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Abstract
In the next coming years, many of our basic activities such

as reading an e-mail, checking our bank account, buying on-line,
etc., will be performed by using a smartphone in a mobile envi-
ronment. It is quite obvious that the degree of security granted
by a classic username-password access is not sufficient and that
a stronger level of safeness is required. However, usually adopted
additional instruments such as smart cards, USB sticks and OTP
generators are not always available or usable in mobility. In this
paper a possible solution which envisages the use of the user’s
own smartphone as a mean to grant a safer and easy mobile ac-
cess is presented. The objective is to introduce a novel method-
ology to obtain a robust smartphone fingerprint by opportunely
combining different intrinsic characteristics of each sensor. Mod-
ern mobile phones, in fact, have several kinds of sensors such as
accelerometer, gyroscope, magnetometer, microphone and cam-
era; such sensors can be used to uniquely identify each phone
by measuring the specific anomalies left onto the signals they
acquire. Satisfactory results have been obtained when the sen-
sors are used in combination, especially accelerometer and dig-
ital camera, achieving a significant level of smartphone distinc-
tiveness.

Introduction
Nowadays, and probably always more in the next coming

years, many of our basic activities such as reading an e-mail,
checking our bank account, buying on-line, etc., are performed
by using a smartphone to access our personal accounts in a mobile
environment. Generally, our actual degree of security is granted
by the classic username and password access (something that the
user knows). When a stronger level of safeness is required, addi-
tional instruments are usually adopted such as smart cards, USB
sticks, OTP generators and so on (something that the user has got)
in a two-factor authentication protocol [1]. Anyway, such means
are not always available (must be carried around by the user at all
times) or usable (they are not pluggable in a mobile device easily);
so the need of a superior degree of security often conflicts with
feasibility and usability. A possible solution could envisage the
use of the user’s own smartphone and its intrinsic characteristics
as a mean to grant a safer mobile access by reducing the end-user
involvement. The basic idea is to investigate and understand if
it is possible to generate a specific fingerprint that allows to dis-
tinctively and reliably characterize each smartphone so to be used

as a univocal security component when a strong authentication is
needed. As a matter of fact, modern mobile phones are equipped
with several kinds of sensors such as accelerometer, gyroscope,
magnetometer, camera, etc. These sensors are characterized by
peculiar anomalies left onto the acquired signals due to the imper-
fections generated during the manufacturing process [2]. There-
fore, it is possible to measure these anomalies and exploit them
as an asset for uniquely identifying each phone. The objective of
this work is to present a methodology to obtain a robust smart-
phone fingerprint by opportunely combining different sensor fin-
gerprints. The proposed methodology to create the smartphone
fingerprint is firstly based on the individuation and definition of
a set of distinctive features for each sensor; in our experiments
we considered the accelerometer, the gyroscope and the camera.
For the accelerometer and the gyroscope we considered two sub-
sets of features both in the temporal and in the spectral domain,
calculated onto the output data (x, y, z) acquired by each sensor
[3, 4]. Concerning the camera, we computed spatial features de-
rived from the 2D photo response non-uniformity (PRNU) noise
[5, 6, 7], extracted from the R, G, B channels. All these features,
organized in a vector, constitute the fingerprint of each device.
According to these fingerprints, a classifier has been trained and
some experimental tests to evaluate detection performances of the
method have been carried out. Also different sub-combinations
of the sensors have been considered in creating the fingerprint
(e.g., only the accelerometer, accelerometer and the camera, ac-
celerometer and gyroscope, etc.) to better understand which was
the impact of each sensor on distinctiveness. Moreover, to de-
crease computational complexity, we investigated the possibility
of reducing fingerprint size through hashing operations typically
used for PRNU [8, 9, 10]. Furthermore, diverse operative con-
ditions have to be analyzed: smartphone position (handheld or
posed on a table of different materials), vibration on/off, with or
without a cover and so on.

