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Abstract
Probabilistic or bias-based fingerprinting codes to counter

collusion attacks are applied to enhance the security of trans-
action watermarking applications. Into every media copy to be
distributed is embedded a unique fingerprint via watermarking
techniques. With it a distributor is able to trace back unautho-
rized redistributed versions to its source with a high probability
even if the media was subject to a collusion attack. The seminal
Tardos fingerprinting codes and all its derivatives rely on position
independent fingerprints. Hence in most work it is assumed that
the attackers also rely on the position independence when creating
the media forgery containing a manipulated fingerprint. However,
they need not follow this assumption. In this work we present a
novel iterative attack model that does not rely on the position in-
dependence but could be applied in practice. The corresponding
attacks iteratively adapt the manipulated fingerprint with the in-
tention to maximally reduce their accusation scores in order to
escape the accusation. For practical collusion sizes, the attacks
show better performance than other attacks typically discussed
in literature. In other words, the attacks result in manipulated
fingerprints that lead to higher error rates of the fingerprinting
scheme, compared to the attacks discussed in literature.

1 Introduction
In the last two decades digital watermarking has become a

grown up alternative to digital rights management (DRM) meth-
ods. Providing the possibility of embedding a unique identifier
– the watermark message – into every media copy to be sold,
potential dishonest customers of watermarked media content are
discouraged from unauthorized redistribution, because the unique
identifier allows tracing back to them. Research has driven the
performance of watermarking algorithms so far that most com-
mon media operations and also attacks with the intention to de-
stroy the watermark cannot prevent detecting the correct water-
mark unless the quality of the media cover is significantly de-
graded. Collusion attacks on the other hand still pose a great
risk. To conduct a collusion attack several customers who pur-
chased the same media content – each containing a unique water-
mark message – collude and compare their media copies. Thereby
they detect differences and assume these to be the differing wa-
termark information. Thus, they are able to manipulate the media

copy only at these positions and within their difference range and
hence create a media copy of the same quality, yet containing a
watermark that is a mixture of their watermark information, pre-
venting a clear identification. In recent years, to counter collusion
attacks, various collusion secure fingerprinting codes have been
introduced These are mathematical codes that are embedded into
media copies as watermarking messages. After an unauthorized
media file is retrieved and the watermark detection process ex-
tracts the fingerprint contained, a tracing algorithm is run utiliz-
ing the probabilistic information from the fingerprint generation
to calculate scores regarding the suspiciousness of the fingerprints
in the database. Given that, the most suspicious fingerprint(s) can
be accused.

In literature most effort is spent on the asymptotic (very large
collusions) optimal code. To achieve this, the goal is to make the
best of the two-party max-min game between code designers and
attackers. The encoders try to get the most information about the
colluders, whereas these try to disclose the least possible informa-
tion about themselves. The so called fingerprint capacity, [27], is
where both parties have their equilibrium.

The seminal work of probabilistic or bias-based finger-
printing codes is the well known Tardos Codes introduced by
Tardos [35] proving that a fingerprinting scheme must satisfy
m ∝ c2 ln(nε

−1
1 ) for a large number of fingerprints n, with code

length m, number of colluders c and upper bound on the proba-
bility of accusing a specific innocent ε1. Modern fingerprinting
codes typically rely on the Tardos codes, proposing optimizations
of the fingerprint generation or the tracing algorithm, e.g. [37],
[3], [21], [34], [28], [30], [16], [29], [9], [1], [13]) [36], [17],
[10], [31], [32], [23], [8], [24].

Tardos suggested the arcsine distribution for generating bi-
nary fingerprinting codes already in [35], later this choice was
proven to achieve the capacity bounds independently in [1] and
[13]. With the interleaving attack, for which colluders substitute
to the colluded fingerprint uniformly at random, as the asymp-
totic optimal attack – proven in [14] – the last years yield several
special decoders against this attack [8], [31], [20], as to be the
best defense. The first aiming at practical parameters, the latter
two achieving capacity, that is achieving asymptotic optimal code
lengths for binary fingerprints of m∼ 2c2 ln(nε

−1
1 ). These de-

coders are so-called single decoders as the scores are calculated
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independently for each fingerprint.
Decoders using a joint decoding approach, which means the

scores are no longer calculated per fingerprint but per tuple of
fingerprints [24], [22], [2], are agreed upon to perform better than
single decoders, but the increment in performance goes along with
an increase in computational complexity. Joint decoding is no
longer considered here.

Most fingerprinting codes follow Boneh and Shaw’s so
called marking assumption [6], saying that the colluders are only
able to modify detectable positions, i.e. positions where their wa-
termarked media copies differ from each other due to the individ-
ual watermark information embedded. Besides, a typical assump-
tion model found in literature within the marking assumption is
the location independence of the attack strategy, i.e. the memory-
less collusion channel, e.g. [38].

The reason for the assumption that the colluders restrict
themselves to a memoryless attack strategy is that the code gen-
erations as well as the score functions work completely position-
symmetric, so it might be disadvantageous for the attackers to
deviate from this symmetry. Moreover, it significantly simpli-
fies the proofs for the security of the corresponding fingerprint-
ing scheme. Also, Moulin shows in [25] that enforcing this re-
striction does not change the fingerprint capacity asymptotically,
which means in case the number of attackers is tending to infinity.
However, in the real world the colluders are not restricted to this
assumption. Instead they could apply attack strategies for which
each symbol is chosen also with respect to the symbols observed
on all other detectable positions. To the best of our knowledge,
the behavior of the state of the art fingerprinting codes for this
new attack model has not been considered yet.

In this work we re-define stateful attacks, i.e. attacks that do
not need to follow a memoryless collusion channel. With it we
propose a new kind of collusion attack and also explain explicit
examples. Results show a similar but nevertheless improved (with
regards to the attackers) behavior of the new attacks compared
to the commonly tested stateless or memoryless attacks such as
interleaving or minority vote attack.

