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Abstract
Surface geometry can play an important role in our ability

to understand and interpret material appearance and properties.
This property ranges from large-scale shape changes impacting
our identification of reflections to visible surface roughness af-
fecting how glossy a material appears. In this work we present
a user study that examines numerous surface geometries that are
defined at the mesoscale: small enough to be considered indica-
tive of the material and not object geometry, but large enough to
be visible from a distance with the naked eye. Subjects matched
the perceived brightness of a ray-traced bumpy surface to a flat
surface with adjustable intensity. Multiple classes of bumpy sur-
face were generated and presented to subjects so that the effects
of surface pattern on perceived brightness could be studied. We
show that two predictive models of brightness are only condition-
ally accurate but that humans have a consistent means of measur-
ing overall brightness.

Introduction
In this work we begin to examine numerous surface geome-

try patterns and how subjects perceive their brightness from dif-
ferent viewing and lighting directions. The surface structures
are generated at the mesoscale, a scale above microscopic rough-
ness profiles that are well described by statistical models used in
BRDFs and below macroscopic that fundamentally influences the
overall shape of an object. Mesoscale surface patterns are inter-
esting because they provide small, but visible, cues as to lighting
and shading while still frequently being identified as part of a ma-
terial (e.g. the ridges of stucco, coarseness of brick, and grains
of certain woods). The patterns may be random, produced natu-
rally, or follow very regular forms based on artistic design deci-
sions. This last point is important because humans can manufac-
ture mesoscale patterns with much more ease than new paints or
coatings and are frequently employed in product design to create
signature looks or improved haptic feel while maintaining appear-
ance standards. Indeed our work is inspired by our interactions
with the automotive industry where they design surface patterns
at this scale for the interior of vehicles.

The mesoscale is somewhat subjective and dependent on the
distance to the viewer. For example when examined up close, con-
crete and other building materials can have visible non-smooth
surfaces but at a distance it can be accurately described as a plane
with a reflectance model such as Oren-Nayar’s BRDF [10] due
to our visual system’s finite resolution. A good rule of thumb
that was applied to the surfaces generated in this study is that the
mesoscale is just large enough to produce visible patterns from
shading but not so large that it drastically changes the silhouette
of the object. Unfortunately, the parameter space for surfaces pat-
terns at this scale is nigh infinite. To constrain the scope of this
study, we have chosen to evaluate perceived brightness of these
surfaces. There are many aspects of appearance, ranging from

brightness, color, glossiness, texture, apparent tactile roughness,
and material makeup that can be inferred by the visual system [6].
We begin with brightness for its relative simplicity and it will act
as a good foundation before moving to more advanced aspects.
Additionally, we restrict the surface geometries to a set of param-
eterizable generators that produce families of distinct patterns.

The preliminary results of our work into this area are pre-
sented in this paper. The next section describes background work
examining brightness and lightness perception in humans, mate-
rial perception, and other related work from the psychophysics
and computer graphics communities. The next section describes
the experimental setup for a user study conducted as well as the
process for generating numerous parameterized surfaces at the
mesoscale. Our aim is to sparsely sample the space of surface
patterns and identify how brightness is interpreted over a spatially
varying bumpy material. Analysis and data from two user stud-
ies is shown in subsequent section. Lastly, we conclude with a
discussion on future directions and implications for this research
area.

Background
Brightness has often been studied alongside lightness. We

continue the common distinction of brightness being the per-
ceived luminance of an object and lightness being the apparent
reflectance of the object. We are only concerned with brightness
as subjects are aware that the surfaces under question are made
of a uniform material. These properties have been studied in very
synthetic scenarios with 2D elements arranged as concentric an-
nuli [16], complex rectangular patterns [1], and designed to evoke
depth relations [15]. Additionally, past research has focused on
flat or smooth patterns when judging brightness and this work is
the first to our knowledge to approach the spatially-varying prob-
lem.

We are interested in exploring brightness when the stimuli
is a much more physically accurate simulation of a 3D surface.
Research has shown that realistic lighting can have an impact on
subjects’ abilities to identify gloss [7]. Other work has shown
that perceived shape and depth can affect our interpretation of
color [2]. Given this, it is necessary to include the supporting
scenery that assists in identifying lighting and shading from tex-
ture.