Sensors overview
Most smartphone devices, besides the photo-camera sensor,

have built-in sensors that measure motion, orientation and various
environmental conditions. These sensors are capable of providing
raw data and are useful if you want to monitor three-dimensional
device movement or positioning, or you want to monitor changes
in the environment near a device. In general, both Android and
iOS platforms, support three categories of sensors: motion sen-
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sors, environmental sensors and position sensors. The first kind of
sensors measures acceleration forces and rotational forces along
three axes. This category includes accelerometer, gravity sen-
sor, gyroscope and rotational vector sensor. The environmental
sensors measure various parameters, such as ambient temperature
and pressure, illumination and humidity. This category includes
barometer, photometer and thermometer. The last kind of sensors
measure the physical position of a device. This category includes
orientation sensor, GPS and magnetometer. Some of these sen-
sors are hardware-based and some are software-based. Hardware-
based sensors are physical components built into a smartphone or
a tablet device. They derive their data by directly measuring spe-
cific environmental properties, such as acceleration, geomagnetic
field strength or angular change. With regard to iOS platform
many sensors are implemented such as TouchID, barometer, mag-
netometer, gyroscope, accelerometer, illumination and proximity.
Regarding Android-powered devices, few of them have every type
of sensor; for example, most handset devices and tablets have an
accelerometer, a gyroscope and a magnetometer, but fewer de-
vices have barometer or thermometer. On the other side, regard-
ing operative system, all the sensors are supported by Android 4.0
and beyond (see Figure 1).

Figure 1. Sensors vs Android versions.

Adopted sensors
Accelerometer

The accelerometer inside a smartphone is composed by a cir-
cuit having seismic mass (made up of silicon) that changes its
position according to the orientation and it is attached to the cir-
cuit of the device. Actually an accelerometer is a circuit based
on MEMS (Micro Electro Mechanical System), that measures
the forces of acceleration that may be caused by gravity, by the
movement or by tilting action. Such accelerations are measured
in terms of g-force (m/s2) on the three axes (x,y,z). MEMS-
based accelerometers can consist of differential capacitors. Figure
2 shows the internal architecture of a MEMS-based accelerome-
ter. As we can see there are several pairs of fixed electrodes and
a movable seismic mass. Under no acceleration the distances d1
and d2 are equal and as a result the two capacitors are equal, but a
change in the acceleration will cause the movable seismic mass to
shift closer to one of the fixed electrodes causing a change in the
generated capacitance. This difference in capacitance is detected
and amplified to produce a voltage that is proportional to the
acceleration. The minute imprecision in the electro-mechanical
structure induce imperfections among the accelerometer chips.

Figure 2. MEMS accelerometer: how it works.

Gyroscope
A gyroscope is a device for measuring or maintaining orien-

tation, based on the principle of angular momentum. Mechani-
cally, a gyroscope is a spinning wheel or disk in which the axle is
free to assume any orientation (see Figure 3).

Figure 3. Gyroscope: how it works.

Same as accelerometer, gyroscope returns three-dimensional
values along the three axes of the device and it measures the rate
of rotation (in rad/s). MEMS-based gyroscopes use the Coriolis
effect to measure the angular rate. Whenever an angular veloc-
ity Ω is exerted on a moving mass of weight m and velocity v,
the object experiences a Coriolis force in a direction perpendic-
ular to the rotation axis and to the velocity of the moving ob-
ject. The Coriolis force is sensed by a capacitive sensing structure
where a change in the vibration of the proof-mass causes a change
in capacitance which is then converted into a voltage signal by
the internal circuitry. The slightest imperfections in the electro-
mechanical structure could introduce differences across chips.

Digital Camera
Digital camera acquisition pipeline is a complex chain of op-

erations typically defined by the sketch in Figure 4. According to
this diagram, light rays reflected by the scene are collected by
a lens that focuses the rays on a CCD/CMOS sensor, after be-
ing mosaicked by a colour filter array (CFA). At this stage, each
pixel of the generated image collects information about only one
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colour (i.e., red, green, or blue). To obtain the final image I, some
post-processing operations such as pixel interpolation and JPEG
compression are applied.

Each of the aforementioned operations leaves some charac-
teristic traces on the generated images. As a matter of fact, it is
possible to detect on the final image I peculiar traces left by lens
distortion [11], by the used de-mosaicking interpolation kernel
[12], by quantization due to JPEG compression [13], and also by
other phenomena [14, 15].

Even more interesting, each camera sensor leaves a peculiar
noise artefact on the captured images known as photo response
non-uniformity (PRNU) [2, 16], due to imperfections in the ac-
quisition sensor manufacturing process. From a formal point of
view, we can define each captured image as

I = I(0)+ I(0)K +N,

where I(0) is a noiseless representation of the scene, N is an addi-
tive noise term, and K is the multiplicative PRNU noise trace [2].
This intrinsic noisy fingerprint, embedded in every image coming
from the same camera, characterises not only the camera model,
but also each camera instance (i.e., different devices of the same
model). Many ways to estimate the term K have been proposed in
the literature and they are typically based on denoising operations
[17, 18].

