
Accelerating the DCTR Features Extraction
for JPEG Steganalysis Based on CUDA
Chao Xia, Qingxiao Guan, Xianfeng Zhao, Yong Deng
State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China
{xiachao,guanqingxiao,zhaoxianfeng,dengyong}@iie.ac.cn

Abstract
Nowadays, steganalysis of JPEG images is increasingly pop-

ular because of their widespread usage. The DCTR set (Discrete
Cosine Transform Residual) is a significant steganalysis feature
set designed for the JPEG images. Its main advantage is its low
computational complexity, while providing high accuracy in de-
tection. However, it is desirable to further accelerate it, especially
for some real-time applications. In this paper, we accelerate the
DCTR features extraction on a GPU device, and some optimiza-
tion methods are presented. Firstly, we utilize the separability
and symmetry of the two-dimensional discrete cosine transform
to enhance the computing efficiency in decompression and filter-
ing images. Secondly, when computing phase-aware histograms,
in order to achieve a good coalesced access and avoid the seri-
ous collisions between atomic operations, we add different off-
sets to the elements of the residual according to their positions,
which implies the computation of phase-aware histograms can be
converted into the computation of ordinary 256-dimensional his-
tograms. By this means, we can fully exploit the GPU’s paral-
lelism. The experimental results show that the speed of our paral-
lel method for images with different sizes is 150-200 times faster
than the original serial method on our machine. Our method
can also be applied to other phase-aware feature sets, such as
PHARM (PHase Aware pRojection Mode).

Introduction
Steganography is to embed the secret information into cover

objects without arousing a warder’s suspicion. Steganalysis, the
counterpart of steganography, aims to detect the presence of hid-
den data. The modern steganalysis paradigm is based on de-
tectors trained with features extracted from cover and stego im-
ages. In early steganalysis, the dimensionality of feature spaces
was low (about a few hundred) and hence there was no signif-
icant computational cost. With the increasingly more sophisti-
cated steganographic schemes, the past decade has witnessed the
requirement to build high-dimensional image models. However,
the increased dimensionality of the feature space may result in
problems with the curse of dimensionality, which restricted the
development of useful high-dimensional feature models. Ensem-
ble classifiers [5] using Fisher Linear Discriminants allow stegan-
alysts to work with high-dimensional models and large data sets

0This work was supported by the NSFC under 61170281, 61303259
and U1536105, and the Strategic Priority Research Program of Chinese
Academy of Sciences under XDA06030600.

because of its low computational complexity. In [1], the 33963-
dimensional HOLMES features are proposed, which achieve a
detection of rate of 83.90% against HUGO[2] (T = 90), one of
modern steganographic schemes, on BOSSbase at 0.4 bpp. In
[3], a group of textural features of dimensionality 22153 are uti-
lized to obtain an average detection rate of 83.92%. In [4], the
Spatial Rich Model (SRM) improves the performance further in
breaking HUGO. With 12753 features, the detection rate has been
increased to 86.45% on HUGO with T = 255. Similarly, the ste-
ganalysis in JPEG domain also benefits from the framework based
on high-dimensional models and ensemble classifiers. In [6], the
systematically constructed 11255-dimensional JPEG Rich Model
(JRM) and 22510-dimensional Cartesian-calibrated version out-
perform other low-dimensional feature sets, such as the 216-
dimensional LIU[7] and the 548-dimensional CC-PEV[8]. In [9],
the 8000-dimensional DCTR (Discrete Cosine Transform Resid-
ual) feature set is designed for JPEG steganalysis. The histor-
ical overview clearly shows that building high-dimensional fea-
ture models is a growing tendency to capture as many statistical
dependencies among individual image elements as possible.

However, the high-dimensional feature set inevitably brings
the increased time cost. Calculation of SRM features takes about
26 second for a 2000×3000 image on our machine. JRM features
take about 83 second and DCTR features 35 second. The cost of
using high-dimensional features makes them impractical for both
researchers and practitioners[10]. Parallel computing is a feasi-
ble way to make high-dimensional features practicable in some
real applications, such as on-line detection. Thus, much atten-
tion has been paid to implementing high-dimensional features on
the GPU in recent years. In [10], Ker first adjusts the definition
of the PSRM (Projected Spatial Rich Model)[11] and proposes
the GPU-PSRM features with fixed-size kernels and fixed projec-
tions, and then optimizes their implementation on a GPU. It is
found that the reduced time is significant and the cost of detection
power is negligible. In [12], the authors employ some technolo-
gies including convolution unrolling, combined memory access
and aversion of bank conflicts when accelerating the extraction of
SRM features.