The paper is structured as follows: In section 2 we describe
the three stages specific for fingerprinting schemes, the fingerprint
generation, the attack/collusion channel covering two different at-
tack strategies and the tracing algorithm with respect to four dif-
ferent decoders recently discussed in literature. section 3 specifies
the basic idea that lead to this work, the stateful attack strategies.
This includes a general description of this yet unconsidered type
of attack as well as two example strategies detailed afterwards.
The major part of this work takes up section 4 containing a digest
of the evaluation necessary to classify the new attacks compared
to the known ones and with respect to the different decoders and
tracing goals. These lead to a partition of the section into the eval-
uation of the ’detect one’ scenario, i.e. tracing one colluder, and
into the evaluation of the ’detect many’ scenario, i.e. tracing as
many suspicious users as possible. section 5 sums up the impor-
tant findings and concludes this paper.

2 Fingerprinting Scheme and Principles
The fingerprinting scheme consists of the fingerprint gener-

ation process, the fingerprint tracing algorithm and in between
a complete watermarking scheme (embedding, attacking, detect-
ing/extracting). In this work we will only focus on the processes

specific for fingerprinting. This section provides the correspond-
ing background knowledge required for the evaluation section 4.

2.1 Preliminaries
Before the generation of the fingerprints some fingerprinting

parameters need to be set. The applier needs to select the desired
or acceptable upper bounds of the errors that can occur. In a fin-
gerprinting scheme, two kinds of errors are discussed. The false
positive error describes the event in which an innocent-fingerprint
is wrongly suspected of having partaken in the collusion. The cor-
responding upper bound is commonly denoted as ε1. On the other
hand, the event in which none of the colluder-fingerprints can be
identified and suspected is referred to as false negative error. Its
upper bound is denoted as ε2. Since the error rates depend on
each other in some way, every fingerprinting code has to provide
realistic values for both. Since it is worse to accuse an innocent-
fingerprint than to accuse no one, the false positive error rate ob-
viously needs to be very small, whereas a false negative error rate
of 0.5 sometimes is sufficient. In addition, the expected threat
level, i.e. the maximum number of colluders c0 the code needs to
be resistant to, has to be determined. The actual number of col-
luders c must not exceed c0 to provably stay within the selected
error bounds.

2.2 Fingerprint generation
The generation of the fingerprints is according to the Tardos

Codes, i.e. using the arcsine distribution [35] and with optimized
parameter selection according to [21]. Therewith an n×m matrix
X is generated, with n denoting the number of fingerprints and m
refers to the minimum code length the scheme promises provable
correctness for. Ergo the jth row of the matrix corresponds to the
fingerprint which is later embedded in the copy that is released to
customer j ∈ {1, ...,n}. The entries X ji of matrix X are generated
in two steps: First, the distributor picks m independent random
numbers {pi}m

i=1 according to the arcsine distribution over the in-
terval pi ∈ [t,1− t], with a certain cutoff t. Second, the matrix
X is filled, by picking each entry X ji independently from the bi-
nary alphabet {0,1} according to P[X ji = 1] = pi. Note that while
there are generalizations to larger q-ary alphabets, for instance
[36] and [4], we restrict ourselves to the binary case q = 2 as im-
plied above. This is because most watermarking algorithms em-
bed binary messages. Hence fingerprints with higher alphabets
would have to be downscaled to binary messages anyway thus
questioning the value of a larger alphabet.

2.3 Collusion attacks
A group of malicious customers, also called colluders or pi-

rates, can execute different collusion attacks in order to avoid de-
tection by the tracing algorithm. In this work we follow the mark-
ing assumption saying that the colluders are only able to modify
detectable positions, i.e. positions where their watermarked me-
dia copies differ from each other due to the individual watermark
information embedded. Though most approaches follow this as-
sumption, there exist several extensions and accentuations of this
assumption, e.g. [5], [28], but as all relaxations of this assumption
complicate the code construction and tracing, and its affect on the
whole scheme is very depending on the basic watermarking algo-
rithm, we will restrict this work to the core marking assumption
as given above.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.8.MWSF-085

IS&T International Symposium on Electronic Imaging 2016
Media Watermarking, Security, and Forensics 2016 MWSF-085.2



Apart from that, a typical assumption model found in litera-
ture within the marking assumption is the location independence
of the attack strategy.

Definition 1 (Stateless attack model/memoryless channel) In
an attack model that is location independent, the not-necessarily
deterministic output yi of the position i only depends on the
symbols X j1i, ...,X jci of the colluder fingerprints X j1 , ...,X jc of
that particular position i. It is independent of other positions or
any other output yk, with k 6= i. We will refer to this attack model
as stateless attack model.

The reason for the assumption that the colluder restrict themselves
to a stateless attack strategy is that the code generation as well
as the score function work completely position-symmetric, so it
might be be disadvantageous for the attackers to deviate from
this symmetry. Moreover, it significantly simplifies the proofs for
the security of the corresponding fingerprinting scheme. Also,
Moulin shows in [25] that enforcing this restriction does not
change the fingerprint capacity asymptotically.

Let C = { j1, ..., jc} ⊆ {1, ...,n} denote a collusion of size
c with corresponding fingerprints X j1 , ...,X jc . Be XC the cor-
responding matrix of colluder-fingerprints. The colluders cre-
ate a forged fingerprint y = ρ(XC) according to a (possibly non-
deterministic) strategy ρ with the constraint that yi = X j1i if
X j1i = ...= X jci (marking assumption). For stateless attack strate-
gies the strategy ρ does not depend on the column index i and the
same strategy is applied to all columns. Therefore the different
symbols of the forged fingerprint y are generated by yi = ρ(XC,i)
where XC,i denotes the i-th column of XC.

Usually it is assumed that the colluders want to participate
equally in the forgery. If a colluder is idle, there is no hope in
identifying this colluder. We therefore assume that the strategy
is invariant under permutation of the colluder identities, what is
common sense in literature.

Let λi be the number of ones in the column XC,i, with
0≤ λi ≤ c. The attack strategy ρ can be parameterized by a set of
probabilities θ = (θλi

)0≤λi≤c with P[yi = 1] = θλi
. The marking

assumption enforces θ0 = 0 and θc = 1.

• Interleaving attack: For the interleaving attack, an index
k ∈C is selected uniformly at random and yi = Xk,i. Using
the above notation, the interleaving attack can be parameter-
ized as

θλi
= λi/c.