Features vs Sensors
As mentioned in the previous section, sensors readings are

affected by anomalies due to sensors imperfections. Our goal is
to detect these anomalies and exploit them as an asset to under-
stand which device generated them. To accomplish this goal, we
make use of a set of features computed on signals acquired by the
different sensors.

For both accelerometer and gyroscope it is possible to obtain
raw values along three axes of the device at certain time. So, for
a given time-stamp t we have two vectors of the following form:
a(t) = (ax,ay,az) and ω(t) = (ωx,ωy,ωz) for the accelerometer
and gyroscope respectively.

As regarding accelerometer, 17 scalar features are extracted,
on the basis of [3], in both time and frequency domains by using
the MIRToolbox [19], a popular audio feature extraction library
[20], starting from the two following signals:

T (k) = t(k+1)− t(k)

S(k) =
√

a2
x(k)+a2

y(k)+a2
z (k)

The time domain features are calculated using T(k) and S(k) sig-
nals prior to interpolation while the frequency domain features

CCD / CMOS
Sensor Post-processing

CFA Array
Lens

Scene

I

Figure 4. Digital image acquisition pipeline. Ray-lights reflected from the

scene are focused by the lens on a Color Filter Array superimposed to a

CCD/CMOS sensor. The sensor output is processed and an RBG image is

produced as output.

are drawn from the interpolated versions. The signal T(k) has
been considered as interesting being the time interval of acqui-
sition slightly different for each device. In total a vector of 34
features fa is obtained to describe the accelerometer sensor. In
Table 1 and 2 all the features taken in consideration are outlined.
For a complete description of each feature please refers to the
MIRToolbox guide.

Table 1: List of time domain features
Feature Name Accelerometer Gyroscope

Mean x
Std-Deviation x x

Average Deviation x x
Skewness x x
Kurtosis x x

RMS amplitude x x
Lowest value x x
Highest value x x

ZCR x
Non-negative count x

Table 2: List of frequency domain features
Feature Name Accelerometer Gyroscope

Spectral Std-Dev x x
Spectral Centroid x x

Spectral Skewness x x
Spectral Kurtosis x x

Spectral Crest x x
Irregularity-J x x
Smoothness x x

Flatness x x
Roll Off x x
Entropy x

Brightness x
Roughness x

Regarding the gyroscope we consider data from each axis as
a separate stream in the form of ωx,ωy,ωz. For all data streams,
time and frequency domain characteristics are analyzed as for the
accelerometer. To summarize the characteristics of each signal,
21 features are extracted, on the basis of [4], consisting of 10
temporal and 11 spectral features (listed in Table 1 and 2). In
total a vector of 63 (21× 3) features fg is used to describe the
gyroscope sensor for each device.

Concerning digital cameras, we exploit a feature vector
based on the PRNU. To this purpose, let I be a 2D digital image,
and W be the noise residual extracted from I according to the de-
noising wavelet-based procedure described in [2, 5]. Given a set
of images Ip, p∈ {1, ...,P} from the same camera, the maximum-
likelihood estimation of the PRNU for that camera is

K =
∑p WpIp

∑p I2
p

, (1)

where operations are applied pixel-wise. For particularly accurate
PRNU estimation, the use of flatfield bright images is encouraged
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Figure 5. Procedure pipeline.

(e.g., shots of the sky). However, K can still be estimated (with
less precision) using pictures of natural scenes. In this case, a
sufficient greater number of images is needed (i.e., P must be in-
creased with respect to the flatfield case) [2].

It is well known that the correlation between the noise resid-
ual W and the PRNU K assumes high values only if W is ex-
tracted from an image coming from the camera whose PRNU is K
[2, 21, 18, 22]. Therefore, a feature characterizing a digital cam-
era could in principle be the noise component W . However, for
the sake of speeding up the device identification process, and mo-
tivated by state-of-the-art works on PRNU compression [8, 9], we
perform an additional step. More specifically, we consider only
the 512× 512 pixels patch taken from the center of W and bina-
rize it according to its sign. Formally, the feature vector used to
describe a camera is fc = sign(W512×512), where W512×512 is the
512× 512 central portion of W . Notice that, thanks to binariza-
tion, fc can be stored using only 512×512 bits (i.e., less than 33
kBytes), which is much less than a typical image size and allows
very fast feature transmission also in low bandwidth conditions.

