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Abstract
Steganographic schemes for digital images are rou-

tinely designed and benchmarked based on feedback ob-
tained on the standard image set called BOSSbase 1.01.
While standardized image sets are important for advanc-
ing the field, relying on results from a single source may
not provide fair benchmarking and may even lead to de-
signs that are overoptimized and highly suboptimal on other
image sources. In this paper, we investigate four modern
steganographic schemes for the spatial domain, WOW, S-
UNIWARD, HILL, and MiPOD on two more versions of
BOSSbase. We observed that with their default settings,
the mutual ranking and detectability of all four embedding
algorithms can dramatically change across the three image
sources. For example, in a version of BOSSbase whose im-
ages were cropped instead of resized, all four schemes ex-
hibit almost the same empirical security when steganalyzed
with the spatial rich model (SRM). On the other hand, in
decompressed JPEG images, WOW is the most secure em-
bedding algorithm out of the four, and this stays true ir-
respectively of the JPEG quality factor when steganalyzing
with both SRM and maxSRM. The empirical security of all
four schemes can be increased by optimizing the parameters
for each source. This is especially true for decompressed
JPEGs. However, the ranking of stego schemes still varies
depending on the source. Through this work, we strive to
make the community aware of the fact that empirical secu-
rity of steganographic algorithms is not absolute but needs
to be considered within a given environment, which includes
the cover source.

Motivation
Currently, steganographic schemes are often developed

and benchmarked on standard image sources. By far the
most frequently used database is BOSSbase 1.01 [1], which
contains 10,000 images taken in the RAW format by seven
different cameras, converted to grayscale, downsampled
using the Lanczos resampling algorithm with antialiasing
turned OFF, and cropped to the final size of 512×512
pixels. Many articles have been published in which this
database was the sole source on which steganographers
fine-tuned their embedding scheme to obtain the best pos-
sible empirical security. However, BOSSbase images are far
from what many would consider natural – they are essen-
tially grayscale thumbnails obtained by a script that only
a handful of people use.

Because of the rather aggressive downsizing of the orig-
inal full-resolution RAW files, the content of many BOSS-
base images is very complex with apparently rather weak

dependencies among neighboring pixel values. The down-
sizing also effectively suppresses color interpolation arti-
facts and introduces artifacts of its own. There are im-
ages in BOSSbase that are very smooth, e.g., improperly
focused images as well as images that are very dark and
contain almost no content, such as an image of the Moon.
One may thus argue that BOSSbase contains “enough” di-
versity to be used as a standardized source. On the other
hand, virtually all steganographic schemes contain free pa-
rameters or design elements, such as an image transform
and filter kernels, that are selected based on feedback pro-
vided by detectors on BOSSbase. We show that this makes
the design overoptimized to a given image source and the
embedding suboptimal on different sources. Even after op-
timizing the parameters of each embedding scheme to the
source, universal benchmarking still does not seem possible
since the optimized schemes exhibit different empirical se-
curity across sources. Additionally, the recently proposed
synchronization of embedding changes [4, 12] appears far
less effective on images with suppressed noise.

In the next section, we explain the measure of empiri-
cal security used in this paper and how it is evaluated. We
also describe three versions of BOSSbase that will be in-
vestigated, the steganographic algorithms and steganalysis
feature sets, as well as the choice of the classifier. In the
third section, we start with comparing the empirical secu-
rity of all algorithms on all three image sources and with
two different steganalysis feature sets. Then, in the fourth
section we identify the key parameters of each embedding
scheme and perform a grid search to find the setting that
maximizes the empirical security. The fifth section is de-
voted to investigating the impact of synchronizing the se-
lection channel in different sources. The paper is concluded
in the last section, where we summarize the most impor-
tant lessons learned.

Setup of experiments
Security of embedding algorithms will be evaluated ex-

perimentally by training a binary classifier for the class of
cover images and a class of stego images embedded with a
fixed relative payload in bits per pixel (bpp), the so-called
payload-limited sender. The classifier is the FLD ensem-
ble [10] with two feature representations – the Spatial Rich
Model (SRM) [7] and its selection-channel-aware version
maxSRMd2 [5]. The security is reported with PE, which
is the minimal total error probability under equal priors

PE = 1
2(PFA +PMD) (1)
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obtained on the testing set averaged over ten 50/50 splits of
the image source into training and testing sets. Other mea-
sures were proposed in the past, such as the false-alarm-
rate for 50% correct detection of stego images [13], FA50,
which is more telling about the algorithm security for low
false alarms. It has been observed that for the payload-
limited sender, the detection statistic that is thresholded
in the linearized version of the ensemble classifier [3] when
rich models are applied is approximately Gaussian. In this
case, both quantities, PE or FA50, would provide the same
ranking of stego systems because there is a strictly mono-
tone relationship between them.