• Minority Vote attack: For the minority vote attack, the col-
luders choose the least common symbol. In case of a tie, a
symbol is selected uniformly at random. The attack can be
parameterized as

θλi
=


1 if 0 < λi <

1
2 c or λi = 1

1
2 if λi =

1
2 c

0 if 1
2 c < λi < c or λi = 0.

In [15] Huang and Moulin show that the interleaving attack is the
strongest attack in an asymptotic sense. On the contrary, in many
practical settings the minority vote attack effectuated the highest
error rates. For this reason we selected these two attack strategies
to be compared to the stateful strategies proposed in section 3.

2.4 Tracing algorithm
Once a forgery has been found, the distributor will try to

identify the customers who partook in crafting it. Therefore he
employs a tracing algorithm calculating a score for every finger-
print (single decoding) where higher scores correspond to a higher
likelihood of having partaken in the collusion. Several decoders
have been proposed in recent years. Some very famous or recently
discussed in literature are described in the following.

• The Škorić decoder Among the most famous is the decoder
featuring the symmetric score function of Škorić et al. [36],
which improves on the score function originally introduced
by Tardos [35]. It computes the score of user j at position i
according to

S j,i =



√
pi

1−pi
if X ji = yi = 0

−
√

1−pi
pi

if X ji = 1, yi = 0

−
√

pi
1−pi

if X ji = 0, yi = 1√
1−pi

pi
if X ji = yi = 1.

• The Oosterwijk decoder Subsequently it became obvious
that the Škorić decoder operates below capacity, that is it
could be further enhanced. In 2013 Oosterwijk et al. re-
ported their capacity-achieving decoder in [30] that is tai-
lored against the interleaving attack. Scores are computed
as follows:

S j,i =


pi

1−pi
if X ji = yi = 0

−1 if X ji 6= yi
1−pi

pi
if X ji = yi = 1.

• The Laarhoven decoder Additionally Laarhoven sug-
gested a similar decoder [20], which in many cases features
lower error rates and which does not need a cutoff parameter
any more, although [8] reports that it suffers performance
once no cutoff is used. While asymptotically scores equal
c0-times the Oosterwijk ones, for small collusion sizes we
get again a Gaussian-shaped distribution of scores accord-
ing to

S j,i =


ln
(

1+ pi
c0(1−pi)

)
if X ji = yi = 0

ln
(

1− 1
c0

)
if X ji 6= yi

ln
(

1+ 1−pi
c0 pi

)
if Xi j = yi = 1.

• The Meerwald-Furon decoder Going in a different direc-
tion Meerwald and Furon proposed an iterative decoder [22]
that is based on a worst-case estimate of the collusion chan-
nel θ and then computes the log-likelihood ratio

S j,i = ln
(
P(yi | X ji, pi,θ)

P(yi | pi,θ)

)
.

We choose to run this decoder with only a single iteration,
losing the advantage of iterative decoding in a trade-off for
lower computational complexity. Besides, the results of a
single iteration are quite impressive themselves. Also for
complexity reasons we choose to employ a custom estima-
tor for the estimation of the collusion channel that performs
slightly worse than the proposed estimator for large c or the
minority vote attack.
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2.5 Accusation
We distinguish the tracing scheme depending on their intent

by two different kinds. First, there is the ‘detect one’ scenario
in which the decoder is interested solely in finding a single pi-
rate. Second, a decoder may attempt to accuse as many pirates
as possible. This setting is called ‘detect many’ scenario. Ac-
cusation in the ‘detect one’ scenario is straightforward to blame
the user that has the highest score. Residing in the ‘detect many’
setting, things become a little more complex. The decoder wants
to accuse as many colluders as possible, while maintaining a rea-
sonable bound on the false positives. Therefore he sets a suitable
threshold Z and accuses every user exceeding it. However the
choice of such a threshold is a difficult challenge. Tardos set a
predefined value independent of the actual attack. While this ap-
proach can usually bound the false positive rate, many times no
colluder can be charged. As such unfortunate cases are sought to
be avoided, different approaches have been proposed, e.g. [16],
[33], [19]. In this work we restrict ourselves to the threshold cal-
culation based on rare event analysis proposed in [12] and [7],
which was already applied in e.g. [22] and [24]. Doing otherwise
would blow up the evaluation section tremendously.

The underlying idea of rare event analysis builds on the fact
that any fingerprint that has not been assigned to a user did not
partake in the forging process. Therefore the likelihood for an
innocent score to surpass a given threshold can be estimated from
newly generated fingerprints. Such adaptive thresholds perform
significantly better in practice (e.g. [8]) than predetermined ones.

3 Stateful Attacks
As presented in the previous section the decoder calculates

scores for every fingerprint over all positions of the manipulated
fingerprint y in order to weigh a user’s suspiciousness. Due to the
scoring function’s location independence the score S j for user j
can be separated into position-wise scores S j,d calculated over all
his detectable positions d ∈ D, i.e. the positions that the collud-
ers could detect when comparing their copies, and position-wise
scores S j,u calculated over his undetectable positions u ∈U , i.e.
where the colluders’ copies show the same information. It holds
S j = ∑d∈D S j,d +∑u∈U S j,u. As the score over the undetectable
positions ∑u∈U S j,u = SU is equal for all colluders, the best at-
tack strategy for a collusion, if they want none of their members
caught, is a strategy that outputs a fingerprint y minimizing the
probability that the largest score Smax of the colluder-fingerprints
exceeds the accusation threshold Z:

min(P[Smax > Z]) = min(P[Smax,D > Z−SU ])

As the colluders do not know the probabilities that were used for
the generation of the fingerprints, they cannot compute Smax,D
precisely. However, for instance using the maximum-likelihood
method, the colluders may guess the probability for each (de-
tectable) position from the observed symbols of those posi-
tions. The maximum-likelihood method results to the estimation
p′i = λi/c and consequently

S′j,D = ∑
d∈D

g(X jd ,yd , p′d)

seems to be a decent estimate, where g denotes the score function
in use. The value

y′ = argmin
y
(max(S′j,D))

therefore appears to be a reasonable candidate to minimize the
expectation value of Smax,D.

With respect to these considerations, the goal is to design an
attack strategy that finds valuable approximations of y′ in an ef-
ficient way. However, this requires the colluders to deviate from
the location independence. Recall that the reason to assume that
a collusion would adhere to the location independence was not
inherent but rather a consideration that it may hurt them, while
definitely not benefiting them asymptotically. Consequently a col-
lusion may well choose to resort to location dependent forging if
they see an advantage.