Elements of this study have been inspired by the computer
graphics and psychophysics experiments into the perception of
glossiness. This body of work has demonstrated the effective-
ness of user studies comparing and matching rendered images [5],
and the impact that surface geometry variations can have on the
perception of surface properties [11, 8, 13]. Although the dis-
covery that mesoscale surface structure can impact how humans
perceive glossiness is significant, the geometry patterns have not
been analyzed in a systematic way. Several studies that have ap-
proached the subject have chosen arbitrary and distinct structures
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Figure 1. The experiment user interface presented to subjects. The slider

along the bottom is controlled by mouse movement and adjusts the bright-

ness of the right pedestal.

and patterns (1/f noise or overlapping bubbles) leading to diffi-
culties comparing their results. Additionally one can argue that
given the complexity of introducing visible surface variations into
a stimuli, a property such as gloss is perhaps too far-reaching be-
fore understanding simpler traits.

To that end, we report on a study designed to evaluate how
humans interpret the brightness of surfaces with visible rough-
ness or structure that is still small enough to be considered part of
appearance and not geometry (the mesoscale). We target bright-
ness as it is one of the most primitive of perceived quantities when
viewing a surface. We examine numerous surface patterns to iden-
tify commonalities in how humans interpret surface geometry at
this scale. A goal is to provide insight into future studies that con-
sider perceived spatially varying appearances, as well as guide-
lines for interpreting past research involving mesoscale surface
patterns.

Experiment
Our experiments were designed to serve two purposes; first,

to see how consistently people judge the brightness of a surface
with mesoscale patterns of shading and second, to see if there are
trends across varieties of surface geometries. During the experi-
ment, a subject is presented with two copies of a scene side-by-
side, as shown in Figure 1. On the left presentation, the disc in the
middle of the pillar displays a ray-traced surface pattern. The right
presentation’s disc’s brightness is controlled by a slider. Subjects
were tasked with adjusting the brightness until it best matched the
overall brightness of the complex surface. A matching adjustment
task was chosen to avoid the pair-wise explosion that would oc-
cur if subjects were to compare patterns. Given the size of surface
pattern space considered, a comparison task is intractable.

Once matched, as reported by the subject, the screen was
cleared briefly before advancing to another trial with a different
scene configuration. The matching task was time-limited to 15
seconds. If this time was exceeded the trial was advanced auto-
matically. This short time period encouraged measuring bright-
ness of the overall pattern. When longer or unlimited periods of
time were given during preliminary studies, subjects frequently
tried to match the brightness of only the surfaces not in shadow.
Periodically subjects were given a short break to relieve fatigue.
Prior to the experiment, all subjects were given a demonstration

of mesoscale surfaces in the real world using a molded plastic
plaque from an automotive company and then trained with the
user interface.

Training consisted of performing the same adjustment task,
but on surface patterns not included in the actual study. A window
of reasonable values was selected by the authors, and visual feed-
back was provided if the subject’s matching attempt fell outside
of the window. All subjects consistently fell within the acceptable
window by the end of five training trials, many even on their first
trial. Several had issues at the very beginning of training while
they learned the 15-second time window.

Two user studies were performed; the studies were identical
except for the selected stimuli as described in Section “Scene Se-
lection for Subjects”. Each study had twelve participants with no
subject participating in both studies. Both studies had 8 female
and 4 male subjects each. Subjects ranged in age from 18 to mid-
60’s with normal or corrected-to-normal vision and no reported
visual impairments. The study was conducted in a darkened room
on a single 24-inch Dell monitor in full screen with a resolution
of 1920× 1080; the monitor was viewed at a distance of 60cm.
The stimuli, as described below, was tonemapped to the display
using Reinhard’s photographic operator [14].

We next describe our process for producing numerous pa-
rameterizable mesoscale surfaces, then a discussion of the over-
all stimulus presented to subjects, followed by our strategy for
sparsely sampling the large number of scenes we produced.

Mesoscale Surface Generation
Surface patterns were automatically generated using a vari-

ety of processes to achieve a spread of patterns that ranged from
completely regular patterns (that might be manufactured) to ran-
domized, more natural patterns. This range includes the classes
of surface examined by past studies on the perception of gloss.
Each surface generator was parameterized so that many variations
could be produced while still having a cohesive structure. The
patterns created are described in Figure 2. The patterns shown
in Figure 2e and Figure 2f feature irregular noise generated using
Perlin noise [12].

