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Abstract. This article introduces a novel algorithm to learn optimal
incident illumination for material classification using spectral
bidirectional reflectance distribution function (BRDF) images.
The method performs a joint selection of incident angle and
spectral band in two steps: (1) clustering and selecting incident
angles using statistics on the spectral BRDF images for a specific
material, and (2) searching for the optimal angles and spectral
bands that maximize material discriminability, which we measure in
classification performance. The benefits of reducing the number of
incident illumination angles include improving material classification,
reducing computational time and storage, and allowing for a less
cumbersome and potentially mobile imaging system. The authors
show that their approach provides comparable material classification
performance when using a reduced number of incident illuminations
as compared with when using a larger number. They also compare
their approach with prior work.

INTRODUCTION
Material classification is fundamental to several applications
in both consumer and industrial type applications in
computer vision and robotics. In consumer applications,
material recognition can facilitate visual recognition such
as image retrieval. In industrial applications, material
recognition can benefit food inspection,1 recycling,2 remote
sensing,3 environmental monitoring, and robotic manipu-
lation tasks. Recognizing materials is challenging, as the
appearance of a material surface varies with the illumination
conditions as well as its color, texture, polarization, and
reflectance properties. These properties are characterized by
the bidirectional reflectance distribution function (BRDF) of
a material.

Capture of a very dense sampling of the BRDF would be
ideal;4 however, such capture requires very precise apparatus
as well as accurate registration between images, which
can pose unrealistic constraints for real-world applications.
Recently, coded illumination has been used to capture
spectral BRDF images of uncoated and unpainted raw
materials.5 Additionally, different approaches have been
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introduced to reduce the capture of material images over a
large number of illumination conditions.6,7

Inspired by this line of work, we propose to learn
the optimal incident illumination that would provide the
most discriminability among materials, in turn providing
the best material classification performance. The learning is
performed jointly for both angle and spectral band in two
steps: per-material clustering and selecting incident angles
using spectral BRDF images, and searching for the optimal
angles and bands that maximize material discriminability.
Learning optimal incident illumination would allow for
potentially building simpler and less expensive systems
which would capture the minimum number of discrimina-
tive images needed for material classification. A minimum
number of images implies a reduction in computational time
and storage, allowing for use in real-time computer vision
applications.

Our article makes several contributions. First, we jointly
learn optimal incident illumination, both angle and band,
using spectral BRDF image slices of raw materials. Second,
we extract orientation invariant image-level feature vectors
which represent specular, diffuse, and dark components of
these slices. Third, we use these feature vectors to cluster
angles by spectral BRDF images. This clustering allows for
reduction in the search space of optimal angle and band. We
perform several experiments, including comparisons with
prior work, to demonstrate the effectiveness of our approach.

RELATEDWORK
Incident Illumination Learning
While there has been work in the literature on selecting
only spectral bands using hyperspectral images8,9 or learning
only angles,7 learning incident illumination, in terms of
both angle and band, for the goal of material classification
is very limited. The most recent approach is that of
Gu and Liu,5 which proposes using coded illumination
to model the different weightings of angles and LEDs
for different material classification tasks. It should be
noted that all of the LEDs are used in this case but are
assigned different intensities. Moreover, the learning is task
dependent, which means that the coded illumination is
learned for a combination of materials to be classified.
Jehle et al.7 proposed an algorithm to select incident
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(a) Capture setup (b) Angle positions (c) Materials

Figure 1. Capture setup and materials used by Ref. 5. (a) A photo of the dome and two closeup photos of the six LEDs at one of the 25 angles; (b) the
positions of the 25 angles on the top view of the dome; (c) samples of raw materials used in this article: metal (top) and non-metal (bottom).

illumination angles for material classification, which is also
task dependent. The authors acquire multiple images of
the same scene using an illumination series, which is a
set of different illumination conditions. They then select
illumination angles that aremost important for classification.
Moreover, Jehle et al. consider only eight illumination
directions which are produced by illuminating a parabolic
mirror using parallel light. Their approach is dependent on
a parabolic mirror and a very accurate illumination process.
Our proposed learning approach, however, comprises two
steps, the first one of which learns incident illumination
angles based on one material and independently from the
classification task. In general, our algorithm is flexible in
terms of position and color of incident light sources to select
from, and it allows for reduction in size of the imaging setup
as well as the captured images and corresponding features.
Besides the goal of material classification, there has been
work on optimizing both camera and light source positions
for measuring the BRDF of 3D objects.10

