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Abstract
Payload location and key search techniques often rely on

having a collection of stego images that use the same embedding

key. This is a plausible scenario if the steganographer reuses the

embedding key. In practice, however, the collection may contain

several embedding keys. As a consequence, we must be able to

separate these stego images by embedding key prior to apply-

ing these attacks. This paper addresses this fundamental prob-

lem. We first investigate the situation where the cover images are

also available. Our analysis shows that it is possible to determine

whether two stego images share the same embedding key provided

that the payload sizes are not too large. We then present a prac-

tical algorithm to separate stego images by embedding key in the

case when the cover images are not available. Our algorithm

uses a cover estimator to reconstruct the cover images. Using

the residuals computed from the stego-estimate image pairs, our

algorithm separates the stego images via spectral clustering. Ex-

perimental results show that our algorithm performs well against

popular matrix embedding schemes. Once separated, we perform

exhaustive key search, using the computed residuals, to recover

the embedding key.

Introduction
Digital image steganography often embeds the payload by

making small changes to the cover image using least significant

bit (LSB) matching so that the resulting stego image appears in-

nocuous to an unintended observer. Popular embedding algo-

rithms include simple LSB matching and matrix embedding [1].

These algorithms further utilize an embedding key to distribute

the payload over the entire image, making it more difficult to de-

tect by steganalysis detectors. If detected, the use of an embed-

ding key also complicates the task of extracting the hidden mes-

sage as information about the location of the payload is unknown.

Despite this difficulty, if the steganographer reuses the em-

bedding key, it is possible to locate and extract the payload [2,

3, 4, 5, 6, 7, 8]. The success of these techniques relies primarily

on having a collection of stego images that use the same embed-

ding key. This is a plausible scenario if the steganographer reuses

the embedding key and the images are the same size. As an ex-

ample, the steganographer takes several pictures using his digital

camera and then embeds messages into these pictures using the

same password, e.g., embedding key. In practice, the stego image

collection may consist of not one, but several embedding keys,

reflecting the fact that the steganographer may change the embed-

ding key over time. This is analogous to a user changing their

computer password.

Taking this into consideration, our first task is to separate

these stego images by embedding key so that the subsequent anal-

ysis can be performed. Our current work addresses this funda-

mental problem. To the best of our knowledge, no existing re-

search has explored the key separation problem. We first assume

that the cover images are available and approach the problem from

a hypothesis testing perspective: given two stego images, deter-

mine whether they use the same embedding key. We show that

it is possible to make this distinction provided that the payload

sizes are not too large. We then propose a practical algorithm to

separate stego images by embedding key when the cover images

are not available. The algorithm uses existing cover estimators to

estimate the cover images. It then computes residuals using the

stego-estimate pairs. The residuals are used to partition the stego

images by embedding key via spectral clustering. Our algorithm

performs well against popular matrix embedding schemes in ex-

periments using real images. Once separated, it is straightforward

to recover the embedding key via a brute-force key search proce-

dure that makes use of the computed residuals.

In the next section, we investigate the key-separation prob-

lem under the setting that the cover images are known. We then

present the practical algorithm addressing the situation when the

cover images are unavailable. Our key search algorithm is also

presented in that same section. We follow with experimental re-

sults demonstrating the effectiveness of our algorithm. Conclud-

ing thoughts are provided in the last section.

Key Separation
We consider the class of steganographic algorithms that em-

beds b bits using k pixels. To embed a payload of m bits into

cover image c = (c1,c2, . . . ,cn) to generate stego image s =
(s1,s2, . . . ,sn), we need to use ⌈ km

b ⌉ ≤ n pixels. For simplicity,

we assume that b divides m so that the number of payload pixels

is km
b . In order to embed the payload, some payload pixels may

need to be modified. The probability that any payload pixel is

changed is pc. This class of embedding algorithms encompasses

a wide range of practical algorithms including simple LSB match-

ing1, group-parity steganography, and the entire family of matrix

embedding algorithms based on Hamming codes [1]. For simple

LSB matching, we have k = 1, b = 1, and pc =
1
2 . For the popular

(3, 2) matrix embedding, we have k = 3, b = 2, and pc =
1
4 .

In general, an embedding key is used to shuffle the pixels

so that the payload is distributed over the entire image. The em-

bedding key is shared with the receiver so that the message can

later be extracted. If the steganographer reuses the embedding

key, the same pixel order is produced by the shuffling process

provided that the cover images are the same size. Conversely, if

the steganographer changes the embedding key, a different pixel

order is used to embed the subsequent payloads. This leads to

our current problem: given stego images s carrying a payload of

m1 bits and s′ carrying a payload of m2 bits, both of length n,

determine whether they use the same embedding key.