Overall, 136 total surface patterns were generated by vary-
ing their available parameters to get a range of stipple sizes, ele-
vations, etc. The size of elements within the surfaces ranged from
1mm to 8mm, which given the scene stimuli parameters, covered
the characteristic sizes of mesosurfaces.

Stimuli Design
Every generated surface pattern was rendered from six-

teen view points and sixteen lighting directions, for a total of
256×136 = 34,816 images. Surface patterns were lit and viewed
from multiple directions so that any view or light direction depen-
dence on the perceived brightness could be detected. The height
elevation of each surface was applied to a plane. This was chosen
over a more complex macroscale geometry to remove any con-
founding factors caused by the shading gradients of the macro
surface. The view and lighting positions were distributed evenly
over the hemisphere.

These images are presented in a relatively complex scene to
provide improved depth and lighting cues. This helps remove in-
versions in the interpretation of the bump patterns and misinter-
pretations of the shadowing pattern as an albedo texture. Fig-
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(a) Rectangular stipples, with parameterized
size, spacing, and depth.

(b) Dotted stipples, with parameterized radius,
spacing, bubbliness, and depth.

(c) Randomized rectangular stipples, as rect-
angular stipples but with random variation per
stipple.

(d) Randomized dotted stipples, as dotted but
with random variation per stipple.

(e) Thresholded Perlin noise to evoke semi-
natural ridges.

(f) Perlin noise for a natural roughness.

Figure 2. Surface pattern classes generated as part of this study into mesoscale surface appearance.

ure 3 displays the scene the surfaces are placed in. The pedestal
provides shading gradients and casts a strong shadow to help the
subject infer the light direction. The pedestal stands in the cen-
ter of a room with four differently colored walls, which alleviates
the sense of the object floating in space and potentially helps the
subject track where they are viewing from in each trial. The walls
and floor are modeled with a perfectly diffuse material, while the
mesoscale surface is a plastic material modeled with the GGX
distribution [17] and parameters chosen to be similar to plastic
sample plaques we have studied from industrial designers.

The light within the room is a 5500K temperature sphere ap-
proximately the size of a light bulb and is placed according to the
trial’s lighting condition. This relatively simple lighting scenario
allows changing the direction of the light to have a meaningful
impact on the surface appearance while remaining a reasonable
real-world configuration (room with bare light bulb). Although
there is evidence that real-world, complex environments help per-
ceive glossiness of a material, because the chosen material of our
sample is not significantly specular this is less critical. By using
a simpler light, we are able to measure a good baseline before
advancing to more complex lighting scenarios in future work.

Figure 3. Closeup of stimuli scene presented to subject, demonstrating

shading, strong cast shadows, and walls for context.
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Scene Selection for Subjects
Even with the constraints imposed on pattern generation and

limiting the scenes to sixteen views and lighting conditions, our
dataset of rendered mesoscale surfaces consists of 34,816 images.
This is far too many to present to subjects in a reasonable time
frame. Instead we opt to do a semi-randomized sparse sampling
of the surface patterns to maximize the number of geometries seen
while ensuring reasonable repetition across subjects. To that end,
the two user studies conducted used different scene selection cri-
teria while otherwise following the exact same experimental pro-
cedure described previously.

In the first study, each subject was assigned a random subset
of the generated surface patterns. For each assigned pattern a ran-
dom view or light was chosen and the sixteen images matching
that condition are included in the trial set for the subject. Addi-
tionally, a noise-patterned surface (Figure 2f) was evaluated in the
fixed-view and fixed-lighting conditions by every subject, for an
additional 32 trials per subject. The noise pattern was chosen for
viewing by every subject because it has frequently been used in
glossiness perception studies. All selected trials for a subject are
shuffled together to avoid ordering adaptation. The shuffled block
of trials was repeated three times to get repeated measures to test
whether subjects were significantly changing their responses over
time, and to form a better estimate of their matched brightness.
This first study captures data a single surface viewed by many
subjects, as well as a sparse sampling of other surfaces viewed by
a single subject, all from multiple view and lighting directions.

