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Abstract
Currently, the best detectors of content-adaptive

steganography are built as classifiers trained on examples of
cover and stego images represented with rich media mod-
els (features) formed by histograms (or co-occurrences) of
quantized noise residuals. Recently, it has been shown
that adaptive steganography can be more accurately de-
tected by incorporating content adaptivity within the fea-
tures by accumulating the embedding change probabilities
(change rates) in the histograms. However, because each
noise residual depends on an entire pixel neighborhood, one
should accumulate the embedding impact on the residual
rather than the pixel to which the residual is formally at-
tributed. Following this observation, in this paper we pro-
pose the expected value of the residual L1 distortion as
the quantity that should be accumulated in the selection-
channel-aware version of rich models to improve the detec-
tion accuracy. This claim is substantiated experimentally
on four modern content-adaptive steganographic algorithms
that embed in the spatial domain.

Motivation
Modern content-adaptive steganography dates back to

2010 when HUGO (Highly Undetectable steGO) was in-
troduced [22]. It incorporated syndrome-trellis codes [6] as
the most innovative element that is currently used in all
modern steganographic schemes operating in any domain.
Such advanced coding techniques gave the steganographer
control over where the embedding changes are to be exe-
cuted by specifying the costs of modifying each pixel. The
costs, together with the payload size, determine the prob-
ability with which a given pixel is to be modified during
embedding. These probabilities, also called change rates,
are recognized as the so-called selection channel.

Since the costs of virtually all content-adaptive em-
bedding techniques are not very sensitive to the embed-
ding changes themselves [25], they are also available to
the steganalyst. For simpler embedding paradigms, such
as the Least Significant Bit (LSB) replacement combined
with naive adaptive embedding, researchers have shown
how a publicly known selection channel can be used to
improve the WS detector [23]. Modern adaptive stegano-
graphic schemes for digital images [13, 19, 26, 16, 24], how-
ever, do not use LSB replacement or naive adaptive em-
bedding, and their detection requires detectors built with
machine learning.

The prevailing trend is to represent images using rich
media models, such as the Spatial Rich Model (SRM) [7],

Projection Rich Model (PSRM) [14], and their numer-
ous variants designed for the spatial domain [2], JPEG
domain [17, 12, 15, 27], and for color images [8, 9].
Such rich models are concatenations of histograms (for
projection type rich models [14] and phase-aware mod-
els [15, 12, 27]) or co-occurrences of quantized noise resid-
uals obtained with a variety of linear and non-linear pixel
predictors. In [28], the authors proposed to compute the
co-occurrences in the SRM only from a fraction of pix-
els with the highest embedding change probability. Even
though this decreased the amount of data available for
steganalysis, the authors showed that the embedding al-
gorithm WOW could be detected with a markedly better
accuracy. A generalization of this approach was later pro-
posed that utilized the statistics of all pixels by accumu-
lating the maximum of the four pixel change rates in the
co-occurrences of four neighboring residuals. This version
of the SRM called maxSRM [5] improved the detection of
all content-adaptive algorithms to a varying degree. The
idea was, however, not extensible to spatial-domain rich
features for detection of JPEG steganography [15, 12, 27]
or to projection type features because the residuals depend
on numerous pixels and one can no longer associate a pixel
(or a DCT coefficient) change rate with a given residual
sample. This paper resolves this issue by replacing the
change rate with the expected value of the residual dis-
tortion as the quantity that should be accumulated in the
histograms (for JPEG phase-aware features and projection
type features) and in co-occurrences (for SRM).

This extension is relatively straightforward for linear
residuals since the relationship tying the embedding do-
main and the residual domain is linear. If the embedding
changes are executed independently,1 one can easily com-
pute the expected value of the embedding distortion in the
residual domain analytically. A major complication, how-
ever, occurs for non-linear residuals due to the necessity to
compute marginals of high-dimensional probability mass
functions. This is why the emphasis of this paper is on
rich representations formed from linear residuals. An ex-
tension of the idea presented in this paper to phase-aware
JPEG features appears in [3].

In the next section, we include a brief overview of
the SRM, PSRM, and maxSRM to prepare the ground
for the third section, where we describe the quantity that

1This is true for all current steganographic schemes with the
notable exception of steganography that synchronizes the selec-
tion channel [4, 20].
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will be accumulated in the histograms (PSRM) and co-
occurrences of quantized noise residuals (SRM) in the
selection-channel-aware version of such features. Since the
PSRM is extremely computationally demanding, we only
work with a subset of its features that come from linear
(’spam’ type) residuals of dimension 1,980. In the fourth
section, we show that making this relatively compact fea-
ture space properly aware of the selection channel achieves
state-of-the-art performance with the ensemble classifier.
The paper is concluded in the fifth section, where we sum-
marize the contribution and outline how the proposed idea
can be executed for phase-aware JPEG features.