For the purpose of this paper, we created the following
two new versions of BOSSbase 1.01:

1. BOSSbaseC (C as in Cropped) was obtained using the
same script as BOSSbase 1.01 but with the resizing
step skipped. The images were centrally cropped to
512×512 pixels right after they were converted from
the RAW format to grayscale. Images from this source
are less textured but do contain acquisition noise.

2. BOSSbaseJQF (J as in JPEG, QF is the JPEG qual-
ity factor) was formed from BOSSbase 1.01 images
by JPEG compressing them with quality factor QF∈
{75,85,95} and then decompressing to the spatial do-
main and representing the resulting image as an 8-bit
grayscale. The low-pass character of JPEG compres-
sion makes the images less textured and much less
noisy.

Figure 1 shows examples of four images from each source.
Notice that images from BOSSbaseC appear “zoomed-in”
because of the absence of downsizing.

Four embedding algorithms will be investigated in this
paper: Wavelet Obtained Weights (WOW) [8], the Spa-
tial version of the UNIversal WAvelet Relative Distortion
(S-UNIWARD) [9], High-Low-Low (HILL) [11], and Min-
imizing the power of the most POwerful Detector (Mi-
POD) [14], which coincides with the MultiVariate Gaussian
(MVG) steganography with a Gaussian residual model [15].
The study is limited to the spatial domain and does not
consider JPEG images because the source generally does
not play a significant role in JPEG steganography due to
the low-pass character of JPEG compression, which tends
to even out the differences between various sources.

Empirical security across sources
The purpose of the first experiment is to show that the

ranking of steganographic schemes as originally described
in the corresponding papers heavily depends on the image
source. Figure 2 shows PE as a function of the relative
payload in bits per pixel (bpp) for the four embedding al-
gorithms listed in the previous section on BOSSbase 1.01,
(first row), BOSSbaseC (second row), and BOSSbaseJ85
(third row) with SRM (left) and maxSRMd2 (right). Note
that the ranking as well as the differences between individ-
ual embedding algorithms heavily varies depends on the
cover source. Most notably, in BOSSbaseJ85, the most se-
cure algorithm is WOW while MiPOD is the least secure,
which is the exact opposite in comparison with BOSSbase

1.01. Moreover, when detecting with the SRM all four
embedding schemes on BOSSbaseC have nearly identical
empirical security.

Optimizing steganography for each source
In this section, we investigate how much the empirical

security of each algorithm can be improved by adjusting
the embedding parameters. This gain is quantified and
the optimized embedding algorithms are ranked again for
each image source.

We start by describing the parameters with respect
to which each embedding scheme was optimized. The de-
scription is kept short but, hopefully, detailed enough for
a reader familiar with the embedding algorithms to under-
stand the parameters’ role. The reader is referred to the
corresponding publications for more details.

WOW: This embedding algorithm was designed to
prefer making embedding changes at pixels in textured ar-
eas defined as regions with an “edge” in the horizontal, ver-
tical, and both diagonal directions. The embedding begins
with extracting directional residuals using tensor products
of 8-tap Daubechies filters. Three directional filters with
8×8 kernels denoted K(h), K(v), and K(d) are used to ex-
tract three directional residuals: R(h) = K(h) ?X, R(v) =
K(v) ?X, and R(d) = K(d) ?X, where ′?′ denotes a convo-
lution and X is the matrix of pixel grayscales. In the next
step, the so-called embedding suitabilities are computed:
ξ(k) = |R(k)|? |K(k)|, k ∈ {h,v,d}. The embedding cost of
changing pixel i, j by +1 or −1 is obtained using the re-

ciprocal Hölder norm ρ
(k)
ij =

(
|ξ(h)

ij |
p + |ξ(v)

ij |
p + |ξ(d)

ij |
p
)−p

with p=−1.
To optimize WOW for different image sources, we

search for the number of taps in Daubechies filters, p1 ∈
{2,4,8,16} and the power of the Hölder norm p2 = p.

S-UNIWARD: The pixel embedding costs are ob-
tained from a distortion function defined as the sum of
relative absolute differences between wavelet coefficients of
cover and stego images. Only the highest frequency band
of wavelet coefficients is used in UNIWARD. Formally, we
denote the u,vth wavelet coefficient of X in k ∈ {h,v,d}
subband with W (k)

uv (X), W(k) = K(k) ?X, u,v of the same
range as image pixels. S-UNIWARD uses the same kernels
formed from 8-tap Daubechies wavelets as WOW. The fol-
lowing non-additive distortion between the cover X and
the stego image Y is used in UNIWARD:

D(X,Y) =
∑

k∈{h,v,d}

∑
u,v

|W (k)
uv (X)−W (k)

uv (Y)|
σ+ |W (k)

uv (X)|
, (2)

where σ = 1 is the stabilizing constant. The embedding
cost of the i, jth pixel is defined as D(X,Y[ij]), where Y[ij]
is a stego image in which only the i, jth pixel was modified
by 1.