Material Classification
Material classification using texture images has been heavily
researched in computer vision.11–16 Another line of work
uses bidirectional texture functions (BTFs) to classify
materials.17,18

In machine vision, per-pixel material classification
has been addressed for various types of materials using
polarization19–21 and near-infrared reflectance,22 as well as
spectral reflectance for printed circuit board inspection.23
More closely related to this work is material classification
using BRDF and BRDF image slices, which is very limited
in the computer vision and imaging literature. Hahlweg
and Rothe studied material classification using multispectral
BRDF imagery;24 Chen et al. studied material classification
using multispectral polarimetric BRDF imagery;25 Wang
et al. used BRDF image slices.6 Briefly described, the
BRDF is a 4D function which specifies the brightness
observed in any outgoing direction, in 2D, when light arrives
from any incoming direction, in 2D. However, instead of
capturing the 4D BRDF, which requires solving for the
stereo correspondence between all cameras, the authors
capture 2D BRDF slices. The authors then propose several

feature vectors and compare their performance in per-pixel
material classification. Recently, Shiradkar et al. proposed
ink classification using 1D BRDF slices.26

As described above, Gu and Liu5 propose per-pixel
material classification using spectral BRDF images captured
with coded illumination. More details on their capture
system are provided in the next section. Differently from
previous work, our work proposes image-based material
classification and therefore requires less storage and compu-
tation time, which become important factors to considerwith
large amounts of data.

LEARNING INCIDENT ILLUMINATION
Our goal is to learn the optimal incident illumination
that arises in the most discriminative material images for
classifying them. We consider a machine-learning-based
approach, whereby the angles are learned using the features
of the spectral BRDF slice images as taken at the different
angles. The use of such a learning approach allows for wide
applicability across different imaging capture setups and
different incident illumination angles.

In our work, we consider the images and capture setup
proposed by Gu and Liu,5 who showed that imaging of raw
material samples using six LED primaries and 25 clusters on
a hemispherical geodesic domewith the samples in the center
is sufficient for classifying them. Each cluster corresponds to
an angle θ on the hemisphere around the sample. At each
angle, six images corresponding to differently colored LEDs
are captured. Examples of thematerials used in image capture
as well as the capture setup fromRef. 5 are shown in Figure 1.
More details on the setup, the materials, and the capture
process are described in the experiments section.

The overall framework of our proposed approach is
illustrated in Figure 2 in two steps. In the first step,
given two materials, A and B, we learn their K optimal
angles from a total set of N = 25 angles, 2 = {θ1, . . . , θN }
through material-based angle selection. We represent their
K corresponding optimal angles by 2A

= {θA1 , . . . , θ
A
K } and

2B
= {θB1 , . . . , θ

B
K }, respectively. Each subscript i of θi is

used to indicate the position of the angle of the light source
as labeled in Fig. 1(b). At every θi, there are six LEDs, as
illustrated in Fig. 1(a), each of which is denoted by its spectral
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Figure 2. Overall algorithm flowchart in two steps: material-based angle
selection, where K is the number of angles selected (top); and task-based
optimal incident illumination selection, where n is the number of incident
illuminations selected (bottom). The reader is referred to the text for a
description of the notations.

band, where 3 = {λ1, . . . ,λM } (M = 6 in this case) is the
set of spectral bands. It should be noted that we use the λj
notation in this case to refer to the wavelength range of LED
j= 1 . . .M .

Next, given the optimal angles for each material, our
framework performs optimal incident illumination selection
to arrive at a set of LEDs, as shown in Fig. 2. If the total
set of optimal angles obtained through material-based angle
selection (step 1) is denoted by 2AB

= 2A
∪2B, then the

total set of LEDs that are input to the second step of the
framework (Fig. 2) can be denoted by 2AB

×3. As such,
the set of LEDs output by the framework can be denoted by
(θABi ,λj) ∈2

AB
×3, where (i, j) ∈ |2AB

| × |3|.
The following subsections are organized as follows. First,

we describe the feature vectors computed for spectral BRDF
images. Next, we describe the algorithm component for

material-based angle selection (top of Fig. 2). In the last
subsection,we describe the algorithmcomponent for optimal
incident illumination selection, both angle and band (bottom
of Fig. 2).