Procedure
In order to achieve device identification, we propose a

methodology based on supervised classification and the features
described in the previous section (i.e., fa, fg and fc). In the con-
sidered scenario, there are two main entities: (i) the user owning
a device that wants to be identified; (ii) a trained system that anal-
yses the data provided by the user in order to identify (or not) its
device. The overall identification procedure works in three steps,
as shown in Figure 5: (i) each new user registers into the system;
(ii) the system is trained based on the acquired registration data;
(iii) device identification can be accomplished each time a user
needs it by sending a new set of features (as fingerprint) to the
system.

For the registration procedure, let us consider the u-th user
out of all the possible U ones. First, he/she runs an application
installed on its device to collect Q sensors readings from the ac-
celerometer and the gyroscope, then finally shots Q+P pictures of
natural scenes (possibly neither saturated nor overly dark). From
the first two sensors readings, Q different sets of feature vectors
f u,q
a and f u,q

g , q ∈ {1, ...,Q} are computed. From Q images, the
device computes a set of feature vectors f u,q

c , q∈{1, ...,Q}. From
the remaining P images, the PRNU Ku is estimated according to
(1). The user finally sends to the server all the feature sets f u,q

a ,
f u,q
g and f u,q

c , q ∈ {1, ...,Q}, and the PRNU estimate Ku. This
procedure is followed by every user.

At this point, the system can be trained. To this purpose,
from each 512× 512 bits training feature f u,q

c , a U-dimensional
feature vector f̂ u,q

c is computed, defined as

f̂ u,q
c =

[
ρ( f u,q

c ,K1), ρ( f u,q
c ,K2), . . . , ρ( f u,q

c ,KU )
]
,

where ρ computes the cross-correlation. In other words, each
component of f̂ u,q

c is the correlation value between f u,q
c and one

of the possible PRNU templates Ku, u∈ {1, ...,U}. From an intu-
itive point-of-view, the vector f̂ u,q

c should point in the u-th direc-
tion, strongly indicating the correct camera. Features f u,q

a , f u,q
g

and f̂ u,q
c are concatenated and used to train a supervised classifier

(in our experiments a Bagged Decision Tree [23]).
Once the system has been properly trained, each time a user

needs to be identified, he/she can simply collect, by means of an
ad-hoc application, a few seconds sensors reading and shoot a
picture. The user’s device automatically computes the tuple of
features fa, fg and fc and sends them to the server. As per train-
ing, feature fc is converted into f̂c, and classification is performed
using the concatenation of fa, fg and f̂c as input for the classi-
fier. This procedure increases the security level because does not
require to store the “device fingerprint” within the smartphone in
a safe folder but it is calculated each time on-the-fly. It could be
conceived to integrate such information with other data (e.g. a
time stamp, a gps position) to improve the authentication phase:
future works will investigate these issues.

Experimental Results
Different experimental tests have been carried out to verify

the effectiveness of the proposed methodology and some of them
are presented hereafter in this section. In particular, in the first
subsection the dataset of the considered smartphones is described
(only Android platform has been analyzed) together with the way
sensor acquisitions are performed, while the second subsection
reports of the diverse test scenarios that have been investigated.
Finally, the third subsection presents the achieved results in the
various circumstances.

Test setup
Experimental tests have been carried out on 10 different

smartphones that are listed hereafter in Table 3; to each device
is assigned an index (third column) that will be used within ex-
perimental tests section. It is worthy to highlight that one half are

Table 3: List of smartphones
Device Amount Index

LG Nexus 5 5 1,2,3,4,5
Motorola Moto G 2015 1 6
Samsung Galaxy S3 2 7,8
Samsung Galaxy S4 1 9

Samsung Galaxy S2plus 1 10

of the same model and this has been chosen in order to investigate
which was the actual capacity to distinguish also within devices of
the brand and model. The acquisitions from the sensors have been
done by means of a specific mobile application, named Sensor-
Data (see Appendix) which is able to interact with the smartphone
sensors and get their output signal. Both for the accelerometer
and for the gyroscope 20 acquisitions (Q = 10 for training plus
10 for testing), of 2 seconds each, have been taken. Because of
the different characteristics of every smartphones, the number of
samples within each acquisition is diverse, so each sequence has
been resampled by using spline interpolation to compute spectral
features. For what concerns digital images, they have been taken