Definition 2 (Stateful attack model) In an attack model that is
location dependent, in order to choose the symbol of the current
position i for the manipulated colluded fingerprint y as the re-
sult of the collusion attack, the colluders may use the information
about the symbols , k = 1, ...,m taken for the other positions k 6= i
as well. This attack model is referred to as stateful attack model.

We propose a simple and practical stateful attack strategy referred
to as ’greedy attack’, as it applies a greedy strategy to generate
the manipulated fingerprint y. Additionally we present another
similar stateful attack strategy (’combinatorial attack’), which
sometimes exceeds our greedy approach, yet is not applicable in
practice. In the following a detailed description of both greedy
and combinatorial attack is given.

3.1 Greedy attack
For this stateful attack strategy the colluders aim to minimize

their accusation scores, i.e. to minimize the expectation value of
Smax,D. More precisely, they approximate the column probabili-
ties pi, i = 1, ...,m, of the fingerprint matrix X by analyzing the
corresponding matrix of colluder-fingerprints XC. With the ap-
proximated values for p, the colluders compute all their expected
accusation scores up to position i−1. For the selection of the
symbol in the current position i of the manipulated fingerprint y,
they choose whether to put a ’1’ or a ’0’ according to the symbol
that minimizes the expected accusation score highest after their
choice. Afterwards they try to further improve (that is decrease)
their maximum score by trying to flip the bits of y until this yields
no further reduction.

To compute the expected scores the colluders also have to
guess which decoder is tracing them. To avoid confusion, this
guessed decoder, i.e. the score function the colluders select to
create their expected scores during the attack, is from now on re-
ferred to as collusion-decoder whereas the actual decoder that is
used to calculate the scores for all fingerprints during the tracing
algorithm is denoted as tracing-decoder. From the decoders listed
in section 2 we exclude the Meerwald-Furon decoder from valid
expected collusion-decoders, since the tracer’s estimate of θ de-
pending on the colluders’ estimate of the tracer’s estimate of the
colluders’ strategy is not only very time-consuming to compute
but also small-scale tests suggest it is working out rather badly
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for the collusion as error rates are very inconsistent and often-
times low.

Note that in a watermarking scenario in praxis, the colluders
have no possibility to tell what the value of the symbol they have
actually is. With respect to watermarking the colluders can only
detect different media information. We admit that for this attack
to be applicable in practice, the colluders need to be able to
associate the detected different media information to the correct
watermark/fingerprint position, which is not trivially realistic for
every watermarking algorithm. Given this, however, they only
need to be able to count how many of them have equal watermark
information associated to one symbol (’1’ or ’0’) compared to
how many have watermark information associated to the other
symbol. Therewith they can guess the probabilities pi that are
required for this attack.

3.2 Combinatorial attack

This stateful attack tries to exploit the symmetry of the scor-
ing function. For if the fingerprints’ values at two positions k 6= l
are equal for all colluders, then we assume pk = pl and choos-
ing ’1’ in position k and ’0’ in position l in the forgery y leads
to expected scores of 0 for each colluder j at those two positions
(assuming the scoring function is indeed perfectly symmetric like
the symmetric Tardos scoring function in [36]). The same applies
if the fingerprints’ values at two positions differ for each colluder.
Then choosing the same symbol leads to an expected score of 0 for
every colluder for both positions. For those positions whose value
can not be chosen this way we resort to the greedy attack. Unfor-
tunately it relies heavily on the symmetry of the scoring function
in use. However, decoders tend to be at least slightly symmetric
as they try to discriminate by decreasing innocents’ scores and
increasing pirates’ scores.

More importantly, this attack is limited by the requirement
to distinguish symbols at different positions. Hence, this attack
may not be applicable in practice but still serves as reminder that
stateful attacks can not simply be discarded for non-asymptotic
(that is practical) purposes.

4 Evaluation and Results
We divide our results into ‘detect one’ and ‘detect many’ sce-

nario and present them separately. In the ‘detect one’ scenario an
error occurs if the score of an innocent-fingerprint is larger than
the maximum score of the colluder-fingerprints. Hence, an error
in this ‘detect one’ scenario would automatically result in either
a false positive or a false negative error in the ‘detect many’ sce-
nario. Therefore the error probability of a fingerprinting scheme
with the ‘detect one’ tracing algorithm is a lower bound for the
error probability of the same scheme with the ‘detect many’ trac-
ing algorithm. Because of this, studying the ‘detect one’ scenario
is insofar interesting, as it gives a first impression of the best pos-
sible error rate that could be achieved by using a simple tracing-
decoder. Afterwards we focus on the more common ‘detect many’
scenario, which provides further insight to the effects of stateful
attacks on the error rates and portion of accused users.

4.1 Evaluation in a ‘detect one’ scenario
One advantage of the ‘detect one’ accusation scenario is the

independence of different threshold calculations (e.g. [36], [16],
[33], [22]). This permits drawing valid conclusions on the at-
tacks’ effectiveness that cannot be made void by newly proposed
thresholding techniques. We first restrict our evaluation to the
Škorić (collusion- and tracing-) decoder, as its score function is
position and symbol symmetric and the stateful attack strategies
introduced in section 3 are initially based on this symmetry. Af-
terwards we compare the different decoders described in section 2
with regards to their vulnerability to the stateful attacks as well as
interleaving and minority vote attack.

Results for the Škorić decoder: Depicted in Figure 1, we tried
to analyze the error rates for varying collusion sizes c and col-
lusion strategies in order to gain insight as to the importance of
these. The minority vote attack is depicted as we found it to be (on
average) the strongest stateless attack for these parameter settings.
Proven to be asymptotically optimal [14], we also show results of
the interleaving attack, although it lags behind significantly. Fur-
thermore we show the performance of our proposed stateful at-
tacks. We restrict our results here to the Škorić collusion- and
tracing-decoder according to [36], due to the combinatorial at-
tack’s reliance on the symmetry of the score function. We plot the
error rate for plausible collusions with 2 up to 20 colluders. Code
length and cutoff parameter for the continuous arcsine distribution
are chosen according to the optimized parameter selection for the
symmetric Tardos Codes in [21] with bound on the false negative
error ε2 = 0.5 and bound on the false positive error nε1 = 0.1 for
n = 1,000 users. For each collusion size and each attack strat-
egy we generated 100,000 fingerprint matrices and subsequently
traced the colluders, except for the combinatorial attack for which
we generated only 20,000 attacks for collusion sizes 12 to 20 due
to their increasing complexity.

