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Abstract
A research project is underway to develop a gonio imager partic-
ularly dedicated to sample the Bidirectional Reflectance Distri-
bution Function (BRDF) of materials and material compositions
employed and created by multimaterial 3D printers. It comprises
an almost colorimetric RGB camera and a spectrally tunable light
source. In this paper, we investigate an important part of this sys-
tem, particularly the approach to estimate reflectances from RGB
values acquired under multiple illuminants. We first characterize
the system by estimating the spectral sensitivities of the camera.
Then, we use the sensitivities, a set of illuminants produced by the
tunable light source and the corresponding sensor responses to
estimate reflectances. For evaluating this approach, we measure
the Neugebauer primary reflectances of a polyjet printer employ-
ing highly translucent photo-polymer printing materials colored
in cyan, magenta, yellow and white. Spectral and colorimetric
deviations to spectroradiometric comparison measurements (av-
erage 0.67 CIEDE2000 units / 0.0286 spectral RMS) are within
the inter-instrument variability of hand-held spectrophotometers
used in graphic arts for prints on paper.

Introduction and Motivation
Today’s high-resolution 3D printers – particularly polyjet-

ting printers – can combine multiple colored materials on a
droplet-basis in a single object enabling the reproduction of var-
ious appearance attributes such as color, gloss or goniochro-
matic effects. This is possible by arranging printing materials in
halftone patterns to create various color shades, printing varnish
halftones to create multiple gloss shades or by printing micro-
facets on top of the surface to produce anisotrpopic reflectance.

The presented work is motivated by the challenging task to
spectrally modeling such printers particularly to accurately mea-
sure the reflectances of printed samples used to develop and to fit
spectral printer models.

Even if we consider the simple case of flat printed samples
and are interested only in a 45/0 measurement geometry, measure-
ments made by spectrophotometers from graphic arts are biased
towards lower reflectances because of the high translucency of the
used photo-polymeric printing materials as explained in detail in
[1]. In this reference, a measurement methodology is presented
to obtain CIELAB values employing an almost colorimetric cam-
era, highly-uniform broadband illumination simulating CIED50,
flat-fielding to account for inhomogeneous light intensities and a
polynomial approach to map RGB values to CIEXYZ. As long
as the number of printing materials is low, these measurements
can be used in a full empirical printer model (regular sampling of
the colorant space and interpolating intermediate colors), e.g. to

create ICC profiles. Figure 1 shows a target to colorimetrically
model a CMYW 3D printer with 512 patches.

If the number of materials increases, full empirical models
are impractical because the number of measurements increases
exponentially with the number of materials. In this case, physi-
cal models, e.g. based on the radiative transfer theory, or partly
empirical models are necessary requiring accurate bidirectional
reflectance measurements of selected print samples. For this, a
spectral acquisition system is required, which allows us to capture
reflectance data for the whole printed target employing arbitrary
bidirectional measurement geometries. Furthermore, the target
must be illuminated very uniformly, because flat-fielding cannot
correct errors caused by subsurface light transport between the
target’s patches.

We are in the process of developing a gonio-imager to sam-
ple the Bidirectional Reflectance Distribution Function (BRDF)
of printed samples. Instead of using a spectral camera, it con-
tains a commercially available spectrally tunable light source and
an almost colorimetric RGB camera. The light source employs
22 different LEDs (20 spectrally narrowband LEDs covering the
whole visible wavelength range and two white light LEDs) and an
internal spectroradiometer ensuring a stable spectral power distri-
bution (SPD). Furthermore, the actual SPD of the light source
during the capturing process is recorded and is available for re-
flectance estimation. Capturing a white reference for canceling
out the illuminant is not required in this setup. Both the cam-
era and the tunable light source can be controlled by an Appli-
cation Programming Interface (API) allowing a fully automatic
multichannel acquisition. In this way, both the intensity of the
illuminant or the exposure time can be adjusted to capture High
Dynamic Range (HDR) images, which is necessary to measure
the specular lobe.