In the following analysis, we assume the cover images, c and

1We note that simple LSB matching is (1, 1) matrix embedding and
will use both names interchangeably throughout the paper.
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c′, are known or can be estimated with vanishing error rate [9].

The analysis provides insight on how well we can expect to ad-

dress this problem in practice. Using c and s, it is straightforward

to form the residual vector r, where ri = |ci − si|, that identifies

the modified pixels. The residual vector r′ is constructed simi-

larly using c′ and s′. The number of overlapping modified pixels

is x = ∑i rir
′
i . Using x, we decide whether s and s′ use the same

embedding key. This is a hypothesis testing problem. Our hy-

potheses are

H0: s and s′ use different embedding keys,

H1: s and s′ use the same embedding key.

We accept H0 when p(x|H0)> p(x|H1) and accept H1 otherwise.

We now construct p(x|H0) and p(x|H1). Let n1 = km1

b and

n2 = km2

b . Without loss of generality, let n1 ≤ n2. Under H1, the

number of shared payload pixels in both stego images is n1, e.g.,

the cardinality of the intersection of the payload pixels used in

both images. Since pc is the probability of modifying any pay-

load pixel, the probability that a payload pixel is changed in both

images is p2
c . Since x is the number of payload pixels changed in

both stego images, p(x|H1) is a binomial distribution:

p(x|H1) =

(

n1

x

)

(

p2
c

)x(

1− p2
c

)n1−x
. (1)

Under H0, let l be the number of shared payload pixels in

both stego images. Since the two keys are different, its distribu-

tion is hypergeometric:

p(l|H0) =

(

n2

l

)(

n−n2

n1−l

)

(

n
n1

) . (2)

Similar to H1, given l,

p(x|l,H0) =

(

l

x

)

(

p2
c

)x(

1− p2
c

)l−x
. (3)

Combining (2) and (3), we have

p(x|H0) = ∑
l

p(l|H0)p(x|l,H0) (4)

= ∑
l

(

n2

l

)(

n−n2

n1−l

)

(

n
n1

)

(

l

x

)

(

p2
c

)x(

1− p2
c

)l−x
, (5)

where the summation over l is from max{x,n1 +n2 −n} to n1.

To further support our analysis, we perform the following

experiment using images from the BOSSbase 0.92 database [10],

which consists of 9074 images of size 512-by-512 in the raw

PGM format. We randomly select 1000 images. For each im-

age, we randomly crop a 25-by-40 region to form a cover image,

e.g., n = 1000 pixels. For each cover image, we embed a relative

payload size of 0.4 bits per pixel (bpp), or 400 bits, using simple

LSB matching with different keys. We compute x using all unique

image pairs and plot the obtained distribution in Figure 1(a). The

plot also shows the expected distribution from (5). We repeat the

same experiment, this time using the same embedding key to gen-

erate the stego images. The resulting distribution along with the

expected distribution from (1) are shown in Figure 1(b). The plots

confirm that the experimental results match our analysis.
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Figure 2. The error probability for three matrix embedding algorithms at

different payload sizes. We can expect to be most successful against simple

LSB matching, or (1, 1) matrix embedding. In all cases, the error increases

as payload size gets sufficiently large.

An important metric in hypothesis testing is the error proba-

bility. Let the acceptance region for H0 be R0 = {x : p(x|H0) >
p(x|H1)}. Similarly, let R1 = {x : p(x|H0) ≤ p(x|H1)} be the

acceptance region for H1. The error probability is

pE =
1

2
∑

x∈R0

p(x|H1)+
1

2
∑

x∈R1

p(x|H0). (6)

With n = 1000, we compute pE at different relative payload

sizes for 3 different embedding algorithms: (1, 1), (3, 2), and (7,

3) matrix embedding. The results are shown in Figure 2. It is

clear that our success depends on the embedding algorithm and

the payload size. Among the three algorithms, we can expect to

be most successful against (1, 1) matrix embedding, e.g., simple

LSB matching. In all cases, however, our success is limited as

payload size becomes sufficiently large. This is expected as our

decision is based primarily on the number of overlapping modi-

fied pixels, x. For large payload sizes, the majority of the pixels

are payload pixels. This remains true regardless of whether or not

the steganographer reuses the embedding key. For the (7, 3) ma-

trix embedding scheme with a relative payload size of 0.4 bpp,

the proportion of payload pixels is 0.93. In this case, the error

probability is only slightly better than random guessing.

Practical Algorithm
While informative, the above analysis assumes the cover im-

ages are known. In practice, the forensic analyst may have a col-

lection of stego images obtained from the steganographer, but the

cover images are not available. In this case, the cover images must

be estimated using existing estimators [4, 5, 7]. These estimators,

however, are noisy. As a consequence, the resulting estimate and

the cover image can differ significantly. Applying the hypothesis

testing framework would have limited success.