Figure 1. ‘Detect one’ error for c = 2, ...,20 colluders

For c = 20, the stateful attack strategies effectuate that the
resulting manipulated fingerprint y leads to more than 20 or 50
times higher error rates compared to the minority vote or inter-
leaving attack, respectively. This being only an implication of the
big picture, the results show that for the stateful strategies the er-
ror rate increases with growing collusion size (with parameters
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adjusted accordingly), while it decreases or approximately stays
the same for the stateless strategies.

Note that the code length was adapted according to the collu-
sion size. Therefore, the difference between stateless and stateful
strategies indeed increases with the collusion size, indicating that
large collusions can profit a lot more from using a stateful attack
strategy than small collusions. This is expected as the colluders
get a more precise estimate of the secret bias vector p and conse-
quently the estimates of their own scores improve.

Moreover we see the minority vote attack considerably ex-
ceeding the interleaving attack, although the difference shrinks
with growing collusion size. This observation is consistent with
our other setups in which the minority vote attack outperforms the
interleaving attack.

Results for various decoders: In order to examine the alter-
ation of errors in more detail and for various parameter settings we
provide error rates for stateful and stateless attacks when traced by
the tracing-decoders suggested in literature that were introduced
in section 2, which are denoted here as ‘S’, ‘L’, ‘O’ and ‘MF’
for Škorić, Laarhoven, Oosterwijk and Meerwald-Furon, respec-
tively. In addition to Setups A and B used in [8], we provide
results for a third setting that is more favorable to the pirates and,
more importantly, features a larger collusion size. The exact pa-
rameters are chosen to be:

Setup A: m = 256 c = 3 c0 = 6 t = 5.5∗10−4

Setup B: m = 1024 c = 6 c0 = 10 t = 3.3∗10−4

Setup C: m = 2048 c = 15 c0 = 15 t = 1.1∗10−4

Following the notation from section 2, m denotes the code length,
c stands for the actual collusion size, c0 is the selected maximum
collusion size to be resistant against and t represents the cutoff. In
all three setups we generate fingerprints for n = 1,000 users and
perform 10,000 attacks for each collusion strategy. We denote
these strategies as follows:

• IL: Interleaving attack
• MIN: Minority Vote attack
• GRES: Greedy attack with Škorić collusion-decoder
• GREL: Greedy attack with Laarhoven collusion-decoder
• GREO: Greedy attack with Oosterwijk collusion-decoder
• COMS: Combinatorial attack with Škorić collusion-

decoder

As the above list conveys we try to adapt the greedy attack to
accommodate the possibility of being scored by various tracing-
decoders by letting the colluders compute their expected scores
based on the score functions suggested by Škorić et al. [36], Oost-
erwijk et al. [31] and Laarhoven [20]. The resulting attacks are
denoted with subscript ‘S’, ‘L’ and ‘O’, respectively. Note that
for the combinatorial attack the symbols in positions not covered
by the algorithm itself are decided upon by the greedy attack ex-
pecting the symmetric score function of the Škorić decoder. Here
we did not include other collusion-decoders as at most 2c−1−1
such positions can exist, thus making almost no difference in Se-
tups A and B.

The results in Table 1 show that for Setup A stateful at-
tacks strikingly improve the colluders chances against the Škorić

Tracing-decoder

Attack S L O MF

IL 280 23 130 32
MIN 442 299 389 77
GRES 835 67 165 75
GREL 752 110 199 124
GREO 672 66 132 48
COMS 935 139 268 134

Table 1: Absolute number of errors at 10,000 attempts in
Setup A with mmm === 222555666,,, ccc === 333,,, ccc000 === 666,,, ttt === 555...555∗∗∗111000−−−444

tracing-decoder and increase them facing the Meerwald-Furon
tracing-decoder, e.g. opposing the Škorić tracing-decoder for the
stateful attacks featuring the Škorić collusion-decoder we obtain
835 and 935 errors, respectively, in comparison to only 442 errors
for the minority vote attack. Yet for both Laarhoven and Oost-
erwijk tracing-decoder stateful attacks fail to strengthen the most
impactful stateless attack, i.e. the minority vote attack. For every
tested decoder the combinatorial attack delivers the highest error
rate among the stateful attacks.

Tracing-decoder

Attack S L O MF

IL 75 0 31 2
MIN 91 29 36 0
GRES 626 20 71 6
GREL 309 17 44 7
GREO 236 2 20 2
COMS 597 39 82 5

Table 2: Absolute number of errors at 10,000 attempts in
Setup B with mmm === 111000222444,,, ccc === 666,,, ccc000 === 111000,,, ttt === 333...333∗∗∗111000−−−444

In Table 2 the errors affected by the different attacks are
listed for Setup B. Here we observe an overall improvement of the
stateful attacks’ stance compared to Setup A. The combinatorial
attack consistently outperforms stateless attacks, while the greedy
attack only struggles versus the Laarhoven tracing-decoder. No-
tably the greedy attack with Oosterwijk collusion-decoder per-
forms worst among the greedy attacks.

Tracing-decoder

Attack S L O MF

IL 1851 193 619 201
MIN 2186 528 135 0
GRES 8755 1944 456 106
GREL 5882 2685 1404 2728
GREO 5553 2207 1455 2098
COMS 8817 2138 515 118

Table 3: Absolute number of errors at 10,000 attempts in
Setup C with mmm === 222000444888,,, ccc === 111555,,, ccc000 === 111555,,, ttt === 111...111∗∗∗111000−−−444

Table 3 finally presents Setup C in which the stateful attacks
generally outmatch stateless ones. Even the Laarhoven tracing-
decoder that successfully limited stateful efforts in Setups A and B
is now overcome. Note however that the greedy attack with Škorić
collusion-decoder and the combinatorial attack are exceptions to
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stateful attacks producing high error rates when facing the Oost-
erwijk or Meerwald-Furon tracing-decoder.