Another interesting property is the combination of an almost
colorimetric camera with a spectrally tunable light source: Ac-
curate CIEXYZ data of samples for a particular illuminant can
be captured in a single shot for each geometry by simply adjust-
ing the tunable light source to the desired SPD. To reduce mea-
surement time, a sparse spectral reflectance sampling and a dense
CIEXYZ sampling can be performed. A dense spectral represen-
tation of the BRDF can then be computed from these data subject
to a high colorimetric accuracy for the considered illuminant. A
similar strategy was proposed in the scope of 2D spectral imaging
[16, 17].

In this work, we are investigating the spectral accuracy of
this setup. This includes measuring the spectral sensitivities of
the camera and estimating reflectance from multi-illuminant RGB
acquisitions. Since the mechanical setup is still under construc-
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tion, all measurements conducted in this work are restricted to the
0/45 geometry.

Figure 1: 3D printed target used to characterize a printing system.

Related Work
For the sake of simplicity, we use a vector representation of

spectra and sensitivities, i.e. each wavelength-dependent quantity
X(λ ) is equidistantly sampled in the sensitivity range Ω of the
camera resulting in x = (X(λ1), . . . ,X(λn))

T , where [λ1,λn] = Ω
and ∀i, j < n : λi+1 −λi = λ j+1 −λ j.

Assuming linearity, the m-dimensional column vector of
camera responses c is modeled as follows:

c = SD(i)r+ ε (1)

where S is the m × n dimensional matrix with the camera
sensitivity as row vectors, i is the illuminant, D is an operator that
transforms a vector into a diagonal matrix with the vector entries
in the diagonal, r is the spectral reflectance and ε represents
noise. The internal spectroradiometer of the tuneable light source
gives us i. To estimate the reflectance r, we need to accurately
know the camera’s spectral sensitivities S. These are measured
by employing again the spectrally tuneable light source.

The camera sensitivities can be obtained in two possible ways:
directly measuring them employing a monochromator, or estimat-
ing them from known stimuli. The monochromator approach is
straightforward [18] but requires additional expensive equipment.
The second way includes various approaches that use a priori
knowledge to solve Eq. (1) with respect to the sensitivities, e.g.
Linear- or quadratic programming [11, 7], projection onto convex
sets [19, 20], evolutionary algorithms [5] or low-dimensional
models of spectral sensitivities [26, 10]. For creating the required
stimuli typically a reflectance target illuminated by a single
light source is used. To increase the dimensionality of the set of
stimuli, multiple captures of a spectrally measured target under
different known LED illuminants were proposed [23]. Also
approaches that do not require the knowledge of the illuminant’s
spectral power distribution are proposed employing a fluorescent
chart [9].

Solving Eq. (1) with respect to the reflectance is referred to
reflectance estimation. This is mostly an ill-posed problem since
the number of camera responses is smaller than the number of
spectral components. Therefore, a priori knowledge on spectral
reflectances is used to obtain reasonable results: Maloney et al.
used a low-dimensional linear reflectance model [13], other re-
searchers picked the smoothest reflectance [12, 3, 14], principal
component analysis and Wiener estimation [21], adaptive princi-
pal component analysis [25], extend the linear reflectance model

to manifolds [4] or use kernel-based methods [6]. For capturing
images, methods were proposed that include a priori knowledge
on inter-pixel correlation [15, 22] and the point spread function of
the acquisition system [8].

Methodology
Our setup consists of the Image Engineering CAL1

spectrally-tunable light source employing 22 LEDs (Figure 2
shows the LEDs’ spectral power distributions) and a Canon 5D
Mark III DSLR camera. Camera and light source are arranged in
a 0/45 measurement geometry with approx. 70cm distance from
the sample plane as shown in Figure 3. The exposure time for
each illuminant is set to six seconds to exploit the whole bit-depth
of the camera considering the low intensity of the stimuli caused
by the narrow-band SPDs of most of the LEDs as well as the dis-
tance between light source, samples and camera.