Preliminaries: SRM, PSRM, and maxSRM
In this section, we review the basics of the SRM, its

projection version, the PSRM, and the selection-channel-
aware maxSRM. This is done in order to make the paper
self-contained and easier to read.

The symbols X,Y∈ {0, . . . ,255}n1×n2 will be used ex-
clusively for two-dimensional arrays of pixel values in an
n1×n2 grayscale cover and stego image, respectively. Ele-
ments of a matrix will be denoted with the corresponding
lower case letter. The pair of subscripts i, j will always be
used to index elements in an n1×n2 matrix. The cardi-
nality of a finite set S will be denoted |S|.

SRM
Both the SRM and the PSRM extract the same set of

noise residuals from the image under investigation. They
differ in how they represent their statistical properties. The
SRM uses four dimensional co-occurrences while the PSRM
uses histograms of residual projections.

A noise residual is an estimate of the image noise com-
ponent obtained by subtracting from each pixel its esti-
mate (expectation) obtained using a pixel predictor from
the pixel’s immediate neighborhood. Both rich models use
45 different pixel predictors of two different types – linear
and non-linear. Each linear predictor is a shift-invariant
finite-impulse response filter described by a kernel matrix
K(pred). The noise residual Z = (zkl) is a matrix of the
same dimension as X:

Z = K(pred) ?X−X , K?X. (1)

In (1), the symbol ′?′ denotes the convolution with X
mirror-padded so that K?X has the same dimension as X.
This corresponds to the ’conv2’ Matlab command with the
parameter ’same’.

An example of a simple linear residual is zij = xi,j+1−
xij , which is the difference between a pair of horizontally
neighboring pixels. In this case, the residual kernel is K =
( −1 1 ), which means that the predictor estimates the
pixel value as its horizontally adjacent pixel. This predictor
is used in submodel ’spam14h’ in the SRM.

All non-linear predictors in the SRM are obtained by
taking the minimum or maximum of up to five residuals
obtained using linear predictors. For example, one can
predict pixel xij from its horizontal or vertical neighbors,
obtaining thus one horizontal and one vertical residual

Z(h) = (z(h)
ij ), Z(v) = (z(v)

ij ):

z
(h)
ij = xi,j+1−xij , (2)

z
(v)
ij = xi+1,j −xij . (3)

Using these two residuals, one can compute two non-
linear ’minmax’ residuals as:

z
(min)
ij = min{z(h)

ij ,z
(v)
ij }, (4)

z
(max)
ij = max{z(h)

ij ,z
(v)
ij }. (5)

The next step in forming the SRM involves quantiz-
ing Z with a quantizer Q−T,T with centroids Q−T,T =
{−Tq,(−T +1)q, . . . ,T q}, where T > 0 is an integer thresh-
old and q > 0 is a quantization step:

rij ,Q−T,T (zij), ∀i, j. (6)

The next step in forming the SRM feature vector in-
volves computing a co-occurrence matrix of fourth order,
C(SRM) ∈ Q4

−T,T , from four (horizontally and vertically)
neighboring values of the quantized residual rij (6) from
the entire image:2

c
(SRM)
d0d1d2d3

=
n1,n2−3∑
i,j=1

[ri,j+k = dk,∀k = 0, . . . ,3], (7)

dk ∈Q−T,T , (8)

where [P ] is the Iverson bracket, which is equal to 1 when
the statement P is true and to 0 when it is false. Note that
the dimensionality of the co-occurrence is |Q−T,T |4 = 54 =
625. To keep the co-occurrence bins well-populated and
thus statistically significant, the authors of the SRM used
T = 2 and q ∈ {1,1.5,2}. Finally, symmetries of natural im-
ages are leveraged to further marginalize the co-occurrence
matrix to decrease the feature dimension and better pop-
ulate the SRM feature vector (see Section II.C of [7]). For
example, the 625 bins get reduced to 169 bins after sym-
metrization, while two 625-dimensional co-occurrences of
min and max residuals can be symmetrized to 330.