All in all we confirm again that with growing collusion
size the attack strategies that operate location-dependent do have
an edge compared to those using a memoryless collusion chan-
nel. Overall the greedy attack with Laarhoven collusion-decoder
seems to consistently produce many errors across all tracing-
decoders and setups. The greedy attack with Škorić collusion-
decoder excels when actually being scored by the Škorić tracing-
decoder, accounts for decently high error rates for most other se-
tups and tracing-decoders, while performing below average for
some, most notably in Setup C versus Oosterwijk and Meerwald-
Furon tracing-decoders as mentioned above. Lastly, Oosterwijk
collusion-decoder does not seem to yield results favorable to the
colluders as it produces the least number of errors among all
greedy attacks in both Setup A and Setup B. The only setting
in which it barely exceeds the Laarhoven collusion-decoder is in
Setup C versus the Oosterwijk tracing-decoder. From the collu-
sion’s point of view the combinatorial attack broadly performs
well, often being the best stateful attack and almost never lag-
ging behind by far if not, except in Setup C opposing Oosterwijk
and Meerwald-Furon tracing-decoders. However, as mentioned in
section 3, it is impractical due to its need to distinguish symbols.

4.2 Evaluation in a ‘detect many’ scenario
The ‘detect many’ scenario is the more common and realistic

of both scenarii. Distributors would want to find preferably every
pirate to shut down future malicious actions. As mentioned earlier
thresholding becomes an interesting challenge. First of all we
tested as to what happens in case a static threshold is used. For this
purpose we track error rates across a broad range of thresholds.
Then we employ techniques from rare event analysis [12] in order
to illustrate how our stateful attacks work and highlight their use
cases from the colluders’ point of view. Lastly we view detailed
accusation rates for the three setups introduced in 4.1.

Results for the Škorić decoder: In the following we provide
two plots comparing false negative error rates with tracing- and
collusion-decoder based on the Škorić decoder. The first tracks
the behavior of a small collusion (c = 5), while we examine a
large collusion (c = 25) in our second setup. Code length is
m = 1,614 and m = 31,485, respectively, chosen together with
the cutoff parameter according to the improved parameter selec-
tion proposed in [21] with ε1 = 0.001. 100,000 attacks have been
simulated for each collusion channel, except the combinatorial at-
tack with 25 colluders, for which we depict the results of only
2,000 attacks due to its computational complexity. But again,
these 2,000 attacks suggest that greedy and combinatorial attack
lead to similar error rates. We depict thresholds that show the
range of error rates encountered for all attack strategies.

Note that throughout this work we use comparably high val-
ues of ε1. However, a lower value of ε1 leads to a higher threshold.
In turn this results in even more false negative errors affected by
the stateful attacks as mirrored by Figure 2 and Figure 3. There-
fore we can get rid of some computational complexity without
invalidating the evidence we gather.

Showcased in Figure 2 we can demonstrate that the errors of
the tracing algorithm affected by greedy and combinatorial attack
are comparably close. Moreover for a fixed threshold they both

result in error rates higher than for the minority vote attack by a
factor ranging from about 3 to 5 for error rates below 10% that
vanish when the error probability approaches 1. Together with
the results presented in Figure 3 it validates what we concluded
from our findings shown in Figure 1, that is the difference between
stateful and stateless attacks only grows in c: For 25 colluders
we observe huge differences in the error rate, e.g. for a threshold
Z = 900 we have false negative error rates of 1∗10−5,3∗10−4

and 4∗10−1 for interleaving, minority vote and greedy attack,
respectively. That is, the greedy attack can affect the tracing al-
gorithm to produce error rates more than three magnitudes higher
than the minority vote attack for static thresholds.

We now turn our attention towards the question how stateful
attacks impact the distribution of scores in addition to why and
when colluders could improve by applying them.

In Figures 4 and 5 we depict score distributions in Setup A
and Setup C for interleaving and greedy attack. They suggest that
stateful attacks (the combinatorial attack leads to similar distribu-
tions) do not influence scores of innocent users significantly. The
fact that thresholding with rare event analysis relies only on the
distribution of scores of innocents causes the inability of such dy-

Figure 2. ‘Detect many’ false negative error for c = c0 = 5 and m = 1614

Figure 3. ‘Detect many’ false negative error for c = c0 = 25 and m = 31485
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namic threshold estimators – let alone static thresholds – to adapt
our stateful attacks.

Depicted in the figures, for each run we estimated a threshold
with bound on the false positives ε1 = 0.001. Subsequently we
averaged over all these thresholds with averages for interleaving
and greedy attack differing by less than 0.015 in Figure 4 and by
less than 1.4 in Figure 5. This experimentally validates our claim
that dynamic thresholds cannot properly adapt to the change of
colluder scores exhibited by our stateful attacks.

Moreover in Figure 4 and Figure 5 we observe what causes
the increase in error rates. The colluders’ scores vary less on an
equally high level, or more technically, they are still Gaussian-
distributed with the same mean but smaller variance. Conse-
quently, we obtain accusation rates that reinforce stateless devi-
ations away from 50%. In other words, if for a stateless attack
in the same setting more than 50% of colluders could be accused,
then it will be even more in case they use a stateful attack. But if
less than 50% are accused in the stateless case, then it will be even
less for a stateful attack. The former can be observed in Figure 4,
where in Setup A this corresponds to 86% of pirates being ac-
cused instead of 76%, while the latter shows in Figure 5 with less

Figure 4. Distribution of scores normalized over 10,000 attempts in Setup A

Figure 5. Distribution of scores normalized over 10,000 attempts in Setup C

than 1% of the pirates being caught instead of more than 15%.
Depending on the pirates’ goals this behavior may be ad-

vantageous and highly desired. Not only seems it unrealistic that
pirates redistribute a forged copy if they assume the majority of
them to be caught anyways, but in case they did, then they might
use a scapegoat strategy to begin with. Otherwise they try to avoid
many – maybe even a single – of the colluders from being ac-
cused, which is easier if the highest scores are lower, as is the case
for our stateful attacks. In addition, dynamic or iterative schemes
hold inherent the possibility to iteratively uncover many perpetra-
tors from one accused pirate in the first place, further strengthen-
ing the claim that pirates would want to avoid even a few of their
own from being detected. Hence, we assume that collusions as-
sume that less than 50% – preferably none – of their members are
being accused in the first place. In that case our stateless attacks
promise an advantage to the attackers.