Capturing and Processing
To account for dark current noise, we turned off the CAL1

light source and captured an image in a dark room. This image
is subtracted from all images taken under each considered illu-
minant produced by the CAL1. All of these dark-current-noise-
corrected images are flat-fielded to compensate for any variations
in the light distribution on the sample plane and optical path vari-
ations between light source, sample and camera. For this, we first
take an image AB of a white background (see Figure 3a) and then
an image A of the sample (see Figure 3b and 3c) under the same
illuminant. The flat-fielded image A′ is computed as follows:

A′ = AB
A

AB
(2)

where all operations are performed pixel- and channel-wise and
AB is the average of a 100× 100 pixel window in the center of
AB. Flat-fielding is performed on intensity linear images. For
capturing targets of highly translucent materials, a highly non-
uniform illumination might introduce measurement errors due to
subsurface light transport between patches, which cannot be com-
pensated by flat-fielding. Therefore, we ensured that the measure-
ment area, i.e. the area covered by the target, is already very uni-
formly illuminated with only an irradiance-difference of approx.
10% between center and margin.

Since our light source comprises 22 LEDs, we obtain for a
target 22 flat-fielded images. A homography transformation is
used to correct for projective distortions caused by the 0/45 ge-
ometry. One RGB value for each patch and illuminant is ex-
tracted by averaging the RGB values of the central 20% patch-
pixels to reduce the impact of noise. Such a small fraction of
patch-pixels is considered to minimize color interference from
neighboring patches caused by subsurface light transport within
the highly translucent printing materials. For this reason, we used
also a relatively large patch size of 1.75cm × 1.75cm. After this
procedure, a total of 22 RGB values per patch are obtained, each
corresponding to the LED illuminant under which the target was
captured.

Estimating Camera Sensitivities
In order to increase the spectral variability of the stimuli,

we use a Color Checker SG chart with 140 color patches. The
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patch-reflectances were measured with a Barbieri Spectro LFP
spectrophotometer in a circular 45/0 geometry.
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Figure 2: Normalized spectral power distributions of the 22 LED
integrated into the CAL1 light source.

The spectral power distributions of the illuminants, the patch
reflectances as well as the corresponding RGB values can be in-
serted into Equation (1) resulting in the equation system

C = (C1, . . . ,C22) = S
(

D(i1)R, . . . ,D(i22)R
)
+ ε ′ = SRI + ε ′ (3)

where i1, . . . , i22 are the spectral power distributions of the LED
illuminants, R is the matrix containing the Color Checker SG re-
flectances as column vectors and Cj is a matrix containing the
RGB values as column vectors corresponding to the captured tar-
get under illuminant ij. This equation system can be solved with
respect to the sensitivities S. Unfortunately, such a solution is
sensitive to noise as already observed by Jiang et al. [10]. There-
fore, we use a principal component analysis (PCA) approach em-
ploying a-priori knowledge of the sensitivity curves. In partic-
ular, we use the sensitivity database of 28 commercial cameras
from Jiang et al. [10] and compute the first four principal com-
ponents for each sensitivity curve k = R, G, B describing 97%
of the database’s total variance. The corresponding four charac-
teristic sensitivities are combined to a matrix Pk = (pk

1, . . . ,p
k
4)

T

and used in a four-dimensional linear model sk = αkPk, where
S= (sT

R ,s
T
G,s

T
B)

T . Inserting this model into Equation (3) and solv-
ing it with respect to sk in a least square sense yields

sk = C(PkRI)
T ((PkRI)(PkRI)

T )−1Pk, k = R,G,B. (4)

The estimated sensitivities are shown in Figure 4.
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Figure 4: Estimated sensitivities for the Canon 5D Mark III cam-
era.