But so far, the high-dimensional features for JPEG Steganal-
ysis have not been implemented on GPU hardware. It is nec-
essary to compute these features in parallel due to the fact that
there are numerous steganographic schemes specifically designed
for the most common image format – JPEG. In [10], Ker argues
that the trade-off between speed and accuracy would have to be
adjusted considerably and it may be more valuable to implement

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.8.MWSF-077

IS&T International Symposium on Electronic Imaging 2016
Media Watermarking, Security, and Forensics 2016 MWSF-077.1



much simpler features. DCTR is one of the most effective fea-
ture sets for JPEG steganalysis. With the dimensionality of 8000,
DCTR provides about the same level of detection as the 22510-
dimensional CC-JRM and even obtains a more accurate detection
against J-UNIWARD. In this paper, we accelerate the extraction
of DCTR on the GPU device in order to make it more efficient in
practice.

The rest of this paper is organized as follows. After a brief
review of DCTR in the next section, we describe the optimized
implementation of DCTR on GPU. Then, we present experimen-
tal results. Conclusions are drawn in the final section.

The DCTR Features
The DCTR features are computed from pixels of the de-

compressed JPEG image. DCTR provides a far better detec-
tion performance than the early low-dimensional features and
even obtains a more accurate detection than CC-JRM against J-
UNIWARD. Before optimizing the implementation of DCTR on
GPU hardware, we briefly describe how the DCTR features are
built to make this paper self-contained. For simplicity and clar-
ity, we do not go into details and the detailed information can be
seen in the original publication [9]. Given that most of stegano-
graphic schemes embed secret messages in the luminance compo-
nent, without loss of generality, we only discuss grayscale JPEG
images in this paper. DCT coefficients of an M×N JPEG image
will be denoted as a matrix D ∈ Z

M×N . We will also assume that
bothM and N are multiples of 8. Let Dx,yi j denote the (i, j)th DCT
coefficient in the (x,y)th 8×8 block, 06 i, j6 7, x= 1, . . . ,M/8,
y= 1, . . . ,N/8.

(1) Decompression

The JPEG image is first decompressed to the spatial domain
without quantizing the pixel values to {0, . . . , 255} to avoid any
loss of information. The decompressed JPEG image X ∈ R

M×N .
Let Xx,ykl denote the (k, l)th pixel in the (x,y)th 8×8 block in the
spatial domain, 06 k, l 6 7:

Xx,ykl =
7

∑
i, j=0

wiw j
4

cos
π
16
i(2k+1)cos

π
16
j(2l+1)Dx,yi j , (1)

where w0 = 1/
√
2, wi = 1 for i> 0.

(2) Computing Residuals

We can obtain residuals by computing 64 convolutions of
the decompressed JPEG image with 64 8×8 DCT basis patterns
B(a,b), 06 a,b 6 7:

U(a,b) = X⋆B(a,b), (2)

where U(a,b) ∈R
(M−7)×(N−7) and ′⋆′ denotes a convolution with-

out padding. B(a,b) =
(

B(a,b)mn
)

,06 m,n6 7:

B(a,b)mn =
wawb
4

cos
π
16
a(2m+1)cos

π
16
b(2n+1), (3)

and w0 = 1/
√
2, wa = 1 (a > 0). These 64 residual images can

capture different types of dependencies among pixels of the de-
compressed JPEG.

(3) Truncation and Quantization

We first take the absolute values of all elements in the resid-
ual and then form a quantized and truncated residual imageU(a,b),
06 a,b6 7:

U(a,b) = truncT



round





∣

∣

∣
U(a,b)

∣

∣

∣

q







 , (4)

where 0≤ a,b≤ 7, T = 4 is an integer threshold and q is a quan-
tization step which can be described as:

q=















min
{

8×
(

50
QF

)

,100
}

QF < 50

max
{

8×
(

2− 50
QF

)

,0.2
}

QF ≥ 50
, (5)

where QF is the JPEG quality factor. The purpose of truncation
with a small T is to give the features a lower dimension and keep
the feature vector more populated.