The problem can still be addressed by recognizing the fact

that while each individual estimate is noisy, their aggregate is

not. This is the exact reason why steganographic payload loca-
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Figure 1. The empirical distribution of x, the number of overlapping modified payload pixels in both stego images, under (a) H0 and (b) H1 for simple LSB

matching at 0.4 bpp. The results match our expectation.

tion works. Using this insight, we present a practical approach

that makes use of a collection of stego images. We assume the

forensic analyst has a collection of N stego images, each of size

n, that may contain several embedding keys. It is important to

note that we do not assume any knowledge about the number of

embedding keys. Under this setting, we propose to partition these

stego images by embedding key using the following spectral clus-

tering algorithm [11]:

1. Estimate the cover images.

2. Compute the residual vector for each stego-estimate pair.

3. Form the N-by-n residual matrix R by stacking the residual

vectors vertically.

4. Compute the similarity matrix X = RRT .

5. Let D be the diagonal matrix where Dii = ∑ j Xi j .

6. Compute L = D−1/2XD−1/2.

7. Compute d eigenvectors of L that correspond to the largest

d unique eigenvalues.

8. Form the N-by-d feature matrix F using these eigenvectors.

9. Normalize F so that each row has unit-length norm.

10. Cluster the rows of F using agglomerative hierarchical clus-

tering.

Steps 4 - 9 are standard in spectral clustering. The original

algorithm assumes that the number of clusters is known and sets

d to be this quantity. In our current setting, this is not true. This is

why we use agglomerative hierarchical clustering in the last step.

This clustering technique builds a tree of clusters, starting with

each object as its own cluster, and repeatedly combines two near-

est clusters until a single cluster is formed. This method requires

a function to compute the distance between two clusters. We use

the average Euclidean distance. Once the tree is formed, we can

cut it at some depth to partition it into several clusters. This flexi-

bility gives the analyst full control over the maximum number of

clusters to examine, which determines the value of d. The analyst

may first partition the image collection into two clusters and ex-

amine them. If no useful information is obtained, the analyst may

further cut the tree to obtain four clusters to examine, etc. If the

majority of the stego images in any cluster use the same embed-

ding key, the analyst may be able to locate the payload or perform

key search on that cluster. Note that success on a single cluster

may allow the analyst to obtain valuable information that allows

for subsequent attacks on the remaining images.

In order to quantify the effectiveness of our approach, we

define the following accuracy metric: maxi, j gi j, where gi j is the

proportion of images in the i-th cluster that use the j-th embed-

ding key. This quantity captures how well we group stego images

that use the same embedding key. It is only meaningful when the

cluster size is relatively large. A cluster of size 1 is meaningless.

As a consequence, in our experiments, we provide both the accu-

racy and the size of the corresponding cluster.

Once separated, each image set can be further processed to

extract the hidden messages. Given a collection of N stego im-

ages, each carry a payload of m bits, that share the same em-

bedding key, the residual of pixel i in image j is ri j. The mean

residual of pixel i is

ri =
1

N

N

∑
j=1

ri j. (7)

Given an exhaustive collection of embedding keys, it is straight-

forward to use the mean residuals to search for the correct em-

bedding key. Specifically, let E(m) be the set of pixels returned

by embedding key E to embed m bits. The total mean residual

for embedding key E is ∑i∈E(m) ri. We can perform a brute-force

search over the key collection to find the key that the steganogra-

pher used. The right key is the outlier with the largest total mean

residual. Our key-search technique is different from a previous

technique [12]; we do not assume prior knowledge about the em-

bedded message, e.g., random binary sequence. Both methods,

however, have limited success against sophisticated embedding

algorithms that make use of the entire image to embed the pay-

load [13]. This is expected as the total mean residuals are identical

for such embedding schemes. Our key-search method is comple-

mentary to a recent technique that exploits embedded metadata,

namely message length [14]. As pointed out in that work, instead
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of embedding the message length, a sophisticated steganographer

may choose to use a special character to denote the end of the

message. Doing so denies key search techniques that rely on such

metadata, but comes at a cost of having to use a fixed payload

size. This situation, however, is ideal for our proposed key search

technique.

Experiments
The following experiments are designed to evaluate the ef-

fectiveness of our key-separation algorithm against different em-

bedding schemes, payload sizes, and the number of stego images,

N, in the collection. We use images from the BOSSbase 0.92

database. The two embedding algorithms are simple LSB match-

ing, or (1, 1) matrix embedding, and (3, 2) matrix embedding.

We use the Markov random field (MRF) cover estimator [7]. This

estimator needs a set of cover images to learn the joint pixel prob-

abilities. We randomly select 8074 images for this purpose and set

aside the remaining 1000 images to test our algorithm. The MRF

cover estimator also has 2 model parameters: w and ρ . Parameter

w controls the effect of neighboring pixels and ρ is the likelihood

of a pixel being modified. In all of our experiments, we use the

default parameter setting: w = 1 and ρ = 0.25. There is a good

reason to set ρ = 0.25 even if the payload size is small. If we set ρ
to a small quantity, the estimator might produce estimates that are

identical to the stego images, e.g., unable to detect any changes.