Estimating Spectral Reflectances
With the estimated camera sensitivities S and the internally-

measured spectral power distribution i1, . . . , i22 of the LEDs, we
can estimate spectral reflectances of a 3D printed target from its
captured RGB values. For this, we use Wiener estimation

r = KFT (FKFT +Kε )
−1cr, (5)

where r is the estimated reflectance, K is the reflectance covari-
ance matrix, F = (D(i1)ST , . . . ,D(i22)ST )T is the 66× n dimen-
sional combined lighting matrix of the system, Kε is the noise co-
variance matrix and cr = (c1

T , . . . ,c22
T )T is the 66-dimensional

vector of dark-current-noise-corrected and flat-fielded RGB cam-
era responses captured under the 22 LEDs. The reflectance co-
variance matrix K is computed using reflectances of the 140 color
patches of the Color Checker SG. The noise covariance matrix is
computed for each patch independently as follows

Kε = D(σ2), (6)

σ2 =
(

σ1R
2,σ1G

2,σ1B
2, . . . ,σ22R

2,σ22G
2,σ22B

2
)
,

where D is defined as in Equation (1) and σ jk is the standard de-
viation for channel k under illuminant ij computed for the central
20% of the pixels within the patch. The standard deviations are
determined on the dark-current-noise-corrected and flat-fielded
RGB camera responses. This patch-wise noise-variance compu-
tation dramatically improves the reconstruction results.

Note that a white reference patch does not need to be cap-
tured for canceling out the illuminant from the reflectance estima-
tion.

Results and Discussion
In this section, we are evaluating the spectral and colori-

metric accuracy of the setup. The accuracy of the estimated re-
flectances depends on the accuracy of the estimated camera sen-
sitivities employed by the Wiener method. Since we do not have
the ground truth sensitivities, we analyze the RGB deviations be-
tween captured RGBs and RGBs predicted by Equation (1) for
known stimuli.

Evaluating Camera Sensitivities
To evaluate the accuracy of the estimated sensitivities we use

stimuli obtained by capturing the Color Checker SG target under
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(a) Capturing the white board (b) Capturing the Color Checker SG

(c) Capturing the printed target (d) Verification with a Spectroradiometer

Figure 3: Measurement setups. The black sphere is the CAL1 light source.

all LED illuminants provided by the CAL1 light source. This
results in 3080 captured RGB values which are compared with the
RGB values predicted by Equation (1). The absolute difference
between captured and predicted R,G,B values for each channel as
well as the root-mean-square errors considering all three channels
are shown in Figure 5, where the 16-bit encoded channel values
obtained by the camera are normalized to 1. The average root-
mean-square RGB error is approx. 0.24% and the maximum error
is 3.05%. Table 1 shows the error statistics. These errors are
very small and validate the high accuracy of the estimated spectral
sensitivities.

Channel Mean Maximum 95th percentile

Red 0.0026 0.0326 0.0108
Green 0.0024 0.0332 0.0112
Blue 0.0021 0.0252 0.0097
RGB 0.0024 0.0305 0.0106

Table 1: Prediction performance of Equation (1) incorporat-
ing the estimated camera sensitivities for 3080 training stim-
uli.
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Figure 5: Prediction performance of Equation (1) incorporating
the estimated camera sensitivities for 3080 training stimuli.