(3) Histogram Features Extraction

After quantization and truncation, each residual image U(a,b)

is subsampled by step 8 to get 64 subimages. This is the so-
called phaes-awareness which contributes to better detection per-
formance because in a JPEG decompressed image the pixels’
statistical properties depend on their positions with respect to
the 8× 8 grid. To enhance the features’ diversity and reduce
the feature dimensionality, the 64 histogram features of a resid-
ual image are merged into 25 according to symmetry of projec-
tion vectors, which gives the DCTR set the dimensionality of
64×25×5 = 8000.

Implementing DCTR on The GPU
The flow diagram of the implementation is shown in Figure

1. Due to the Huffman decoding, it is fitted to read a JPEG file
on the CPU. Then the image data is transferred from the host to
the GPU device via PCI Express. Quantization and truncation are
natural to turn to a GPU implementation and therefore we do not
describe them in details. When implementing the decompression
and convolution on the GPU, we leverage the property of the two-
dimensional DCT to increase the productivity. When computing
histograms, we can obtain dozens of 5-dimensional histograms in
a batch from a 256-dimensional histogram to remove some of the
difficulties in computing phase-aware histograms in parallel. In
the following, the further description is given for these optimiza-
tion methods.

Figure 1. The flow diagram of the implementation of DCTR on the GPU.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.8.MWSF-077

IS&T International Symposium on Electronic Imaging 2016
Media Watermarking, Security, and Forensics 2016 MWSF-077.2



IDCT and Convolution
Because of the independence among different DCT data

blocks, it is possible to perform IDCT on the GPU to take full
advantage of its huge arithmetic capability. Due to the property
of separability, two-dimensional DCT transform can be computed
in two steps by performing successively a one-dimensional DCT
on the columns and a one-dimensional on the rows[13]. The ar-
gument can be identically applied to inverse discrete cosine trans-
form. Therefore, IDCT can be describe as X = ATDA, where D
is denoted as an inverse quantized 8× 8 DCT block and A can
be viewed as a two-dimensional array containing values of one-
dimensional cosine basis functions one per column[14]:

AT =

























s0 s0 s0 s0 s0 s0 s0 s0
s1 s3 s4 s6 −s6 −s4 −s3 −s1
s2 s5 −s5 −s2 −s2 −s5 s5 s2
s3 −s6 −s1 −s4 s4 s1 s6 −s3
s0 −s0 −s0 s0 s0 −s0 −s0 s0
s4 −s1 s6 s3 −s3 −s6 s1 −s4
s5 −s2 s2 −s5 −s5 s2 −s2 s5
s6 −s4 s3 −s1 s1 −s3 s4 −s6

























,

(6)

where





















s0
s1
s2
s3
s4
s5
s6





















= 1
2





















cos π
4

cos π
16

cos π
8

cos 3π
16

cos 5π
16

cos 3π
8

cos 7π
16





















.

We further utilize the symmetry of AT to reduce calculation
amount. Thus, Y= ATD can be expressed as:









y(0)
y(2)
y(4)
y(6)









=









s0 s0 s0 s0
s2 s5 −s5 −s2
s0 −s0 −s0 s0
s5 −s2 s2 −s5

















x(0)+x(7)
x(1)+x(6)
x(2)+x(5)
x(3)+x(4)

















y(1)
y(3)
y(5)
y(7)









=









s1 −s3 s4 −s6
s3 s6 −s1 s4
s4 s1 s6 −s3
s6 s4 s3 s1

















x(0)−x(7)
−x(1)+x(6)
x(2)−x(5)

−x(3)+x(4)









.

(7)

When the JPEG image is being decompressed to the spatial
domain, each thread performs the whole one-dimensional 8-tap
IDCT. Hence, 8 threads are needed for a single 8×8 DCT block.
As shown in Figure 2, an image is divided into a number of mac-
roblocks containing 2×4= 8 DCT blocks. In this case, the num-
ber of threads in a CUDA block is 2×4×8= 64, a multiple of 32
(the number of threads within the warp), which renders GPUwork
efficiently. We need to load the macroblock into shared memory
because it has much higher bandwidth and much lower latency
than global memory [15].