The second study’s selection criteria was designed to com-
plement the data acquired from the first study. Half of the trials
considered by a subject in the second study were chosen from
conditions previously seen by only a single subject. These con-
ditions were drawn randomly but were weighted towards view
and light poses that had a higher variance across all occurrences.
Preliminary analysis of the data showed that this higher variance
within and between subjects’ measured brightness occurred when
the light was oriented away from the normal of the stimuli plane
and when the viewing direction approached specular. The sec-
ond half of trials for a subject relied on the same variance-based
sampling to choose a view and light pose but the surface pattern
was drawn from the set of patterns not previously seen in the first
study. Like before all trials were repeated three times and shuf-
fled. Unlike the first study, each selected set of trials was pre-
sented to multiple subjects. This second study provides additional
data to validate the responses from the first study’s subjects and
broadens the number of viewed surface patterns.

In the next section we present and discuss the data gathered
from these two studies.

Results
The goal of this experiment was to determine if the

mesoscale surface pattern has a significant impact on our bright-
ness judgments of the object. A very related goal is developing
models that can predict any identified differences between the sur-
face patterns. Two proposed models will be described below. In
some regards, finding that there are no substantive differences im-
plies that pattern has little effect on perceived brightness; such
a conclusion would mean work on more complex perceptual at-
tributes could justifiably use a limited range of mesoscale pat-
terns. However, if differences are found then it substantiates the

doubts we brought up in the background section on the broader
applicability of past mesoscale perceptual research.

Throughout this section we will at times consider two models
of how subjects are estimating overall brightness. Here a model
refers to a function that predicts the perceived brightness given the
stimuli and its scene parameters. The first model estimates bright-
ness by assuming luminance can be calculated as if the surface
were perfectly flat. This is a reasonable hypothesis for mesoscale
surface patterns that feature many small flat elements broken up
by other structures; if the flat regions dominate a subject’s percep-
tion it will produce a value similar to when the whole surface is
smooth. The second model estimates brightness by averaging the
luminance of the rendered stimuli image. This is also reasonable
because it approximately models what subjects would see if they
were viewing the stimuli from too far away to make out mesoscale
details.

Before we can analyze these two models, the collected
data must be processed to determine the reliability and consis-
tency of the subjects. The studies were designed to have re-
dundancy within a subject’s responses and across multiple sub-
jects. The next section presents our analysis confirming that
subjects consistently measured brightness over multiple presen-
tations. The subsequent section analyzes the variability between
subjects responses. After subject reliability is evaluated we will
present our approach to dimensionality reduction that allows us
to make broader conclusions about mesoscale surfaces and per-
ceived brightness.

The following analysis will consider collected data in three
broad categories. The first subset are the responses to the trials
shared by all subjects in the first study. The surface pattern shown
in these responses was a rough noise surface of the class described
by Figure 2f. Subjects evaluated the surface for all sixteen light
directions (with a single fixed view) and all sixteen viewing di-
rections (with a single fixed light) for a total of 31 poses1. This
subset of the data is evaluated by the largest group of distinct sub-
jects. The second subset contains the first and are the responses
to all trials presented to at least three subjects. The last subset
contains all other responses from subjects.

Within Subjects

To test whether or not subjects’ responses changed over time
from the repeated measures, an rANOVA–a one-way ANOVA
grouped by the repeated measures–was performed for the 31
shared scenarios viewed by 12 subjects. The minimum p-value
is 0.104 and the maximum value is 0.997. After completing the
second user study, we extended the rANOVA analysis to all tri-
als that had been seen by at least three subjects (from the pool of
24 subjects). This amounted to 369 unique surface pattern and
light/view combinations. Only 16 of these had rANOVA p-values
less than 0.05 but since they were viewed by only a few subjects
it is likely noise from outliers. The median p-value over these
369 scenarios is 0.4833. Given this, we cannot reject the null hy-
pothesis that subjects’ responses are unchanged over time. In the
remaining analysis we average the repeated responses for each
subject to get a better estimate of their perceived brightness.
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Figure 4. Histogram of the relative standard error between subject re-

sponses.

Between Subjects
Relative standard error (as a percentage) is used to quantify

the consistency between subjects. Only the 369 trial scenarios
viewed by at least three subjects were considered. Relative stan-
dard error is used so that errors can be compared across the dif-
ferent scenarios. The error was calculated over each scenario’s
subject responses, after averaging over each subject’s repeated
measures. The distribution of error is shown in Figure 4 and is
heavily skewed towards the lower end, with a peak around 5%.
This is a strong indication that subjects evaluate brightness in a
consistent manner. Anecdotally it was reported that more trou-
ble was had evaluating surfaces that presented a mixture of very
bright highlights combined with dark shadows. This is verified by
the increased variance in responses for scenes at specular with a
glancing light angle.

