nonfluorescent papers, we 
can notice that the reflectance predictions are good: the ΔE94 
values between the predicted and measured spectral reflectances 
are low, as well as the deviations between the spectral curves of αk 
computed for the different numbers k of sheets and the one of α. 
Regarding the transmittance, predictions are poorer and we 
observe important deviations between the spectral curves for 

( )1/μ 1k
k k ≠  and the one for ( )μ 1k = . It seems that there is a 

correlation between poor transmittance predictions and important 
variations of 1/μ k

k  according to k.  
Regarding the usual office paper, reflectance predictions are 

rather poor due to the fluorescence which is not taken into account 
into the model. Since the first sheet in the stack absorbs the UV, 
the next sheets do not receive UV and therefore do not emit 
fluorescence. We can be surprised that, despite errors due to the 
fluorescence, the spectral curve of αk remains rather invariant 
according to k. Oppositely, the spectral curve of 1/μ k

k  strongly 
varies as a function of k, with a pick near 450 nm which is 
characteristic of the fluorescence. This shows that the two-flux 
model is clearly not adapted to fluorescing materials.   

As for the nonscattering sheets, we can notice a correlation 
between poor reflectance predictions and non-invariance of the αk 
parameter according to the number k of stacked sheets, as well as a 
correlation between poor transmittance predictions and non-
invariance of the 1/μ k

k  parameter. Observing the invariance of the 
αk and 1/μ k

k  parameters therefore seems to be a way to assess the 
capacity of the two-flux model to predict accurately the reflectance 
and transmittance of stacked similar components. The question is 
the threshold beyond which we must consider that the invariance is 
not satisfying. Experiments with many materials would be 
necessary to determine relevant, universal threshold values, but it 
appears through our experiments that the threshold is different for 
nonscattering and scattering materials. In the case of nonscattering 
material, a rms deviation of 2% of the αk parameter from α (k = 1) 
does not prevent good reflectance predictions for stacks of up to 
ten components. However, a deviation of 2% of the 1/μ k

k  parameter 
compromises accurate stack transmittance predictions. In the case 
of scattering materials, a rms deviation of 1% of the αk parameter 
from α may indicate poor reflectance predictions, and the threshold 
for 1/μ k

k  parameter seems to be around 5%.  
 

5. Conclusions 
This paper gathers and summarized the recent progresses of 

research on the two-flux theory, including especially the case of 
the nonscattering component in which the back-reflection of flux is 
due to the interfaces. One important result is the possibility to 
address, within a mathematical framework related to the Kubelka-
Munk model, stacks of similar non-symmetrical components such 
as stacks of printed films or coated glass plates. Another 
interesting result is the fact that a parameter of the model, here 

denoted α, can be defined, with the same formula, from 
reflectances and transmittances on both sides of either one 
component or a stack of similar components. We can easily check 
from spectral measurements that this invariance property is 
satisfied for a given type of print. When it is not, the model will 
most probably provide poor reflectance prediction accuracy. 
Another parameter, denoted μ, can also be defined from the 
spectral reflectances and transmittances of either one component or 
several stacked components. This parameter itself depends on the 
number k of components, but once raised to the power 1/k, it 
becomes independent of k. When this invariant property is not 
satisfied, the model is most probably not able to predict correctly 
the transmittance of stacks of the considered components. From 
our first experiments, which should be confirmed by many other 
ones, we proposed empirical thresholds permitting to assess 
whether these parameters can be considered as invariant or not, 
therefore whether the two-flux model has a chance to apply for the 
considered material or more advance models should be used.  

In the future, we would like to verify the accuracy of the 
generalized two-flux model with stacks of halftone ink layers, such 
as those that 2.5D printers can produce [18]. We can expect good 
accuracy of the model with solid layers of nonscattering inks and 
varnishes, or strongly scattering inks (e.g. white ink), or even 
periodical alternations of solid layers of nonscattering and strongly 
scattering inks, with a Saunderson correction in order to take into 
account the air-ink interfaces and possibly the printing support. But 
we might expect that the model fails in the case of halftone ink 
layers due to optical dot gain within each layer, especially with the 
diffusing ink which for a layer has transparent areas, that light 
crosses directionally, and diffusing areas where light is both 
reflected and diffusely transmitted. The extension of the model to 
halftone layered materials is therefore the next challenge to 
address. The four-flux approach [19-21], which relies on two 
directional fluxes and two diffuse fluxes and has been recently 
formulated with a similar transfer matrix formalism [22] as the one 
recalled in this paper, is promising since it could enable the 
combination of the directional and diffused flux propagation 
through the partly-diffusing and partly-nonscattering layers. 
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