Similar to WOW, the first parameter p1 over which we
optimize S-UNIWARD is the number of taps of Daubechies
filters, p1 ∈ {2,4,8,16}, and the second parameter p2 = σ
is the stabilizing constant.
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Figure 1. By rows: Sample images from BOSSbase 1.01, BOSSbaseC, and BOSSbaseJ85.

HILL: This algorithm originated fromWOW. The au-
thors replaced the three directional kernels with one non-
directional high-pass 3× 3 KB [2] kernel H. HILL thus
uses a single residual R = X?H. The pixel costs are then
computed using the following formula:

ρ = 1
|R|?L1

?L2, (3)

where L1 is an averaging filter of support 3×3 and L2 is
another averaging filter of support 15×15. All operations
in (3) are elementwise.

We keep the KB kernel for the high pass filter and
search for the support size p1 of the averaging filter L1
and the support size p2 of L2.

MiPOD: This embedding schemes differs fundamen-
tally from the previous three schemes because it does not
start with pixel costs. Instead, based on a residual model,
the embedding change probabilities are computed to min-
imize the power of the most powerful detector. Once the
change rates are computed using the method of Lagrange
multipliers, the actual embedding proceeds by converting
the change rates to costs so that syndrome-trellis codes [6]
can be applied. The embedding begins with model estima-
tion. Because MiPOD uses the Gaussian residual model of
independent zero-mean residual samples, the model esti-
mation reduces to estimating the variance of the Gaussian
distribution at every pixel. When optimizing MiPOD, we
searched over the parameters of the variance estimator.

The estimator first extracts a residual using a 2× 2
Wiener filter. Then, the residual is locally fitted with a
two-dimensional DCT polynomial of degree d in a k× k
sliding window to extract the final residual from which the
pixel variance is estimated using sample variance. Finally,
before computing the costs the Fisher information is low-
pass filtered with an averaging filter of size l× l. MiPOD
was optimized w.r.t. the following three parameters: the
pair p1 = (k,d) for the polynomial fit and p2 = l for Fisher
information averaging.

Comments and interpretations
Surprisingly, the least secure embedding scheme on the

standard BOSSbase 1.01, WOW, becomes the most secure
one on BOSSbaseJQF (Figure 6). And this stays true when
steganalyzing with SRM or maxSRM and with the original
parameter setting as well as the optimized setting (Fig-
ure 5). At the same time, the most secure algorithm on
BOSSbase 1.01 when steganalyzing with maxSRM (Fig-
ure 3), MiPOD, performs the worst.

Following Table 1, one can say that for each embed-
ding scheme on BOSSbaseJQF it is better to use a smaller
support for residual filters. This could be explained by the
fact that the decompression removes most of the texture
and noise from the image and thus one can estimate the
embedding costs (and pixel variances) with better accuracy
from a smaller support in an apparent trade off between
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Table 1. The original parameters for all four tested embedding
schemes and their values optimized on BOSSbaseC and BOSS-
baseJ85 for both SRM and maxSRMd2 for payload 0.1 bpp.

SRM maxSRMd2
Source Scheme p1 p2 p1 p2
1.01 WOW 8 -1 4 -0.5

S-UNI 8 1 4 1
HILL 3 15 3 11

MiPOD (9,8) 7 (5,4) 7
C WOW 14 -1 14 -1

S-UNI 12 1 4 5
HILL 5 11 9 11

MiPOD (9,8) 5 (11,10) 11
J85 WOW 4 -3 4 -3

S-UNI 4 0.2 4 0.2
HILL 7 3 5 7

MiPOD (3,2) 3 (3,2) 3

the estimator variance and bias (estimators with a larger
support have a smaller variance but larger bias).

On BOSSbaseJQF, the maximum gain due to the
search for optimal parameters was observed for MiPOD
and was also achieved with the smallest possible support
of the variance estimator. MiPOD might gain more by
abandoning the current variance estimator structure and
using a simpler variance estimator.

On BOSSbaseC, the most secure scheme with the
maxSRM feature set is S-UNIWARD (Figure 4). The
search for optimal parameters provides only little gain
when steganalyzing with the SRM.

As a curiosity, we point out that on BOSSbaseJQF,
maxSRM is performing worse that SRM by about 1−2%
for almost all embedding schemes and all three tested qual-
ity factors (Figure 6). This is most likely due to the fact
that the algorithms’ adaptivity is weaker on smooth con-
tent, making the utilization of the embedding change prob-
abilities in maxSRM inefficient.