Relative Light and View Poses
During scene generation, each surface pattern was rendered

under 256 light and view poses. However, if the light and viewing
direction are described by NḢ and NL̇ terms there are far fewer
poses to consider. This idea is motivated by the frequent appear-
ance of NL̇ and NḢ in reflectance distributions, where N refers to
the geometric normal (stimuli plane in this case), L refers to the
direction to the light, and H is the half vector between L and the
view direction. We will refer to this as the relative pose descrip-
tion.

For each surface, the scenes and subject response distribu-
tions can be grouped into equal relative pose bins. Within each bin
it may not necessarily be the case that subjects perceive brightness
the same. This would be because of the orientation of the surface
geometry with respect to L or V that is lost when using the relative
pose coordinates.

To confirm if this is the case, the Kolmogorov-Smirnov
test [9] was used for each pair of subject brightness distributions
within a bin. The KS test can be used to determine if two distribu-
tions are distinct for low p-values. Our approach forms a matrix of
p-values for the pair-wise comparisons, with p= 1 along the diag-
onal. If any element of this matrix has p < 0.05 we consider that
relative pose coordinate of the scene to be inconsistent. Less than
2% of these bins exhibited inconsistencies and there was no trend
amongst those for a particular surface pattern or scene, so they
are likely due to outliers. Thus, it is reasonable to consider this
relative pose as a reduced coordinate space for evaluating bright-

1One light+view pose was present in both blocks.
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Figure 5. Perceived brightness for each surface in relative pose space.

Colors distinguish surface geometry. The black circle is the luminance pre-

dicted by the flat surface model. Note that the positions of each data point

have been jittered to improve readability.

ness; the absolute orientation of surface geometry does not sig-
nificantly impact brightness judgments after factoring out relative
orientation effects.

Figure 5 shows all scenes arranged by their relative pose.
The size of the points corresponds to the average perceived bright-
ness measured for that surface and relative pose. The color of the
points corresponds to the surface geometry of the scene. The data
is also compared to the flat surface model, drawn as a black circle
at the relative pose coordinates. From this figure it is clear that
all surface patterns follow certain trends such as increased bright-
ness at specular and are reasonably consistent with the flat surface
model. However, it is hard to identify trends, similarities, and dif-
ferences between surface geometries from this visualization. The
next section will approach this problem.

Surface Geometry Dimensionality Reduction
The subject responses for each relative pose provide a sparse

sampling of the perceived brightness in the relative pose coordi-
nate space. We model correlation between surface patterns as the
dot product between vectors containing the perceived brightness
for each relative pose of the surface. This works well for surfaces
that have mismatched samplings as we can effectively disregard
unmatched poses from the similarity evaluation.

Evaluating this distance function for each pair of surfaces
creates a distance matrix that can be used with non-metric mul-
tidimensional scaling (MDS) [4], which is a powerful way of re-
ducing this complex space into two dimensions. The projected
surface locations will respect, to the best degree possible, their
distances or similarities in the higher dimensional space. Figure 6
shows the results of applying multidimensional scaling to the set
of surfaces seen by at least three subjects. The six hue blocks
correspond to the six pattern classes from Figure 2. The flat sur-
face model is included in the distance matrix, where its bright-
ness is evaluated for all necessary relative pose coordinates, and
is drawn as a black point. Figure 7 shows a similar figure except
the inter-surface distances were computed for all surfaces that had
any subject response. In this case surfaces that had been viewed
by a single subject are based solely on their perceived brightness.

In examining the two MDS plots, many similarities arise be-
tween the two. Overall, Figure 7 resembles a more ragged ver-
sion of Figure 6, indicative of the added potential outliers. The
flat surface model resides in a reasonably central location and
the inner cluster of surface points are noise-based surface pat-
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Figure 7. Results of multidimensional scaling using all data.

terns. These noise-based classes (both threshold and rough) are
still fairly spread out compared to other class clusters, suggesting
that these pattern types have more variety in their possible bright-
ness profiles. Several clusters of brick and dot patterns are located
near the flat surface coordinate. These patterns are dominated by
flat regions parallel with the overall stimuli plane broken apart by
vertical gaps. When these gaps do not create unreasonable shad-
owing, e.g. they are small compared to the size of the brick or
dot, the surface approaches the idealized flat surface. This rela-
tionship is captured in the MDS plots, providing justification for
the intuition by the flat surface model mentioned previously.