Evaluating Reflectance Estimation
As shown by Arikan et al. [1] spectrophotometers used in the

graphic arts industry cannot accurately measure highly translu-
cent materials. Therefore, we use the Konica-Minolta CS1000
spectroradiometer and a white patch with known reflectance to
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obtain reference measurements employing the same 0/45 mea-
surement geometry. We adjusted the CAL1 light source to sim-
ulate the CIED50 illuminant and measured the light pw reflected
by the Color Checker’s white patch with known reflectance rw.
Then, we placed the 3D printed patch exactly at the same posi-
tion as the Color Checker’s white patch and measured the light
reflected from the central part of the patch (roughly 20 percent
of the area). From these quantities the patch’s reflectance can be
computed as follows:

rm =
pm · rw

pw
, (7)

where the computation is performed wavelength-wise.
We used the eight Neugebauer primaries of the Objet 500

Connex3 printer employing standard white, cyan and magenta
resins and using a yellow colored support resin. Patches are
printed as described by Brunton et al. [2]. Measured and es-
timated reflectances for the Neugebauer primaries are compared
in Figure 6. Table 2 shows the spectral root-mean-square errors
and the CIEDE2000 errors under illuminant CIED50. The devia-
tions are within the inter-instrument variability – up to mean 2.6
/ max. 5.51 CIE76 units for BCRA tiles – reported for hand-held
spectrophotometers used in graphic arts [24]. Thus, the estimated
reflectances should have sufficient accuracy to be used for spec-
tral printer modeling. One drawback of our setup is a missing
LED emitting at 400nm as shown in Figure 2. This is the rea-
son why the largest spectral deviations can be observed for this
wavelength.

(C,M,Y) CIEDE2000 [CIED50] Spectral RMS

(0,0,0) 0.29 0.0238
(1,0,0) 0.39 0.0414
(0,0,1) 0.58 0.0267
(1,0,1) 1.10 0.0314
(0,1,0) 0.36 0.0293
(1,1,0) 0.50 0.0243
(0,1,1) 0.12 0.0299
(1,1,1) 2.01 0.0225

average 0.67 0.0286

Table 2: Spectral and colorimetric deviations between spectro-
radiometric measurements and estimated reflectances for the
Neugebauer primaries.

Conclusion
In this work, we presented a spectral acquisition system em-

ploying a LED-based spectrally-tunable light source and a trichro-
matic camera for the purpose of accurately measuring reflectance
spectra of highly translucent 3D printing materials. As shown
by Arikan et al. [1], spectrophotometers used in the graphic arts
industry cannot be used because their measurements are system-
atically biased towards lower reflectance for such materials. The
proposed setup is designed to avoid this bias by using a very uni-
form illumination of the whole target. It shall be integrated in
a gonio-imager to sample the Bidirectional Reflectance Distribu-
tion Function (BRDF) of 3D printed samples by densely capturing
colorimetric data for one adjusted illuminant (e.g. CIED50) and
sparse spectral measurements that can be used as additional infor-
mation to reconstruct reflectances from the colorimetric samples.

In this work, the characterization of the system and the spectral
accuracy was evaluated for a 0/45 measurement geometry.

In the characterization step, we used the tunable light source
and a priori knowledge of spectral sensitivities to determine the
camera sensitivities. Inserting these sensitivities into the linear
image formation model, results in average root-mean-square RGB
errors of 0.24% and maximum errors of 3%. For reflectance re-
construction, we captured the printed target under all LEDs in-
cluded in the spectrally-tuneable light source and used the es-
timated sensitivities, the spectral power distribution of the illu-
minant (recorded by a spectroradiometer included in the light
source) and the acquired RGB data. Reflectance were estimated
by the Wiener method for which a patch-wise noise-covariance
matrix was computed. Capturing a white reference to normalize
reflectances is not required. Average spectral root-mean-square
deviations to spectroradiometric measurements are 0.0286 for the
Neugebauer primaries or 0.67 CIEDE2000 units considering illu-
minant CIED50. These deviations are within the inter-instrument-
variability of hand-held instruments used in graphic arts. The ac-
curacy of the reflectance estimates should be sufficient for the pur-
pose of spectrally modeling multi-material polyjet 3D printers.
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(c) CMY = (0,0,1) (d) CMY = (1,0,1)
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(e) CMY = (0,1,0) (f) CMY = (1,1,0)
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Figure 6: Comparison between estimated and measured spectra.
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