In [5], the authors proposed to use a slightly different
’d2’ scan for the co-occurrence that gives slightly better
overall detection results. Formally, the co-occurrence ob-
tained using the ’d2’ scan can be written as

c
(SRMd2)
d0d1d2d3

=
n1,n2−3∑
i,j=1

[ri,j = d0, ri,j+1 = d1,

ri+1,j+2 = d2, ri+1,j+3 = d3]

+
n1,n2−3∑
i,j=1

[ri−1,j = d0, ri−1,j+1 = d1,

ri,j+2 = d2, ri,j+3 = d3]. (9)

2This is an example of a horizontal co-occurrence.
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The vertical version of this co-occurrence is defined
similarly and also involves two terms.

The total dimension of the SRM with three quanti-
zation steps is 34,671. A smaller version of the SRM with
a single quantization step q= x∈ {1,1.5,2} will be denoted
as SRMqx, and it consists of 12,753 features.

PSRM
The predictors and residuals used in the PSRM are

the same as those used in the SRM. Unlike the SRM, which
captures the statistical properties of residuals using four-
dimensional co-occurrences, the PSRM uses the first-order
statistics (histograms) of projections of residuals onto mul-
tiple random directions. Given a noise residual Z, a slightly
simplified algorithm for computing the PSRM is:

1. Generate ν random matrices Π(k) ∈ Rr×s, k ∈
{1, . . . ,ν}.

• r,s are uniformly randomly selected from
{1, . . . ,smax}, where smax > 0 is an integer pa-
rameter,

• the elements of Π(k) are independent realiza-
tions of a standard normal random variable
N (0,1),

• the elements are normalized so that the Frobe-
nius norm3

∥∥∥Π(k)
∥∥∥
F

= 1.

2. For each k ∈ {1, . . . ,ν}, compute the residual projec-
tions P(k) , Z∗Π(k).

3. For linear residuals, quantize |p(k)
ij |/q with a quantizer

QT with T +1 centroids QT = {1/2,3/2, . . . ,T +1/2}:

p̃
(k)
ij =QT (|p(k)

ij |/q). (10)

For non-linear residuals, quantize p(k)
ij /q with a quan-

tizer Q′−T,T with 2T + 2 centroids Q′−T,T = {−T −
1/2,−T + 1/2, . . . ,T + 1/2}:

p̃
(k)
ij =Q′−T,T (p(k)

ij /q). (11)

4. Compute ν separate histograms of the quantized val-
ues:

h
(k)
m =

∣∣∣{(i, j)∣∣∣ p̃(k)
ij =m+ 1/2}

∣∣∣,
m ∈ {0,1, . . . ,T −1},
k ∈ {1, . . . ,ν} for linear residuals, (12)

h
(k)
m =

∣∣∣{(i, j)∣∣∣ p̃(k)
ij =m+ 1/2}

∣∣∣,
m ∈ {−T, . . . ,T −1},
k ∈ {1, . . . ,ν} for non-linear residuals.

(13)

3The Frobenius norm of matrix A is defined as ‖A‖F =√
trace(ATA).

Symmetries of natural images are also used to make
the histograms better populated. Depending on the resid-
ual and the projection matrix Π(k), the PSRM utilizes up
to eight symmetries (rotation by multiples of 90 degrees,
mirroring, etc.) for each random random matrix Π(k).

The standard parameter setup for the PSRM is as fol-
lows. The number of projections per residual is ν = 55, the
maximum projection matrix size smax = 8, the quantiza-
tion step q = 1, and the histogram threshold T = 3. This
setup gives the PSRM the dimensionality of 12,870, which
is similar to that of SRMqx.

maxSRM
The selection-channel-aware SRM called maxSRM [5]

is built in the same manner as the SRM [7] but the pro-
cess of forming the co-occurrence matrices is modified to
consider the embedding change probabilities β̂ij estimated
from the analyzed image:4

c
(maxSRM)
d0d1d2d3

=
n1,n2−3∑
i,j=1

max
k=0,...,3

β̂i,j+k

× [ri,j+k = dk,∀k = 0, . . . ,3]. (14)

Above, C(maxSRM) denotes the selection-channel-
aware version of the co-occurrence C(SRM). In other words,
instead of increasing the corresponding co-occurrence bin
by 1, the maximum of the embedding change probabili-
ties taken across the four residuals is added to the bin.
Thus, groups of four pixels with small probability of being
changed affect the co-occurrence values to a smaller degree
than groups where at least one pixel is likely to change.
The rest of the process of forming the SRM stays exactly
the same, including the symmetrization by sign and direc-
tion and merging co-occurrences into submodels (see [7, 5]
for details). The maxSRM feature set has the same di-
mensionality as the SRM, which is 34,671 or 12,753 for
maxSRMqx.