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.8.MWSF-088

IS&T International Symposium on Electronic Imaging 2016
Media Watermarking, Security, and Forensics 2016 MWSF-088.4



at the default resolution and settings of the device, which is (in
pixels): 2448×3264 (Nexus5, S2plus and S3), 1836×3264 (Mo-
torola) and 2322× 4128 (S4). For each camera, P = 10 images
have been used for PRNU estimation, Q = 10 for training and
other 10 for testing. Notice that only the central 512×512 pixels
portion of each image has been used, thus no image resampling is
needed even if different devices have different camera resolutions.

Test scenarios and evaluation metric
Different test scenarios have been envisaged in order to un-

derstand which could be the operative circumstances that could
affect performances. There are, in fact, many aspects that can
influence the acquisition phase both during training and testing
steps: first of all, the smartphone’s position (leaning on a table,
hand-held by a still or slightly moving user, etc.), secondly, the us-
age conditions (characteristics of the table surface, presence or not
of a telephone cover made of diverse materials, audio/vibration
stimulation, running processes on the operating system, etc.) and
so on. In the next subsection, some of the main achieved results
are presented; in particular, two basic cases have been taken into
account: when the acquisition takes place in a more controlled en-
vironment with the smartphone on a flat wooden surface and when
it is hand-held (without any cover in any case). Tests have been
carried out in order to understand how different conditions can
impact on training with respect of testing and viceversa. The is-
sue of using or not a vibrating impulse has been considered when
acquiring only from the accelerometer, but no requirements have
been imposed on the processes that are running on the smart-
phone. Classification has been done by resorting at a Bagged
Decision Tree approach and experimental tests has been carried
out both for each sensor separately and also in combination. The
obtain results have been evaluated in terms of F-score (F) which
is defined as in Equation (2):

F = (2∗Pr ∗Re)/(Pr+Re) (2)

where Pr = T P/(T P+FP) and Re = T P/(T P+FN) stands for
Precision and Recall. The overall F-score is the average of F-
score computed on each class.

Results
This Section presents experimental results with reference to

some test configurations exploited in Table 4. When the parameter
“Vibration” is set up ON, it is intended that the acquisition for the
accelerometer sensor has been done when there was a stimulation
generated by the vibration motor.

Table 4: Test configurations
Training set Test set

Position Vibration Position Vibration
Config1 Table ON Table ON
Config2 Table OFF Table OFF
Config3 Hand-held ON Hand-held ON
Config4 Table ON Hand-held ON
Config5 Hand-held ON Table ON

It is interesting to underline that the two last test configura-
tions conceive that training and testing conditions are not aligned.

This circumstance has revealed as being more challenging, as ex-
pected, but it represents an actual operative scenario where there
is no control over the end user activities. In Figure 6 the F-score
values for the first three test configurations are depicted. It can
be seen, as general, that the two sensors, accelerometer and gy-
roscope, are both able, by themselves, to provide reliable results
in terms of device distinctiveness; however, when both are used
together performances are improved with a F-score that tends to
achieve values around 100%.

Figure 6. F-score in percentage for the scenarios where training and testing

are aligned.

In particular, for the case of Configuration3 (Hand-held)
which is more challenging, it is interesting to notice that a high
value of F-score is achieved similarly to what happened for the
other two configurations in which the smartphone is leaning on
the table.

On the contrary, in Figure 7 the results obtained for Configu-
ration4 and Configuration5 (e.g. training and testing misaligned)
are presented. It is immediate to comprehend that performances
are worsened and that the approach to join both sensors provides
some benefits granting higher F-score values: 70% is achieved for
Configuration5 at most.

Figure 7. F-score in percentage for the scenarios where training and testing

are not aligned.

In Figure 8, the results obtained when also the camera sen-
sor is taken into account are shown. It can be evidenced that the
first and the third configurations, that already presented very good
performances, tends to reach 100% while the second one remains
almost unaltered, even a bit lower, and this could be due to the
fact that not using the vibration for the accelerometer impacts on
performances as a whole.
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Figure 8. F-score in percentage for all the scenarios when the camera

sensor is added.