Spectral BRDF Image Feature Representations
We introduce an orientation invariant image-level feature
vector representation for spectral BRDF image slices. The
advantage of using an image-level representation is that it is
robust to noise or artifacts in captured images. Our feature
is inspired by the following observation. When we take
a picture of a flat material illuminated by a light source,
three types of intensity components can be distinguished:
specular (S), diffuse (D), and dark (R), as can be seen in
Figure 3, which shows BRDF image slices of brass and copper
illuminated by six light sources.

The image captured under a specific illumination
(θi,λj), with (i, j) ∈ |2| × |3|, is denoted by Iθi,λj and is a
grayscale image. In order to consider the different brightness
levels of the pixels in the image, we cluster the pixels by
brightness using the K-means algorithm. The algorithm
labels the pixels belonging to each cluster and learns the
means of the clusters in the process. Mathematically, the
clustering algorithm aims to partition the pixels x of
the image Iθi,λj in Nc clusters, so as to minimize the
within-cluster sum of squares as follows:

C∗1 , . . . ,C
∗

Nc = argmin
C1,...,CNc

Nc∑
k=1

∑
x∈Ck

∥∥∥Iθi,λj(x)−mk

∥∥∥2

 ,
(1)

where C1, . . . ,CNc represent the clusters into which the
pixels are divided and mk indicates the mean of the pixel
brightnesses in cluster Ck.

Equation (1) is optimized using a two-step iterative
process, which includes an assignment step and an update
step. The first step assigns a cluster label to each pixel whose

blue green yellow white orangered

Figure 3. BRDF image slices of brass (top) and copper (bottom) when imaged under blue, green, yellow, red, white, and orange LEDs using Gu and Liu’s
setup.5
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Example#1 Example#2

Figure 4. Illumination components used to compute the feature vectors,
shown for two image slices of copper.

mean yields the least within-cluster sum of squares:

C(t)k = {x ∈ Iθi,λj : ‖Iθi,λj(x)−m(t)k ‖
2
≤ ‖Iθi,λj(x)−m(t)l ‖

2
}

∀l, 1≤ l ≤Nc, (2)

while the update step computes the new means to be the
centroids of the pixels in the new clusters:

m(t+1)
k =

1

|C(t)k |

∑
x∈C(t)k

Iθi,λj(x) , with 1≤ k≤Nc, (3)

wherem(t)1 , . . . ,m
(t)
Nc

indicate the set ofNc means at iteration
t . The number of clusters Nc is set by the user, and we set
Nc = 3. The hypothesis is that three clusters would allow
us to group pixels belonging to specular, diffuse, and dark
regions of the image. Experimentation also aligned with
the observation that three clusters is the optimal number
as it provided superior material classification performance
to when using 2, 4, 5, or 6 clusters. We denote the image
regions or clusters obtained after convergence by I Sθi,λj , I

D
θi,λj

,
and IRθi,λj , with the corresponding means estimated by the
algorithm to µS

θi,λj
, µD

θi,λj
, and µR

θi,λj
, respectively. Figure 4

shows the three areas for two BRDF slices of copper, imaged
under different incident illumination angles and spectral
bands.

Given the pixel clusters and their relative means, we
compute two types of feature vector, denoted Xθi,λj , for each
image slice corresponding to illumination (θi,λj). These are

the mean feature and the histogram feature, as described
below.

• Mean feature (MF):

Xθi,λj =
[
µS
θi,λj

, µD
θi,λj

, µR
θi,λj

]
. (4)

• Histogram feature (HF):

Xθi,λj =

[
PS
θi,λj

Pθi,λj
,
PD
θi,λj

Pθi,λj
,
PR
θi,λj

Pθi,λj

]
. (5)

Here, Pθi,λj = PS
θi,λj
+ PD

θi,λj
+ PR

θi,λj
indicates the total num-

ber of pixels in an image slice captured under illumination
(θi,λj). The numbers of pixels in the specular, diffuse, and
dark components for the same image slice are indicated by
PS
θi,λj

, PD
θi,λj

, and PR
θi,λj

, respectively.
Finally, we can represent the feature vector for material

A, comprising multiple spectral BRDF image slices, as such:

XA
=

[
Xθ1,λ1 ,Xθ1,λ2 , . . . ,Xθi,λj , . . . ,XθN ,λM

]
,

with (i, j) ∈ |θ | × |3|. (6)

Material-Based Angle Selection
Our algorithm learns incident illumination angles given the
set of all possible illumination angles θ = {θ1, . . . , θN }, as
well as the BRDF slice images of onematerial. Figure 5 shows
the steps of the material-based angle selection algorithm.
First, M-dimensional feature vectors are extracted from
the image samples corresponding to each of the angles, as
denoted with the unfilled circles: each circle represents the
feature vector of an image corresponding to one spectral
band light source; N × # of samples is the number of
feature vectors, where N is the total number of light sources.
After rearranging, the feature vectors are clustered to obtain
K clusters, where K is equal to the number of angles to
be selected. Each filled point corresponds to one of the
M-dimensional feature vectors. The means, µ1, µ2, µ3, are

Figure 5. Material-based angle selection framework. From steps 1 to 4. (1) M-dimensional feature vectors are extracted from the image samples
corresponding to one angle position (all LEDs), as denoted with the unfilled circles: each circle represents the feature of an image corresponding to one
light source; N ×# of samples is the number of feature vectors, where N is the total number of light sources. (2) The feature vectors are clustered to obtain
K clusters equal to the number of angles to be selected; each filled point in space corresponds to the M-dimensional feature vector of a material type.
(3) The means, µ1, µ2, µ3, are mapped to the initial feature vectors to select one closest feature vector to each using a distance metric. (4) Each of the
three selected feature vectors is mapped to a light source position given the correspondence between the feature vectors and the illumination angles used
in capturing the corresponding image. The picture of the dome with the LED clusters is obtained from Ref. 5.
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(a) 2 samples of BRDF image slices from cluster #1

(b) 2 samples of BRDF image slices from cluster #2

Figure 6. Clustering in material-based angle selection for aluminum. The images are BRDF slices for all bands (from left to right) corresponding to two
angles which belong to (a) cluster #1 and (b) cluster #2.

mapped to the initial feature vectors to select one closest
feature vector to each using the Euclidean distance metric
(other metrics can be used). Next, each of the three selected
feature vectors is mapped to a light source position given
the correspondence between the feature vectors and the
illumination angles used in capturing the corresponding
image. Figure 6 shows samples of BRDF image slices as
grouped into clusters.

Task-based band selection
At each selected optimal angle, light sources of different
bands can be placed. Our goal is to select incident
illumination with which to illuminate materials such that
we can best discriminate among them. Assuming that the
task is to classify two materials, A and B, we indicate
their learned angles (as described in a previous subsection)
by (θA1 , θ

A
2 , . . . , θ

A
K ) and (θB1 , θ

B
2 , . . . , θ

B
K ), respectively. The

set of learned angles obtained from material-based angle
selection can be represented by

2AB
=2A

∪2B
= {θA1 , θ

A
2 , . . . , θ

A
K } ∪ {θ

B
1 , θ

B
2 , . . . , θ

B
K },
(7)

with |2| ≤ |2A
| + |2B

|, since there might be common
learned angles among A and B. As mentioned previously,
the set of LEDs available for this task is thus represented by
2AB
×3, where3 denotes the set of LEDs at each angle.

Next, we maximize the earth mover’s distance DEMD
27

between the image feature vectors of the samples of A and B
corresponding to (θABi ,λj), where (i, j) ∈ |2AB

| × |3|:

DAB
EMD(2

AB,3)=

∑
u∈A

∑
v∈B fuv‖XA

θi,λj
(u)−XB

θi,λj
(v)‖∑

u∈A
∑

v∈B fuv
.

(8)

Here, fuv is the flow between XA
θi,λj

(u) and XB
θi,λj

(v); u and v
represent the samples ofA and B, respectively. The flow fuv is
computed such that it minimizes the following cost, denoted
by CEMD:27

CEMD =
∑
u∈A

∑
v∈B

fuv‖XA
θi,λj

(u)−XB
θi,λj

(v)‖, (9)

subject to the following constraints:

fuv ≥ 0 u ∈A, v ∈ B;∑
u∈A

fuv ≤wB
v v ∈ B;∑

v∈B
fuv ≤wA

u u ∈A;

∑
u∈A

∑
v∈B

fuv =min

(∑
u∈A

wA
u ,
∑
v∈B

wB
v

)
. (10)
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Table I. Mean classification accuracies for metal (left), mixed (center), and non-metal (right) sets over the different numbers n of selected illuminations (θ, λ) or LEDs, ranging from
one to five. The accuracies are shown for two types of feature: the MF in the second row and the HF in the third row.