This would not provide any useful information.

Using the remaining 1000 images, we randomly select N
2 im-

ages to form image set I1 and another N
2 images to form image

set I2. These two image sets are non-overlapping. We then em-

bed a random payload into each image in both sets. All images

in the same set share the same embedding key. The embedding

key used in I1 is different than the one used in I2. The result-

ing image collection consists of N stego images embedded by two

different keys. We apply our key-separation algorithm to this im-

age collection. To make the results more precise, we average the

accuracies and cluster sizes over 10 different formations of I1

and I2.

In the first experiment, we fix N = 1000 and vary the pay-

load size from 0.1 bpp to 0.5 bpp in increments of 0.1 bpp. This

allows us to evaluate the algorithm under different payload sizes.

The results are shown in Figure 3. Similar to our analysis, we

are more successful against simple LSB matching than (3, 2) ma-

trix embedding. Further, as payload size gets sufficiently large,

accuracy decreases. For (3, 2) matrix embedding, we do not get

high accuracies until we use more clusters. With 8 clusters, we

achieve more than 0.93 accuracy for payload sizes of up to 0.4

bpp. We emphasize that these clusters do provide useful informa-

tion as evident by their sizes. With 8 clusters, the average cluster

size is 151.48 for simple LSB matching and 113.22 for (3, 2) ma-

trix embedding.

In our second experiment, we fix the payload size at 0.4 bpp

and vary N from 200 to 1000 in increments of 200. This allows us

to evaluate the effectiveness of our algorithm as a function of the

number of stego images in the collection. The results are shown

in Figure 4. Once again, we obtain high accuracies by using more

clusters. With 8 clusters, the average accuracy is 0.999 for simple

LSB matching and 0.959 for (3, 2) matrix embedding. Accura-

cies remain relatively constant except when N = 200. This is due

to small cluster sizes. With N = 200, the average cluster size is

7.2 for simple LSB matching and 9.6 for (3, 2) matrix embed-

ding. Cluster size increases as N increases, suggesting that these

clusters capture the statistics needed to separate stego images by

embedding key.

As mentioned earlier, once the stego images are separated

by embedding key, we can perform a brute-force search on a col-

lection of embedding keys to find the one that the steganographer

used. Using 5 randomly chosen stego images (and their cover

estimates), each carry a payload of 0.1 bpp, generated by (3, 2)

matrix embedding with the same key, we compute the total mean

residuals for 106 keys, one of which is the same key used to gen-

erate the stego images. The histogram of the total mean residuals

is shown in Figure 5(a). The correct key corresponds to the outlier

with the largest total mean residual. It is not necessary to require

a collection of stego images to perform key search. With a good

cover estimator, such as the MRF cover estimator, the key search

procedure can still find the correct key using a single stego im-

age. We repeat the experiment, this time using only a single stego

image. The histogram of the total mean residuals is shown in Fig-

ure 5(b). Again, the correct key corresponds to the outlier with

the largest total mean residual. The distance separating the out-

lier from the rest, however, is smaller compared to the previous

case of multiple stego images (226.3 vs 603.8). This is expected

because the residuals are noisier with a single estimate.

Conclusion
The ability to separate stego images by embedding key is

important in steganalytic forensic analysis. It allows the foren-

sic analyst to further process each partition to locate and extract

the hidden messages. The presented approach is the first to ad-

dress this problem. Since the algorithm relies on estimating the

cover images, its accuracy should improve with advances in cover

estimation. Even though our experiments use spatial domain em-

bedding, it should be clear that our approach applies to other em-

bedding domains such as JPEG coefficients.

The results of this work present an interesting dilemma to the

steganographer. It is well known that it is easier to detect stego

images if they carry large payloads. So to minimize detection, the

steganographer may hide smaller payloads. If detected, however,

these stego images can be separated by embedding key, which

may lead to a successful key recovery. As mentioned earlier, to

evade our method, the steganographer can turn to adaptive em-

bedding algorithms that make use of the entire image. Extending

our method to address these embedding algorithms is the focus of

our future work.
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Figure 3. Plots of (a) accuracy and (b) cluster size as a function of payload size for two embedding algorithms: (1, 1) and (3, 2) matrix embedding.
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embedding.
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Figure 5. Histograms of the total mean residuals computed from 106 keys on stego images embedded by (3, 2) matrix embedding with a payload of 0.1 bpp:

(a) 5 stego images and (b) a single stego image. The correct key corresponds to the outlier with the largest total mean residuals in both cases.
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