After decompression, the next step is to compute convolu-
tions with 64 DCT kernels. Since the DCT kernel is separable, the
two-dimensional convolution can be split in two steps[16]. First,
convolve each row in the decompressed JPEG image with one row
in AT (AT (a, :),1 6 a 6 8) in Equation 7, resulting in an inter-
mediate image. Next, convolve each column of this intermediate

image with one column in A (A(:,b),16 b6 8) in Equation 7 to
obtain the residual U(a,b).

While computing the convolution with a row in AT , the de-
compressed JPEG image is split into some macroblocks of size
8× 64. Figure 3 shows there is an apron of pixels (the shadow
area) that is required to filter the image block. Here, eight one-
dimensional convolutions are performed by a thread and thus each
CUDA block runs 64 threads across a macroblock. When com-
puting the convolution of the intermediate image with a column in
A, the image is analogically split into some macroblocks of size
64×8. The shared memory is also utilized in this process.

Phase-Aware Histogram Features
Given that the phase-aware features offer a more accurate de-

tection, each residual image is subsampled to form 64 subimages
based on their positions with respect to the 8×8 pixel grid. The
histogram features of subimages then are combined to form the
final DCTR features. However, phase-aware histogram features
are challenging to compute efficiently on the GPU. This has two
causes. Firstly, because each residual image is subsampled by step
8, the consecutive threads fail to access the neighboring elements
of the residual image in global memory. This greatly reduces the
efficiency of data access. What is more, although atomic opera-
tions provided by CUDA are the only possible way to implement
histograms on parallel architectures, serious collisions between
atomic operations may occur when computing 5-dimensional his-
tograms (using 5 bins) of subimages. The collisions could render
some threads waiting, which blocks GPU’s effective productivity.
The less bins mean that the threads are more likely to increment
the same bin simultaneously. Thus, using more bins is a feasible
way to improve the parallelism of histogram computation. This
paper proposes a novel method to compute the phase-aware his-
togram features. Instead of directly computing 5-dimensional his-
tograms of the subimages, we first compute a high-dimensional

Figure 2. When computing IDCT, a image is split into macroblocks and
each macroblock contains 8 DCT blocks.

64

Figure 3. When computing the convolution with a row vector, each mac-
roblock contains 8×64 elements.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.8.MWSF-077

IS&T International Symposium on Electronic Imaging 2016
Media Watermarking, Security, and Forensics 2016 MWSF-077.3



1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Figure 4. The 64 subimages according to their positions within the 8× 8
grid.

histogram of the whole residual image whose pixel values have
been truncated by a larger threshold, and then split it into low-
dimensional histograms. Our method not only achieves a good
coalesced access but also avoids the serious atomic collisions.

For the convenience of the following description, although
we do not subsample the residual images, we still index 64 subim-
ages with I1sub, I

2
sub, ..., I

64
sub according to the positions of their ele-

ments within each 8× 8 grid, as Figure 4 shows. In fact, our
scheme of calculating phare-aware histograms is carried out twice
respectively for histograms of

{

I1sub, I
2
sub..., I

32
sub

}

(the red area in
Figure 4) and

{

I33sub, I
34
sub..., I

64
sub

}

(the white area in Figure 4). The
detailed procedures are described as follows:

Step 1: After quantizing the absolute values of the filtered
images, truncation threshold is set T = 7, instead of T = 4 in [9],
thus the absolute value of each element belongs to {0,1, ...,7}.
Although the threshold is changed here, we do not increase the
dimensionality of DCTR. And in Step 3, we will show that after a
combining operation, the final result of our scheme is unchanged
as before.