We denote the weight vectors wXA
θi,λj

and wXB
θi,λj

by wA
u and

wB
v , respectively, for simplicity. The first constraint ensures

that the flow is positive, the second constraint ensures that
the sum of the flows from the feature vectors of samples
from A is limited by the sum of weights corresponding
to the feature vectors of samples from B, while the third
constraint ensures that the sum of the flows from the feature
vectors of samples from B is limited by the sum of weights
corresponding to the feature vectors of samples from A; the
last constraint is the normalization factor of the earthmover’s
distance (used in Eq. (8)), and is set to the minimum of the
sum of weights.

Finally, we choose n incident illuminations (θABi ,λj) ∈

2AB
× 3 which give the maximum values of DAB

EMD. The
complexity of computing this distance is O(|A||B|), and
therefore reducing the space of (2AB,3) over which to
compute this distance will aid in reducing computational
complexity. Additionally, the reduction in search space does
not compromise on classification accuracy, as shown in
experiment.

MATERIAL CLASSIFICATION EXPERIMENTS
We evaluate the performance of our approach using Gu and
Liu’s spectral BRDF image database,5 which comprises ten
material categories with four or more samples in each (http:
//compimg1.cis.rit.edu/data/metal/, Fig. 1(c)). In total, there
are ten material classes, six metal ones and four non-metal
ones. The metal ones are alloy, copper, brass, stainless steel,
two types of steel, and four types of aluminum; the non-metal
ones are fabric, ceramic, plastic, and wood. Each material
sample is imaged 150 times using each of the LEDs of the
imaging dome, yielding 150 spectral BRDF image slices. The
LEDs in the dome are grouped into 25 LED clusters, each
placed at a different angle. Each cluster comprises six LEDs
of the following colors: blue, green, yellow, red, white, and
orange. Fig. 3 shows image slices of brass and copper samples
imaged using all six LEDs (or bands) at angle location 12.

The experimental paradigm followed in this article can
be described as follows. Feature vectors (HF or MF) are
extracted for the BRDF image slices. The support vector
machine (SVM) was used for classification using the linear
kernel and setting the regularization parameter C to 10.
A radial kernel was also tested in several cases; however,
no improvement in classification accuracy was found. We
constructed sets of two material types each from the total set
of material categories to obtain 50 classification tasks: 23 sets

comprise only metal materials (metal sets), 16 sets comprise
a mix of metal and non-metal materials (mixed sets), and
11 sets comprise only non-metal materials (non-metal). We
choose different combinations or folds of training and testing
data. In total, we consider 16 folds of training and testing
data, where 75% of the samples are used for training and 25%
are used for testing. The classification accuracy computed is
then taken to be the average over the accuracies computed
for each of the test sets of the 16 folds.

Incident Illumination Learning Performance
We evaluate material classification given sample images
captured under illumination from the selected light sources
as described above. Two types of features, the HF and
MF, as described previously are extracted for the images.
The evaluation is performed for the metal, mixed, and
non-metal sets.

Table I shows the results of classification (% accuracy)
for two types of feature vector and for different numbers
of selected incident illuminations (LEDs in this case), from
one to five for the different set types. Additionally, we
compare the performance when selecting the LEDs as given
by our algorithmwith those as given bymaterial-based angle
selection (described above) in Table II. Material-based angle
selection is in itself task independent; however, in order to
evaluate we use images corresponding to the selected angles,
for the different sets.Moreover, the table shows a comparison
with the case when all incident illuminations are used for
benchmarking.

Two general observations can be made. First, the MF
provides better performance than the HF. This can be
attributed to the fact that the histograms in the HF do
not represent reflectance information, while the means in
the MF do. Second, our material-based learning provides
comparable results to when all angles and bands are used,
especially in the metals case. Additionally, to further simplify
the setup, we can use one to five LEDs (Table I). Since theMF
is the better performing feature, we use it for the remainder
of the experimental results presented in this article.