Finally, we note that the ’d2’ scan of the maxSRM
co-occurrence is obtained similarly to (9):

c
(maxSRMd2)
d0d1d2d3

=
n1,n2−3∑
i,j=1

bij × [ri,j = d0, ri,j+1 = d1,

ri+1,j+2 = d2, ri+1,j+3 = d3]

+
n1,n2−3∑
i,j=1

bij × [ri−1,j = d0,

ri−1,j+1 = d1, ri,j+2 = d2,

ri,j+3 = d3], (15)

4This means that we assume that the payload size is known
to the steganalyst. Fortunately, as [25] shows, not knowing the
payload size exactly leads to a rather gradual loss of detection
accuracy – it is still better to use an imprecise payload size than
none.
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where

bij = max{β̂i,j , β̂i,j+1, β̂i+1,j+2, β̂i+1,j+3}, (16)

bij = max{β̂i−1,j , β̂i−1,j+1, β̂i,j+2, β̂i,j+3}. (17)

Replacing change rates with L1 distortion of
residuals

As pointed out in the introduction, there is a dis-
crepancy in maxSRM in the sense that we accumulate
the embedding change probabilities of pixels in the co-
occurrence bins of residuals. Thus, we need to move away
from pixel change rates to some measure of the residual
distortion. After all, if the features were formed from
pixel values rather than residuals, the change rates are
proportional to the expected value of the L1 (and L2) dis-
tortion. This is because in most modern steganographic
schemes the cover pixel xij is modified to yij = xij + 1
and yij = xij − 1 with the same probability βij and thus
E[|xij −yij |] = E[|xij −yij |2] = 2βij .

We explain the approach only for linear residuals and
then discuss the issues with non-linear residuals.

Linear residuals
We recall that a linear residual Z in SRM is obtained

by convolving the image with a kernel, this time we make
the dependence of Z on the image explicit:

Z(SRM)(X) = K?X, (18)

and in coordinates:

z
(SRM)
ij (X) =

∑
k,l

Kklxi−k,j−l. (19)

The specific range for the indices k and l depends on
the kernel support. Note that in PSRM the residual is
additionally convolved with a projection matrix Π:

Z(PSRM)(X) = Π? (K?X) = (Π?K)?X, (20)

due to the associativity of convolution. Thus, irrespec-
tively of whether we deal with a linear residual from SRM
or PSRM, the quantity whose sample statistic is collected
(either a fourth-order co-occurrence or a histogram) is ob-
tained by convolving the image with a kernel.

For steganographic schemes minimizing an additive
distortion, message embedding is equivalent to adding
noise whose distribution depends on the pixel location:

yij = xij + ξij ,

where ξij are independent random variables attaining their
values in {−1,0,1} with probabilities βij ,1−βij ,βij . Thus,
each element of the difference Z(Y)−Z(X) is a random
variable with

E[zij(Y)−zij(X)] = E[
∑
k,l

Kklξi−k,j−l] = 0, (21)

V ar[zij(Y)−zij(X)] = 2
∑
k,l

K2
klβi−k,j−l. (22)

While it is straightforward to evaluate the expectation
of the L2 norm

E
[(
zij(Y)−zij(X)

)2
]

= 2
∑
k,l

K2
klβi−k,j−l

= V ar[zij(Y)−zij(X)]

, σ2
ij (23)

due to the independence of embedding changes, it is much
more difficult to compute the expectation of the absolute
value, E[|zij(Y)− zij(X)|]. We will thus consider a sim-
plification and assume that zij(Y)−zij(X) is a zero-mean
Gaussian random variable with variance (22). In this case,
it is easy to evaluate

E[|zij(Y)−zij(X)|] = 2√
π

√∑
k,l

K2
klβi−k,j−l ∝ σij .

(24)

In our experiments, the Gaussian approximation of the
expectation of the L1 distortion (24) worked much better
than the L2 distortion. This is why in the rest of this paper,
we only use σij as the quantity that will be accumulated
in co-occurrences in SRM and in histograms in PSRM of
linear residuals.