Impact of synchronizing embedding changes
across cover sources

Recently, it has been shown that empirical security
of embedding schemes built around an additive distortion
function can be increased by synchronizing (clustering) the
polarity of embedding changes [4, 12]. The synchronization
leads to a smaller entropy of the stego noise, which forces a
higher change rate but ultimately leads to better security.
In [4], this gain was linked to the fact that the selection
channel of non-additive embedding schemes is harder to
estimate and the fact that steganalysis is most effective
with sign-changing kernels.

In this section, we investigate how the gain in em-
pirical security is affected by the image source. Again,
the same four embedding algorithms are investigated as in
the previous section. They are used as the initial additive
scheme from which the non-additive embedding algorithm
is built. The reader is referred to the original publications

for more details about the embedding algorithms. Finally,
before proceeding with the experimental results we note
that maxSRM used the change rates of the original em-
bedding schemes for steganalysis of the synchronized (clus-
tered) versions of the embedding algorithms.

Our findings are displayed in Figure 7 and can be sum-
marized as follows. Looking only at the more important
maxSRM, synchronizing the embedding changes has the
biggest impact in BOSSbaseC (up to 3.6%), a compara-
tively small impact in BOSSbase 1.01, and virtually no
impact in BOSSbaseJ85. Synchronizing the embedding
changes also does not change the ranking with respect to
the original schemes (in the same source). Overall, CMD
provides a larger boost than Synch. Finally, although the
selection-channel-aware maxSRM is suboptimal when us-
ing the embedding probabilities of the original additive em-
bedding scheme, maxSRM detects much better than SRM
in all sources and for all algorithms with the exception of
J85 where both are quite comparable.

Conclusions
Standardized image sources are necessary for develop-

ment of both steganography and steganalysis. Spatial rep-
resentation of images can, however, be very diverse when
it comes to the strength and type of noise as well as the
complexity of textures. Statistical properties of pixels can
change dramatically after filtering, compression, and re-
sizing. As this paper shows, this diversity makes abso-
lute benchmarking impossible as stego systems may rank
very differently in different cover sources even after each
stego system has been optimized separately for each source.
Among the rather surprising facts revealed in this study is
that the algorithm WOW, which is well known to be the
least secure among modern content-adaptive schemes in
the standard image set BOSSbase 1.01 becomes the most
secure in decompressed JPEGs, while the most secure al-
gorithm, MiPOD, becomes the least secure. This remains
true when steganalyzing with SRM as well as maxSRM
and for both the original versions of the algorithms and
their optimized forms. Similarly, the effectiveness of cer-
tain boosting measures, such as synchronizing (clustering)
the polarity of embedding changes vastly changes across
sources. In decompressed JPEGs, this measure is com-
pletely ineffective while in sources with noise but sup-
pressed texture, to the contrary, it can have a major posi-
tive effect.

In this study, we fixed the steganalysis feature set
across the sources, which may skew the results as one could
argue that the steganalysis features should, too, be op-
timized for the source. Besides limiting this paper to a
manageable length, another reason why optimization of the
features has not been included is the fact that current rich
feature representations already contain noise residuals ob-
tained with filters of varying support size and, as such, are
expected to be less sensitive to the cover source. Never-
theless, the direction of optimizing the features for cover
sources should be investigated.
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Figure 2. Steganalysis of four embedding schemes using SRM (left) and maxSRMd2 (right). By rows: BOSSbase 1.01, BOSSbaseC, and BOSSbaseJ85.
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Figure 3. Gain in empirical security when searching for optimal parameters of each embedding scheme on BOSSbase 1.01 for maxSRMd2 for payload 0.3
bpp. Note that we do not search for optimal parameters for SRM since all embedding schemes have gone through this procedure during their design process.
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Figure 4. Gain in empirical security when searching for optimal parameters of each embedding scheme on BOSSbaseC for both SRM and maxSRMd2 for
payload 0.1 bpp.
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Figure 5. Gain in empirical security when searching for optimal parameters of each embedding scheme on BOSSbaseJ85 for both SRM and maxSRMd2 for
payload 0.1 bpp.
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Figure 6. Steganalysis of four embedding schemes using SRM (left) and maxSRMd2 (right) on BOSSbaseJ75, 85, and 90 for payload 0.1 bpp.
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Figure 7. Gain of synchronizing (clustering) embedding changes versus the original versions of the embedding algorithms on BOSSbase 1.01, BOSSbaseC,
and BOSSbaseJQF with QF = 85 (by rows) at payload 0.1 bpp.
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