Figures 7(a) and (b) show the mean classification
accuracies (%) over 16 folds for three metal classification
tasks and three mixed classification tasks. The accuracies are
plotted as a function of n, which is the number of incident
illuminations or LEDs selected; n is taken to be 1, 2, 3, 4, 5.

In the case of brass/copper (Fig. 7a), we observe that
the algorithm provides 99.9% accuracy when using two,
three, four, or five LEDs. In the case of two, LEDs at angle
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(a) (b)

Figure 7. The mean classification accuracies (%) over 16 folds for classifying (a) metals only, namely, brass/copper, aluminum/steel, and two types
of steel; and (b) mixed sets, namely, aluminum/fabric, aluminum/plastic, and steel/wood. The accuracies are plotted as a function of the number n of
incident illuminations selected.

Table II. Mean classification accuracies for different illumination selection algorithms
for metal (left), mixed (center), and non-metal (right) when selecting five incident
illuminations by angle and spectral band using task-based selection (optimal
illumination), three incident illuminations by angle only using material-based selection,
and when using all light sources (no selection). The accuracies are shown for two types
of feature: the MF in the second row and the HF in the third row.

positions 18 and 16 (in Fig. 1(b)) are chosen in all folds.
Following the notation in the previous section, we can denote
the angle at position 18 by θ18; therefore, we denote the
elevation and azimuth angles corresponding to this angle by
(θ e18, θ

z
18), and we can write that angle 18 is positioned at

(θ e18 = 40.6◦, θ z18 =−50.0◦), while angle 16 is positioned at
(θ e16 = 45.2◦, θ z16 = 92.7◦). One of the LEDs is green and the
second is orange, which can be expected given the colors
of brass and copper. For aluminum/steel, the classification
accuracy is 89.1% and 89.6% when using one or two LEDs,
respectively, as compared with 93.8% when using four or
five LEDs,with the accuraciesmonotonically increasing from
one to five LEDs. In the four LED case, the selected LEDs are
at three different angles, which are 8, 16, and 12. Angle 8 is
positioned at (θ e8 = 31.8◦, θ z8 = 36.0◦), angle 16 is positioned
at (θ e16 = 45.2◦, θ z16 = 92.7◦), and angle 12 is positioned at
(θ e12 = 29.7◦, θ z12 = 166.0◦). In the case of distinguishing two
steel types, an accuracy of 87.5% is achieved when using two
LEDs at two different angles (8 and 16).

In the case of aluminum/fabric (Fig. 7b), five LEDs are
needed to provide the best classification accuracy (96.9%).
Among the selected LEDs are two white ones at two
different angles. In the case of aluminum/plastic, three LEDs
provide maximum classification accuracy (93.8%), where

Table III. Mean classification accuracies when using illumination learned with our
method as well as when using incident illumination selected at random. In each case
the image slices corresponding to the illumination are used for classification.

Set type Proposed (% acc.) Random five (% acc.)

Metal 85.2 67.8
Mixed 88.7 80.3
Non-metal 77.6 76.8

two LEDs are at angle 8 (θ e8 = 31.8◦, θ z8 = 36.0◦) and one
LED is at angle 16 (θ e16 = 45.2◦, θ z16 = 92.7◦). In the case
of steel/wood, two LEDs provide maximum classification
accuracy (99.9%). The selected LEDs are a green one at angle
18 (θ e18 = 40.6◦, θ z18 =−50.0◦) and an orange one at angle
16 (θ e16 = 45.2◦, θ z16 = 92.7◦), similarly to the brass/copper
case, which is expected given the color of wood. In short, the
results demonstrate that our algorithm can be a useful tool
to build a smaller capture setup while not compromising on
classification accuracy, and the best reduction in dimension
of the setup is dependent on the classification task.