Results for various decoders: To back up these considerations
of when stateful attacks are reasonably applicable and of how
large an advantage they can yield, we provide the percentages
of users wrongly accused (‘WA’), that is innocent users exceed-
ing the threshold, and of colluders who escaped detection (‘ED’),
that is those pirates acquitted due to their scores being below the
threshold. For all three setups we give results for 1,000 runs with a
threshold chosen according to rare event analysis with ε1 = 0.001.
Additionally, for Setup A we give absolute false positive and false
negative occurrences to qualify the statement emerging from the
percentage of escaped colluders.

Tracing-decoder

Attack S L O MF

WA ED WA ED WA ED WA ED

IL 0.1 25.4 0.1 10.9 0.1 31.6 0.1 12.3
MIN 0.1 27.4 0.1 31.6 0.1 47 0.1 20.9
GRES 0.1 14.5 0.1 4.1 0.1 27.8 0.1 4.7
GREL 0.1 14.5 0.1 5.7 0.1 32.9 0.1 5.9
GREO 0.1 15.7 0.1 1.9 0.1 24.2 0.1 2.3
COMS 0.1 12.8 0.1 3.8 0.1 28.9 0.1 4.4

Table 4: Percentages of wrongly accused users and
escaped colluders at 1,000 attempts in Setup A with
mmm === 222555666, ccc === 333, ccc000 === 666, ttt === 555...555∗∗∗111000−−−444

The results in Table 4 show that as long as the tracing-
decoder is working properly stateful attacks do not help the col-
luders, as can be seen for all tracing-decoders. We observe the
percentages of colluders who escaped detection being higher for
stateless attacks. Again, considering the change in score distri-
bution this is expected, because more colluders are caught in the
stateful attack if the threshold is lower than the colluders’ mean
(see Figure 4). Furthermore we also observe that the difference
varies depending on the tracing-decoder, with Škorić and Oost-
erwijk decoders discriminating much less than Laarhoven and
Meerwald-Furon decoders.

These results seem to imply that location-dependent attacks
perform strictly worse in Setup A. However, focusing solely on
the number of occurrences of a false negative error, we see below
in Table 5 that clearly for the Škorić tracing-decoder and barely
for the Meerwald-Furon tracing-decoder stateful attacks do yield
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an advantage for the colluders in Setup A already. This observa-
tion is consistent with the ‘detect one’ results in Table 1.

Note that the high number of false positive errors is due to
ε1 = 0.001. In expectation we accuse 1 of 1,000 innocent users,
with 997 innocents in each run. The fact that much less than
1,000 false positive errors occur is due to multiple wrongly ac-
cused users per run still accumulate to only one false positive er-
ror.

Tracing-decoder

Attack S L O MF

FP FN FP FN FP FN FP FN

IL 648 11 644 0 631 1 621 1
MIN 630 15 656 8 642 9 638 1
GRES 658 37 631 0 642 0 640 0
GREL 639 20 615 0 662 3 633 0
GREO 634 31 655 0 628 0 660 1
COMS 597 33 639 2 647 2 642 2

Table 5: Absolute number of false positive and false
negative errors at 1,000 attempts in Setup A with
mmm === 222555666, ccc === 333, ccc000 === 666, ttt === 555...555∗∗∗111000−−−444

Tracing-decoder

Attack S L O MF

WA ED WA ED WA ED WA ED

IL 0.1 28.5 0.1 8.4 0.1 34.9 0.1 8.7
MIN 0.1 32.7 0.1 31.8 0.1 44.7 0.1 0
GRES 0.1 16.7 0.1 12.8 0.1 48.6 0.1 7.8
GREL 0.1 18.6 0.1 0.8 0.1 33.8 0.1 1.4
GREO 0.1 20.2 0.1 0.1 0.1 18.7 0.1 0.1
COMS 0.1 16.2 0.1 13.8 0.1 47.7 0.1 7.8

Table 6: Percentages of wrongly accused users and
escaped colluders at 1,000 attempts in Setup B with
mmm === 111000222444, ccc === 666, ccc000 === 111000, ttt === 333...333∗∗∗111000−−−444

Setup B has a similar trend, as shown in Table 6. However, if
the collusion uses the Škorić collusion-decoder the huge discrim-
ination of the Meerwald-Furon tracing decoder vanishes and the
escape percentages of stateless attacks are exceeded.

Moreover we observe that astoundingly Laarhoven and Oost-
erwijk collusion-decoders seem to fail miserably for the collud-
ers when traced by the Laarhoven or Meerwald-Furon tracing-
decoder. This is contrary to Setup A, where the Laarhoven
collusion-decoder proves to be the best choice except when scored
by the symmetric score function of the Škorić decoder.

Another interesting fact is that correctly anticipating the
Škorić tracing-decoder does actually lessen the fraction of missed
colluders. When looking at the absolute number of false negative
errors (GRES : 10, GREL : 4, GREO : 2, see Table 7) we see
this turned upside down. This is due to the fact that expecting
the tracing-decoders actually employed reduces the variance the
most, leading to higher accusation rates in unfavorable settings
such as Setup A and B.

The combinatorial attack delivers notably strong results
among the stateful attacks, together with GRES even exceeding

the amount of colluders missed by the Oosterwijk tracing-decoder
in case of stateless attacks.

Apart from the afore-mentioned results of the Škorić tracing-
decoder Table 7 gives no further insight as all other tracing-
decoders always accuse at least one colluder, but is nonetheless
displayed for the sake of completeness.