Step 2: After truncation, we first deal with the elements
corresponding to the first 32 subimages in the truncated image.
For

{

I1sub, I
2
sub..., I

32
sub

}

, elements of different subimages are added
with different offset values. Figure 5 shows that the offset value
depends on the position of elements in the truncated image and
we denote it as ϕ(k, l). More precisely, ϕ(k, l) can be writ-
ten as ϕ(k, l) = (l mod 4)× 64+ (k mod 8)× 8. This makes
the values of elements of subimages I1sub, I

2
sub..., I

32
sub respectively

fall into 32 non-overlapping ranges {0,1, ...,7}, {8,9, ...,15},
{16,17, ...,23}, ... , {248,249, ...,255}. As shown in Figure 6, we
successfully obtain the histogram features of the first 32 subim-
ages by constructing a 256-dimensional histogram (8×32= 256).
Note that the elements of the first 32 subimages are aligned con-
secutively in rows, which can avoid reading inconsecutive loca-
tions in global memory. And further more, after adding offset
values, 32 elements in each 8×8 grid belong to different ranges,
which dramatically reduces the collisions when computing the
histograms.

Step 3: As depicted in Figure 7, the 256-dimensional his-
togram can be spilt into 32 8-dimensional histograms, and then
the last four bins in each 8-dimensional histogram are merged

into one in order to give the histogram of each subimage the di-
mensionality of 5. This 5-dimensional histogram equals to the
5-dimensional histogram calculated with threshold T = 4, which
is consistent with the original DCTR in [9].

Step 4: Similarly, for elements of the last 32 subimages
{

I33sub, I
34
sub..., I

64
sub

}

, Step 2 and Step 3 are repeated again. The 5-
dimensional histograms corresponding to the last 32 subimages

+0 +8 +16 +24

+72 +80 +88 +96

+136 +144 +152 +160

+200 +208 +216 +224

+32 +40 +48 +56

+104 +112 +120

+128 +168 +176

+64

+184

+192 +232 +240

+128

+248

+64

+0 +8 +16 +24

+72 +80 +88 +96

+136 +144 +152 +160

+200 +208 +216 +224

+32 +40 +48 +56

+104 +112 +120

+128 +168 +176

+64

+184

+192 +232 +240

+128 +136

+200+192+248

+64

+136

+192

+72

+0

+200

+8

+72

+0 +8

k

l

0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

0

+

0x8 

+

1x8 

+

2x8 

+

3x8 

+

4x8 

+

5x8 

+

6x8 

+

7x8 

+(0x64) 

+(1x64) 

+(2x64) 

+(3x64) 

+(0x64) 

+(1x64) 

+(2x64) 

+(2x64) 

8

+

0x8 

9

+

1x8 

Figure 5. The offset according to the position within the 8×8 grid.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Computing 

256D Histogram

8D Histogram 8D Histogram 8D Histogram

1

sub
I

2

sub
I

32

sub
I

Figure 6. Computing the histograms of the first 32 subimages.

Merging

=7 Histogram

=4 Histogram

Figure 7. Merging the last four bins into one.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.8.MWSF-077

IS&T International Symposium on Electronic Imaging 2016
Media Watermarking, Security, and Forensics 2016 MWSF-077.4



can also be computed.
Step 5: According to the method in literature [9], all the

histograms calculated in Step 3 and Step 4 are merged and nor-
malized to obtain the DCTR set of dimensionality 8000.

To trade off the parallelism against shared memory exhaus-
tion, a residual image is divided into a number of macroblocks.
Each macroblock contains 4×32 pixels. Each thread is responsi-
ble to count the value of a pixel, so there are 4×32= 128 threads
in a CUDA block. Step 1 ∼ Step 4 are implemented on GPU de-
vice. But Step 5 is done using CPU programming, because it is
trivial.

Experiments
Our implementation of DCTR is in CUDA, which is an ex-

tension of the C language. Therefore, we call the proposed imple-
mentation CUDA-DCTR.

In this section, we measure the speed of CUDA-DCTR ex-
traction with respect to existing implementations. The configura-
tions of our computer and the GPUs used in test are shown in Ta-
ble 1 and Table 2. When implementing CUDA-DCTR, only one
GPU is used at a time. Our experiment uses three kinds of im-
ages with different sizes, including 512× 512, 2000× 3000 and
3744× 5616, and 200 images for each size. The images of size
512× 512 and 3000× 2000 are randomly selected from BOSS-
Base which has become a standard image database in steganal-
ysis. The images of size 3744× 5616 are from our image set
(captured by Canon EOS 5D Mark II). These images are used to
test the computation time of various implementations, including
sigle-thread MATLAB implementation, multi-thread MATLAB
version, CUDA-DCTR on GTX 780 and CUDA-DCTR on GTX
980. The MATLAB implementations are available online http:

//dde.binghamton.edu/download/feature_extractors/.