For SRM, the selection-channel-aware features built
from a linear residual will be formed by replacing the
change rates β̂ij in Eqs. (7) (for the horizontal and ver-
tical scans) and (9) (for the ’d2’ scan) with σij :

cσSRM
d0d1d2d3 =

n1,n2−3∑
i,j=1

max
k=0,...,3

σi,j+k

× [ri,j+k = dk,∀k = 0, . . . ,3]. (25)

For the PSRM, the histograms of linear residuals (12)
are replaced with their σ version:

h
(k)σ
m =

n1,n2∑
i,j=1

σij × [p̃(k)
ij =m+ 1/2], (26)

m ∈ {0,1, . . . ,T −1},k ∈ {1, . . . ,ν}. (27)

At this point, we remark on the dimensionality of the
σ-version of the PSRM. In the original PSRM, linear resid-
uals are represented using only T bins because the last,
T + 1-st bin with centroid at T + 1/2 is uniquely deter-
mined by the other bins (the sum

∑
m∈Qh

(k)
m = n1n2).

This is not true for h(k)σ
m as the sum of all T + 1 bins is

no longer equal to the number of residual values n1n2. In
our experiments, we did not see any statistically signifi-
cant benefit in using all T + 1 bins in h(k)σ

m , which is why
in the σ-version of the PSRM, we also skip the last T +1-st
bin to keep the same feature dimensionality. Similarly, his-
tograms of non-linear residuals in PSRM are represented
using only 2T bins (both the first and the last values cor-
responding to centroids −T −1/2 and T +1/2 are skipped)
and we keep the same arrangement in the σ-version.
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Table 1. Detection of three steganographic algorithms for two payloads on BOSSbase 1.01 using the original maxSRM features and
their proposed σmaxSRM form.

0.2 bpp 0.4 bpp
PE min PE max PE PE min PE max PE

HILL
maxSRMq2d2 0.3181 0.3149 0.3228 0.2238 0.2174 0.2278
σmaxSRMq2d2 0.3075 0.3015 0.3109 0.2132 0.2104 0.2146

WOW
maxSRMq2d2 0.2472 0.2400 0.2530 0.1658 0.1601 0.1732
σmaxSRMq2d2 0.2449 0.2397 0.2509 0.1620 0.1569 0.1694

MVG
maxSRMq2d2 0.3291 0.3228 0.3336 0.2309 0.2287 0.2347
σmaxSRMq2d2 0.3205 0.3160 0.3239 0.2202 0.2138 0.2303

Non-linear residuals
The situation for non-linear minmax residuals is sig-

nificantly more complicated because the residuals whose
minimum (maximum) is computed are generally dependent
random variables. In the most extreme case, which corre-
sponds to the ’minmax41’ submodel in EDGE5x5 residual
of SRM, the minimum (maximum) is taken over four val-
ues that each depend on 15 neighboring pixel values out
of the local 5× 5 neighborhood. Computing the expecta-
tion of the L1 or L2 norm thus requires marginalization of
a 25-dimensional probability mass function with 325 values.
We were unable to find an algorithm whose computational
complexity would be sufficiently low to make the feature
extractor run in reasonable time. Out of the ideas that
have been explored, we list the following.

One could work with simplifying assumptions, such as
the Gaussianity of the underlying residuals and repeatedly
leverage the analytic expression for the distribution of the
minimum / maximum of two Gaussian variables [21]. The
Gaussianity assumption will, however, be invalid for residu-
als with a small support, such as the ’minmax54’ first-order
residual, and this deviation will lead to suboptimality.

Another possibility is to estimate the expectation
E[|zmin

ij (Y) − zmin
ij (X)|] using Monte-Carlo simulation,

which is a rather expensive alternative. Nevertheless, this
approach will tell us how much can be theoretically gained.

Experiments
This section contains the results of all experiments.

They were conducted on the standard BOSSbase 1.01 [1]
database containing 10,000 grayscale images with 512×
512 pixels. The detection accuracy is evaluated using the
minimal total error probability on the testing set under
equal priors, PE = minPFA

1
2 (PFA +PMD), returned by the

FLD ensemble [18] averaged over ten 50/50 splits of the
database into a pair of training and testing sets.

Before moving to the actual experiments, we sum-
marize the terminology. The version of maxSRM with
the quantity E[|zij(Y) − zij(X)|] accumulated in co-
occurrences will be denoted σmaxSRM. We note that for
linear residuals σij is computed using (24) while for min-
max residuals, it is obtained using Monte Carlo simulations
by embedding the image under investigation 500 times. For

the PSRM, we only use the ’spam’ type submodels corre-
sponding to linear residuals. This gives our feature set di-
mensionality of 1,980. This feature set will be abbreviated
σspamPSRM.