It is appreciable that for Configuration4 and Configuration5
results are strongly improved and, for instance, a F-score of about
85% is reached in the last case.

In the light of these results, it is worth making a specific com-
ment on the used camera fingerprint. As a matter of fact, PRNU
is known to be very robust and reliable, ensuring very high accu-
racy in camera identification (often higher than 90%), especially
when used for high-end devices. However, in our scenario, we
must consider a series of constraints: (i) the user cannot be asked
to shoot too many pictures for system training; (ii) we typically
have no control on the kind of pictures the user sends; (iii) smart-
phones camera have hardware limitations with respect to high-end
devices; (iv) the generated feature vector must be small enough to
enable transmission also in low-bandwidth cases. Therefore, we
work in a very disadvantaged scenario: (i) PRNU is estimated
using only a few (i.e., P = 10) images; (ii) these images repre-
sent natural scenes and are not flatfield; (iii) the correlation pro-
cedure is performed using a strongly quantized (i.e., binarization
according to the sign) image noise W ; (iv) smartphones cameras
are strongly affected also by other noise components with respect
to high-end devices. This is the main reason we cannot expect
to reach an even higher accuracy using camera fingerprint in this
scenario.

In Figure 9, the test Configuration5 when also the sensor
camera is taken into account is analyzed in detail. The confusion
matrix structured onto the ten target/output classes is presented
(indexes assigned to each class refer to the smartphone indicated
in Table 3); over the diagonal there are the correct classification
(green blocks) while all the other are wrong (red blocks). It is
interesting to highlight that most of the performance decrement
is given by the classes numbered 1 and 2 (top-left of the matrix)
otherwise performances would be averagely around a F-score of
95%. Going into details, it has been observed that these two
smartphones are both LG Nexus5 and it happens that they are
erroneously exchanged with other devices of the same model.

Conclusions
The novelty of the paper is to propose a method to combine

different smartphone sensors to obtain a reliable, distinctive and
easy-to-use fingerprint able to characterize each single device uni-
vocally. The challenge is to succeed in defining effective features
and integrating them, though extracted from different sensors, to
achieve a robust distinctiveness among diverse smartphones to be
used in strong authentication procedures. The results obtained so

Figure 9. Case Configuration5 (considering also sensor camera): con-

fusion matrix. In the right end column Precision and False Discovery Rate

(1-Precision) are reported respectively while in the bottom end row True Pos-

itive Rate (TPR) and False Negative Rate (1-TPR) are indicated respectively.

far are encouraging, since mixing features from different sensors
outperforms the classification obtained using the features from
each sensor separately. Next steps will be devoted to the study
of open-set scenarios, update the training procedure iteratively for
new users to be registered into the system and to the exploitation
of even more sensors when possible, particularly, to improve dis-
tinctiveness within devices of the same model.
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Appendix: the application SensorData
SensorData is an Android mobile application developed for

the data acquisition from built-in device sensors by using the An-
droid Sensor Framework. The Sensor Framework provides sev-
eral classes and interfaces to perform a wide variety of sensor-
related tasks. For example, the Sensor Framework can be used
to:

• determine which sensors are available on a device;
• determine an individual sensor’s capabilities, such as its

maximum range, manufacturer, power requirements, and
resolution;

• acquire raw sensor data and define the minimum rate at
which you acquire sensor data;

• register and unregister sensor event listeners that monitor
sensor changes.

SensorData application measures acceleration forces and ro-
tational forces along the three axes (x, y, z) (see Figure 10).
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Figure 10. Smartphone reference axes.

In the top of user interface is reported the data delay (or
sampling rate) that controls the interval at which sensor events
are sent to the application via the callback method. The default
data delay is set to SENSOR DELAY FAST EST (0 microsecond
delay), but it could be changed. SensorData application imple-
ments three different sensor listeners (see Figure 11): accelerom-
eter (m/s2), gyroscope (rad/sec) and gravity sensor (µT ), indi-
vidually selectable from the user interface. Data acquisitions can
be made for preset time values, variable from 1 to 60 seconds.
The user can start the test by initially choosing the sensor’s type
from the radio buttons and then make the time period selection.
With START button the user begins the data acquisition. Data
acquisition can be stopped at anytime through the STOP button.

Figure 11. Screenshots of the application “Sensordata”.

If necessary, the vibration can be activated before the ac-
quisition starting. For each acquisition, the data are written on a
specified text file in the device memory storage.
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