Experimental Platform

CPU Intel(R)Xeon(R) E5-1620
CPU Frequency 3.7GHz
Memory 16G
OS Windows 7 SP1 x64

GPU Specifications

GPU NVIDIA GeForce
GTX 780

NVIDIA GeForce
GTX 980

Global Memory 3072 MB 4096 MB
Shared Memory
per Block

49152 bytes 49152 bytes

CUDA Cores 2304 2048
GPU Clock rate 941 MHz 1279 MHz
FLOPS 4.0 TFLOPs 4.6 TFLOPs
Memory Bus 384 bit 256 bit

From Table 3, it can be seen that in the CUDA-DCTR im-
plementation we have fully exploited the parallelism of the GPU.
With only a single GPU, the speed is about 150∼200 times than
the single-thread MATLAB implementation and 55∼80 times

than the multi-thread version on a wallclock basis. The large-
size images have a better speedup than the small-size, because
large-size images can be split into more macroblocks for parallel
processing. In addition to being fast, the low standard deviation
of our GPU implementation suggests that our CUDA-DCTR runs
steadily.

Table 4 shows the time consumed by step 1 and step 2 in
DCTR. In the implementation of DCTR, step 1 includes decom-
pression, residual computation, truncation and quantization; step
2 is histogram computation.

Compared to the sigle-thread MATLAB implementation, the
time for step 1 of CUDA-DCTR is reduced by three to four or-
ders of magnitude. This is because that the convolution is suited
for parallel computing and fully utilizes the GPU’s arithmetic ca-
pability. The computation time MATLAB spends on step 2 is
60∼90 times than CUDA-DCTR. This indicates that our method
successfully makes the phase-aware features favorable for parallel
processing.

Time of DCTR extraction for various implementations

Image
Size

Average
Time(s)

STDEV
(s)

Min
Time(s)

Max
Time(s)

CUDA-DCTR
GTX 980

Size1 0.010 0.001 0.008 0.012
Size2 0.154 0.004 0.144 0.167
Size3 0.528 0.009 0.510 0.557

CUDA-DCTR
GTX 780

Size1 0.010 0.001 0.009 0.012
Size2 0.134 0.004 0.127 0.145
Size3 0.448 0.007 0.436 0.469

MATLAB
single-thread

Size1 1.562 0.059 1.422 1.703
Size2 30.990 1.175 28.435 33.988
Size3 105.580 2.441 100.729 114.632

MATLAB
4-thread

Size1 2.300 0.130 1.855 2.836
Size2 47.841 2.247 39.096 50.981
Size3 169.916 6.651 139.110 179.231

Size1 = 512×512, Size2 = 2000×3000 and Size3 = 3744×5616.

Time of two steps in DCTR
Image Size STEP1(s) STEP2(s)

CUDA-DCTR
GTX 980

512×512 0.001 0.005
3000×2000 0.002 0.112
5616×3744 0.004 0.402

MATLAB
single-thread

512×512 1.076 0.483
3000×2000 23.752 7.232
5616×3744 80.949 24.626

Conclution
With the advent of the high-dimensional features, increas-

ingly more attention has been paid to the GPU implementation of
steganalysis features. But there has been little research on how to
implement JPEG domain high-dimensional features on the GPU.
In this paper, we accelerate the DCTR features extraction based
on CUDA and GPU execution. To this end, some optimization
methods have been proposed. We first utilize the separability
and symmetry of the two-dimensional discrete cosine transform to