Our first experiment demonstrates the potential of the
proposed idea. We work with σmaxSRMq2d2 (d2 stand-
ing for the d2 scan of co-occurrences) with 12,753 fea-
tures. Table 1 shows the results for three steganographic
schemes, WOW [13], HILL [19], and MVG [26] with ternary
embedding and Gaussian pixel residual model, and two
payloads contrasting the detection error for the original
maxSRMq2d2 and the proposed σmaxSRMq2d2. The im-
provement in the detection error PE ranges from 0.3% to
almost 1.5%, depending on the embedding algorithm and
payload.

The second experiment was executed with the spam
part of the PSRM (with linear residuals only). We compare
the spamPSRM subset of PSRM with σspamPSRM (both
dimensionality 1,980) because no other selection-channel-
aware version of PSRM currently exists. The results ap-
pear in Figures 1–4. The improvement in the detection er-
ror is significant across all embedding algorithms and pay-
loads, especially for HILL and WOW where the improve-
ment in PE ranges between 2.5% and 6%. In fact, this
relatively small σspamPSRM with 1,980 features for HILL
and MVG achieves comparable or better detection error
than the computationally much more expensive maxS-
RMd2 (34,671 features). For HILL with payload 0.4 bpp
the σspamPSRM improves on maxSRMd2 by 0.5% and
even on PSRM by 2.3%. Only in the case of S-UNIWARD
the σspamPSRM does not significantly improve on spamP-
SRM.

Conclusions
Detection of modern content-adaptive steganography

requires detectors built using machine learning fed with
examples of cover and stego objects represented in a feature
space. Currently, it is an open problem how to choose
a suitable feature representation that would incorporate
the knowledge of the embedding change probabilities of
individual image elements, the selection channel. These
probabilities are approximately available to the steganalyst
because the pixel costs that were used for embedding can
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Figure 1. Detection error PE for HILL with spamPSRM, σspamPSRM,
and maxSRMd2
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Figure 2. Detection error PE for MVG with spamPSRM, σspamPSRM,
and maxSRMd2

be relatively accurately estimated from the stego image
and because the imprecise knowledge of the payload size
does not affect steganalysis accuracy much.

The current approach (the so-called maxSRM feature
set) calls for accumulating the pixel change probabilities in
co-occurrences of noise residuals. However, because poten-
tially many pixels contribute to one residual sample, one
should compute the statistical impact of the embedding
changes on the residual and accumulate this quantity in-
stead. To this end, in this paper we propose the expected
value of the L1 residual distortion due to embedding. For
linear pixel predictors, the impact of embedding on the
residual is easily obtained from the independence of em-
bedding changes and the assumed Gaussianity of the dis-
tortion. For non-linear (min-max) predictors, however, the
expectation of the L1 distortion is difficult to obtain ana-
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Figure 3. Detection error PE for S-UNIWARD with spamPSRM,
σspamPSRM, and maxSRMd2
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Figure 4. Detection error PE for WOW with spamPSRM, σspamPSRM,
and maxSRMd2

lytically due to the necessity to compute the expectation
of a minimum (maximum) of up to five dependent ran-
dom variables that themselves depend on up to 25 pixels.
In this paper, we compute such expectations using Monte
Carlo simulations.

The proposed idea is applied to the SRM feature set
and a subset of the PSRM that is built only from lin-
ear residuals (dimensionality 1,980). This reduction of the
PSRM feature vector was needed to keep the computa-
tional complexity low. Experiments with three embedding
schemes and the SRMq2d2 feature set showed that the pro-
posed quantity indeed improves the detection by 0.5–1.5%
depending on the embedding algorithm and payload. In
the case of the PSRM, the improvement was quite sub-
stantial. Compared with the same subset of the original
PSRM, the detection error dropped by up to 6% and was
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comparable and sometimes even slightly lower (for HILL
and MVG) than using the entire (and much more compu-
tationally demanding) maxSRMd2 model.

We wish to stress that the proposed modification of the
rich models does not increase their dimensionality. When
the models are restricted only to the subset obtained from
linear residuals, the increase in the computational complex-
ity is negligible since the expectation of the L1 distortion
for one residual can be obtained using three convolutions.

Finally, this framework opens up the possibility to ex-
tend selection awareness to features computed in the spa-
tial domain for steganalysis of JPEG steganographic algo-
rithms. This applies only to algorithms that are adaptive
to content, such as J-UNIWARD [16] and UED [10, 11].
The proposed approach, suitably modified to keep a low
computational complexity indeed provides a significant de-
tection boost [3].

The feature extractor code for σspamSRM is
available from http://dde.binghamton.edu/download/
feature_extractors/.
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