Benchmarking Performance
We also compare the classification performance when five
selected LEDs are used in capture with when using five LEDs
selected at random from all possible LEDs. Table III shows
the mean classification accuracies for each of the metal,
mixed, and non-metal sets corresponding to our method
and the different combinations of LEDs selected at random.
The table shows that our method outperforms the case when
illumination is selected at random significantly for the metal
sets (by 17.4% in classification accuracy) and by 8.4% for
the mixed sets, but our approach does not do so well for
the non-metal sets. We believe that the reason behind these
results is that our features are not suitable for representing
the texture of non-metals, as they do not retain inter-pixel
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Table IV. Comparing mean classification accuracies (%) on raw materials given by our
method and Gu and Liu’s approach.5

Task Fisher light5 SVM light5 Proposed method

Aluminum versus steel 89.9 97.3 93.8
Brass versus copper 98.5 99.0 99.9
Ceramic versus plastic 94.4 95.5 78.1

Table V. Comparing mean classification accuracies (%) on raw materials given by our
method and random forest as used by Jehle et al. for learning illumination angles.7

Set type Random forest7 Proposed method

Metal 77.1 85.2
Mixed 78.5 88.7
Non-metal 69.8 77.6

information. We expect that using texture features would
significantly boost the performance.

We perform two comparisons with prior work. The
first one compares the performance of our method with
that of Gu and Liu’s method,5 as shown in Table IV. As
described in a previous section, Gu and Liu used coded
illumination to model the different weightings of angles and
LEDs for different material classification tasks. It should be
noted that all of the LEDs were used in their case but were
assigned different intensities. Moreover, the learning they
performed was task dependent, which means that the coded
illumination was learned for a combination of materials
to be classified. We list the performance of Gu and Liu’s
method for three binary classification tasks, aluminum/steel,
brass/copper, and ceramic/plastic, in two cases: when they
use the Fisher light and the SVM light to learn the
weights on the LEDs. It should be noted that the accuracies
depicted for Ref. 5 are for per-pixel classification, while
our method calculates per-image accuracies. Our method
provides comparable classification results to Ref. 5 while
requiring fewer images and a smaller capture setup (five
LEDs in this case) in the case ofmetals. However, ourmethod
does not fare as well for the case of non-metals, as shown in
the ceramic/plastic case. Such performance is expected since
our approach does not represent texture information, which
is important for classifying non-metals.

Second, we comparematerial classification performance
on our data when using our approach and when using
random forest28 as used by Jehle et al.7 to learn illumination
angles. As mentioned in a previous section, the authors
in Ref. 7 acquire multiple images of the same scene
using an illumination series, which is a set of different
illumination conditions. They then select illumination angles
that are most important for classification. Moreover, Jehle
et al. consider only eight illumination directions which are
produced by illuminating a parabolic mirror using parallel
light. Their approach is dependent on a parabolic mirror
and a very accurate illumination process. It should be noted

that the learning performed by Jehle et al. is task dependent,
while ours is task independent. Table V shows the mean
classification accuracies for the metal, mixed, and non-metal
sets for both Ref. 7 and our proposed method. The results
show that our method outperforms Jehle et al.’s method on
the metal andmixed sets. Again, our method does not fare as
well for the non-metal sets, as expected.

CONCLUSIONS
This article presented an approach to jointly learn opti-
mal incident illumination, both angle and spectral band,
using spectral BRDF image slices of raw materials. We
extracted orientation invariant image-level feature vectors
which represent three intensity components of these slices.
We demonstrated the effectiveness of these features to
learn optimal illumination for material classification. Our
joint learning algorithm includes a task-independent angle
selection component, where we used the extracted feature
vectors to cluster angles. The clustering allows for reduction
in the search space of optimal angle and band. We also
performed several experiments, including comparisons with
prior work. The results demonstrated that our algorithm
can achieve the same or better performance for separating
metals as well as separating metals from non-metals, while at
the same time providing a reduction in the number of light
sources.

In the future, we would like to investigate how our
approach can be used for separating non-metals, such that
the classification performance is similar to that of separating
metals among each other or metals from non-metals.
Non-metals are best represented using texture features, while
our approach uses BRDF-based features. Additionally, our
approach is designed to select optimal incident illumination
angles for each material in a task. Such a selection is in
line with the BRDF models of metals, where a few incident
illumination angles can provide enough information for
distinguishing metals. However, the same hypothesis does
not necessarily hold for non-metals, thus placing these types
of materials at a disadvantage in our approach. One way to
tackle non-metals would be to understand whether angle
selection is needed for non-metals. Perhaps an alternative
framework that performs only LED selection can be used
instead. Another aspect that can be further investigated is
which machine learning framework best suits the purposes
of our framework. In our work, we use K-means as a first step
and distance-basedmetrics as a second step. One could think
of other approaches such as linear discriminant analysis or
Gaussian mixture models instead.
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