Model Comparison
The two models introduced earlier in the paper will be eval-

uated using the first data subset containing responses on a sin-
gle surface from the first 12 subjects. The responses to the 31
poses are shown in Figure 8 where the light and view pose is ar-
ranged arbitrarily along the x-axis. The 36 separate responses (12
subjects × 3 repeated measures) are shown as transparent black
points. Each subject’s repeated measures are averaged and color-
coded per-user across all poses. The average over every subject is
shown as a purple trend line, alongside the two models: the aver-
age luminance of the image, and the luminance of a flat surface.

The accuracy of the models can be measured by the prob-
ability of their prediction being the population mean of per-
ceived brightnesses. Performing the Student’s t-test for each sce-
nario shows that depending on the viewing and lighting con-
dition, subject responses are significantly different from either
model although the difference between them is relatively small.
The flat surface model t-test produced p-values ranging from
2.853×10−12 to 0.882 and the surface mean p-values range from
1.464×10−5 to 0.818. Given that these distributions were based

on only twelve subjects it is hard to rule out the models based
on this alone. In general the p-values for the surface mean model
were higher and more frequently above a significance test of 0.05.
Thus for certain poses, the surface mean model could represent
the population’s perceived brightness. However, the at-specular
scenarios in Figure 8 show a distinct separation of the flat surface
model from both the subject average and surface luminance av-
erage. Interestingly though, the subject responses are frequently
brighter than the surface mean model when at specular even if
they are not as bright as the flat surface model predicts. When off
specular, both models regularly fall amongst the subject distribu-
tion for the scene.

It is possible that a specular-dependent effect occurs in our
perception of brightness over a complex mesosurface. Additional
models will need to be considered, such as an interpolation be-
tween the two proposed here, or one based on the histograph of
luminance of the rendered stimuli.

Discussion
The results collected so far are both promising and challeng-

ing. It is a good indication that there is significant agreement be-
tween subjects and that brightness judgments are consistent over
time. Additionally the subject responses were robust enough to
identify clusters of similar surface patterns with distinct bright-
ness profiles. An important question that remains is how signif-
icant the variations between these clusters are and if they impact
the results of previous research. It is likely that particular families
of mesoscale surface patterns will scale up or down the effects on
glossiness previously identified.

A potential future direction for this work is to explore if
these clusters of materials agree with subjects when asked if two
patterns match. Work on achromatic texture matching [3] sug-
gests that even if surface’s apparent brightnesses are the same
their distribution of shadows and highlights will create an overall
mismatch. Another avenue is further exploration of the predic-
tive models for perceived brightness. Two models were proposed
and evaluated in this work, each proving successful for certain
classes of pattern or scene configuration. However, a more uni-
versal model must still be developed.

This work is valuable as a foundation for pursuing more
complex questions regarding mesosurfaces. One such option is
a massive simulation-driven approach to surface appearance that
can be validated against this collected data. Additionally, the
overall perceived brightness of a surface can be valuable for con-
crete applications. Real-time rendering that’s required to approx-
imate appearances and downsample far-away geometries can take
advantage of this work to better filter mesoscale surfaces as their
details lose resolution. In many cases the standard averaging will
prove sufficient but accuracy will be lost unless it is brightened at
specular directions.

In summary, we have presented a user study designed with a
more complex and natural stimuli for the subject and have eval-
uated many different surface patterns. Our experimental design
has allowed us to consider a wide variety of surface patterns. By
densely sampling a small subset and then progressively sparser
sets, the surface pattern domain was evaluated more thoroughly
than what we’ve encountered in the past. Additionally the ex-
perimental time for each subject was kept to a minimum. We
have also developed an approach for measuring similarity be-
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Figure 8. Perceived brightness for the rough-noise surface presented to all subjects in the first study. The y-axis is linear luminance.

tween spatially-varying surfaces under very sparse sampling. This
approach is able to identify expected clusters given the gener-
ated surface geometries. The view and light dependent behav-
ior of unique surface patterns is detectable from sparse brightness
measurements although they may not be sufficient for appearance
matching. Analysis of subject responses shows that brightness is
consistent over time and that there is little variation between sub-
jects, although it increases along the specular direction.
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