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.8.MWSF-077

IS&T International Symposium on Electronic Imaging 2016
Media Watermarking, Security, and Forensics 2016 MWSF-077.5



simplify the calculation of decompression and convolution. When
computing the phase-aware histograms, we encounter two prob-
lems – serious atomic collisions and inefficient reading of images
from global memory. To address these two problems, we specifi-
cally design a novel method to calculate phase-aware histograms,
which can efficiently calculate histograms of subimages without
subsampling. The experimental results show that the proposed
method can greatly accelerate the DCTR features extraction, es-
pecially for images of large size. The method can also be applied
to other phase-aware features, such as PHARM[17] and GFR[18].
For steganalysis in the spatial domain, SRM is a significant fea-
ture set. Therefore, we will further optimize the implementation
of SRM on GPU in future work to make it more usable in prac-
tice. To further decrease the time needed to extract the features,
we will investigate the performance of the multi-GPU system in
future research.

References
[1] Jessica Fridrich, Jan Kodovský, Vojtěch Holub, Miroslav Goljan,

Steganalysis of Content-Adaptive Steganography in Spatial Do-
main, Proc. IH, pg. 102. (2011).

[2] Tomáš Pevný, Tomáš Filler, Patrick Bas, Using High-Dimensional
Image Models to Perform Highly Undetectable Steganography,
Proc. IH, pg. 161. (2010).

[3] YunQ. Shi, Patchara Sutthiwan, Licong Chen, Textural Features for
Steganalysis, Proc. IH, pg. 63. (2013).

[4] Jessica Fridrich, Jan Kodovský, Rich Models for Steganalysis of
Digital Images, IEEE Trans. Inf. Forensics Secur., 7, 3 (2012).

[5] Jan Kodovský, Jessica Fridrich, Vojtěch Holub, Ensemble Classi-
fiers for Steganalysis of Digital Media, IEEE Trans. Inf. Forensics
Secur., 7, 2 (2012).

[6] Jan Kodovský, Jessica Fridrich, Steganalysis of JPEG Images Using
Rich Models, Proc. SPIE, pg. 83030A. (2012).

[7] Qingzhong Liu, Steganalysis of DCT-embedding Based Adaptive
Steganography and YASS, Proc. MMSec, pg. 77. (2011).

[8] Tomáš Pevný, Jessica Fridrich, Merging Markov and DCT Features
for Multi-Class JPEG Steganalysis, Proc. SPIE, pg. 650503. (2007).

[9] Vojtěch Holub, Jessica Fridrich, Low Complexity Features for JPEG
Steganalysis Using Undecimated DCT, IEEE Trans. Inf. Forensics
Secur., 10, 2 (2015).

[10] Andrew D. Ker, Implementing the Projected Spatial Rich Features
on a GPU, Proc. SPIE, pg. 90280K. (2014).

[11] Vojtěch Holub, Jessica Fridrich, Tomáš Denemark, Projections of
Residuals as An Alternative to Co-Occurrences in Steganalysis,
Proc. SPIE, pg. 86650L. (2013).

[12] Kaizhi Chen, Chenjun Lin, Shangping Zhong, Longkun Guo, A Par-
allel SRM Feature Extraction Algorithm for Steganalysis Based on
GPU Architecture, Proc. PAAP, pg. 178. (2014).

[13] Syed Ali Khayam, The Discrete Cosine Transform (DCT): Theory
and Application, Texts in Computer Science 41, 1 (2003).

[14] Anton Obukhov, Alexander Kharlamov, Discrete Cosine Transform
for 8×8 Blocks with CUDA, Nvidia White Paper (2008).

[15] NVIDIA Corporation, CUDA C Programming Guide v7.5, 2015,
pg. 82.

[16] Steven W. Smith, The Scientist and Engineer’s Guide to Digital Sig-
nal Processing, California Technical Publishing, CA, 1997, pg. 404.

[17] Vojtěch Holub, Jessica Fridrich, Phase-Aware Projection Model for
Steganalysis of JPEG Images, Proc. SPIE, pg. 94090T. (2015).

[18] Xiaofeng Song, Fenlin Liu, Chunfang Yang, Xiangyang Luo, Yi
Zhang, Steganalysis of Adaptive JPEG Steganography Using 2D
Gabor Filters, Proc. IH, pg. 15. (2015).

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.8.MWSF-077

IS&T International Symposium on Electronic Imaging 2016
Media Watermarking, Security, and Forensics 2016 MWSF-077.6