Tracing-decoder

Attack S L O MF

FP FN FP FN FP FN FP FN

IL 642 0 609 0 615 0 643 0
MIN 650 1 610 0 648 0 650 0
GRES 661 10 629 0 633 0 633 0
GREL 661 4 633 0 623 0 619 0
GREO 600 2 636 0 637 0 668 0
COMS 626 11 654 0 627 0 656 0

Table 7: Absolute number of false positive and false
negative errors at 1,000 attempts in Setup B with
mmm === 111000222444, ccc === 666, ccc000 === 111000, ttt === 333...333∗∗∗111000−−−444

Tracing-decoder

Attack S L O MF

WA ED WA ED WA ED WA ED

IL 0.1 84.4 0.1 63.8 0.1 79.6 0.1 64.3
MIN 0.1 86,8 0.1 76.0 0.1 72.6 0.1 0
GRES 0.1 99.0 0.1 84.0 0.1 83.1 0.1 57.8
GREL 0.1 94.7 0.1 79.5 0.1 88.2 0.1 79.4
GREO 0.1 93.5 0.1 68.4 0.1 82.0 0.1 67.5
COMS 0.1 99.0 0.1 84.1 0.1 83.0 0.1 57.5

Table 8: Percentages of wrongly accused users and
escaped colluders at 1,000 attempts in Setup C with
mmm === 222000444888, ccc === 111555, ccc000 === 111555, ttt === 111...111∗∗∗111000−−−444

In contrast to Setup A and Setup B, in Setup C we see signifi-
cant increases in the error percentages against all tracing-decoders
as Table 8 illustrates. Of course this is partly due to the setup fa-
voring the colluders based on the small code length compared to
the collusion size. On the other hand stateful attacks obviously
surpass both interleaving and minority vote attack for all but one
decoder.

Note that Setup C should even favor the tracing-decoders of
Laarhoven and Meerwald and Furon, because the guessed number
of colluders is precise. In fact both have on average the lowest
error rates, with the difference being a lot more significant in case
of Meerwald-Furon.

While the greedy attack with Oosterwijk collusion-decoder
struggles when faced with the Laarhoven tracing-decoder
and both combinatorial attack and greedy attack with Škorić
collusion-decoder do not quite meet the interleaving attack’s
percentage of missed colluders opposing the tracing-decoder of
Meerwald and Furon, the Laarhoven collusion-decoder guaran-
tees increased error percentages regardless of the actual tracing-
decoder.

Finally Table 9 displays the absolute number of false positive
and false negative errors in Setup C. We observe the false negative
error occurrences of stateful attacks towering above those of both

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.8.MWSF-085

IS&T International Symposium on Electronic Imaging 2016
Media Watermarking, Security, and Forensics 2016 MWSF-085.9



Tracing-decoder

Attack S L O MF

FP FN FP FN FP FN FP FN

IL 615 77 650 0 653 4 639 1
MIN 654 126 614 9 658 1 615 0
GRES 634 858 641 91 648 2 632 1
GREL 638 479 634 118 637 36 656 137
GREO 625 422 645 62 607 24 637 50
COMS 637 881 648 98 638 2 628 0

Table 9: Absolute number of false positive and false
negative errors at 1,000 attempts in Setup C with
mmm === 222000444888, ccc === 111555, ccc000 === 111555, ttt === 111...111∗∗∗111000−−−444

minority vote and interleaving attack when facing the Škorić and
Laarhoven tracing-decoders. For the Oosterwijk and Meerwald-
Furon tracing-decoders the greedy attacks with Laarhoven and
Oosterwijk collusion-decoders surpass any other attack strategy
by a long shot.

Summing up on the ‘detect many’ results, we note that the
Škorić collusion-decoder delivers more consistent clearing per-
centages than both Laarhoven and Oosterwijk collusion-decoders
as opposed to the ‘detect one’ scenario and the absolute false
negative occurrences in which the Laarhoven collusion-decoder
proved to be the most favorable to the collusion. Nevertheless
each choice of a collusion-decoder has its own set of strengths
and weaknesses depending on both the setting and the tracing-
decoder. Setup A is punishing the collusion for applying state-
ful attacks, with differences reduced in Setup B. Setup C turns
this around, rewarding colluders who deviate from the location-
independence and make use of the stateful attacks.

5 Conclusion and Future Work
Most research regarding collusion secure fingerprinting

codes focuses on optimal fingerprint matrix generation or effi-
cient tracing algorithms. Though there exist prior publications
that present or discuss sophisticated collusion attacks (e.g. [26],
[11], [18], [15]), to the best of our knowledge, the class of stateful
attacks has not been considered before in the field of modern fin-
gerprinting codes such as the Tardos codes [35]. We defined the
class of stateful attacks as attacks for which the colluders need
not select the symbol of the current position of the fingerprint in-
dependently from the (symbols of) other positions. This enables
new possibiities for the colluders that have to be considered by
the code designers and their decoders as well. To prove this, we
introduced two stateful attack strategies denoted as greedy attack
and combinatorial attack that show competitive behavior to those
attacks discussed in literature. If the colluders intend to escape the
accusation of the tracing algorithm for each of them, they might
benefit from applying a stateful attack strategy. We compared the
stateful attacks introduced in this work to the most poweful state-
less attacks commonly discussed in literature and showed that
these new attacks pose new possibilities for significant improve-
ment for the colluders. However, some fingerprinting parameters
are crucial for successful detection or tracing. If the number of
expected colluders c0 is significantly larger than the actual col-
lusion size c, stateful attacks are likely to help the tracers before
the colluders. Also, the colluders have to guess what decoder the

tracers might apply for tracing them, in order to conduct a state-
ful attack. A disadvantageously selected decoder for creating the
attack might return in a higher chance to get caught by the tracers.

Altogether stateful attacks save more colluders only when
used in the right scenario. That is, if the setting is punishing the
colluders a lot in the first place, then both greedy and combinato-
rial attack are likely to be counterproductive. Applied in the right
setting though, they yield advantages over conventional stateless
attacks. As previously reasoned, we think that the pirates may
usually (at least think to) be in such a favorable scenario if they
decide to collude. Hence, stateful attacks provide a set of new and
strong tools to the party of pirates.

However, many things such as the diverse results for the dif-
ferent colluder- and tracing-decoder are not yet full understood.
For this reason, we plan to extend the testset to other decoders,
e.g. [8], and methods to calculate the accusation threshold, e.g.
[33], in order to get more insights of this new class of attacks.
Beside the empirical evaluations, the theoretic background to this
attacks is still void. While for collusions of two an analytical
proof of the superiority of stateful attacks over stateless attacks
is straight forward, proofs for larger collusions promise to be te-
dious. Future elaborations should bring more light into the class
of stateless attacks.
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