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Abstract
Telltale watermarks allow to infer how a watermarked signal

has been altered on the channel by analyzing the distortion applied
to the watermark. We propose a new kind of telltale watermark
for digital images that tracks the number of JPEG (re-)compres-
sions. Our watermarks leverage peculiarities in the convergence
behavior of JPEG images. We show that it is possible to gen-
erate or find combinations of pixel values which form so called

“counter blocks”. Counter blocks cycle predictably through a fixed
number of states in subsequent JPEG compression and decompres-
sion operations. By combining counter blocks with different cycle
lengths in one image, we are able to track the number of JPEG
(re-)compressions in extended ranges. We evaluate the accuracy of
counter blocks, discuss pitfalls when embedding them, and study
the construction of counter blocks with specified cycle lengths.

Introduction
When repeatedly compressing and decompressing digital im-

ages with the popular JPEG standard, we typically observe that
the pixel values converge after a certain number of compressions.
This phenomenon has been previously used in image forensics to
estimate the number of times an image has been (re-)compressed.
However, for color images, using chrominance subsampling with a
linear interpolation of chrominance values, we observe that some
blocks do not converge. Instead they cycle through a fixed number
of states. This is because the chrominance interpolation introduces
an error which can interfere with the convergence of blocks. Such
cyclic blocks enable interesting application scenarios.

In this paper we explore the usage of these cyclic blocks as a
new form of telltale watermark. In contrast to fragile watermarks,
where detection of the watermark fails as soon as the image is
illegitimately modified, telltale watermarks are used to track the
kind of modification a watermarked image has undergone. Our
telltale watermark is able to accurately count how often an image
has been JPEG compressed. This is accomplished by placing
cyclic blocks of different cycle length in an image. By observing
in which state these blocks are, it is possible to determine how
often the image has been (re-)compressed up to a very large
number. Depending on the appearance of the blocks, they can
either be embedded into the content of the image or placed as
control blocks in a dedicated area. Alternatively, it is possible to
find already existing cyclic blocks in a given image and use them
as a completely non-intrusive watermark.

Tracking JPEG compressions up to a very large number gives
way for new applications. For example, one can create a hop count
based on the number of JPEG compressions or a fingerprinting
algorithm where each copy is JPEG compressed a different number
of times. Furthermore, one could imagine a versioning application
where an image is JPEG compressed every time a new version

is committed or forwarded in social media platforms. Finally,
the number of compressions is interesting to the field of image
forensics, as it can indicate how often an image has been opened
and saved with image editing software.

We show that the cyclic blocks can track the number of com-
pressions very accurately for up to thousands of JPEG compres-
sions. Further, we evaluate the proposed counter blocks regarding
their robustness against spill-over effects, i.e. distortions that can
occur during JPEG compressions with chrominance subsampling.
We show that by properly padding the counter blocks, they can be
successfully protected from spill-over. Finally, we evaluate how
robust the watermark is against active tampering.

The remainder of this paper is organized as follows: Section 2
introduces the notation and describes different types of digital
watermarks and their use case. Additionally, the phenomenon of
block convergence is described. Section 3 describes the discovered
peculiarity in block convergence and uses it to construct a telltale
watermark that allows to count the number of JPEG compressions.
Then, Section 4 evaluates the proposed watermark regarding its
robustness against compression errors and tampering. Finally,
Section 5 concludes with a summary of the results and an outlook
on future research.

Related Work
Notation

In the following, matrices and vectors are denoted by bold-
face symbols. The inverse of a matrix xxx is denoted xxx−1 and its
transposition xxxT . Throughout this paper, images are JPEG com-
pressed and decompressed various times. To indicate the number
of compressions, the superscript (t) is used to denote an object of
the t-th JPEG compression and decompression cycle.

Digital Watermarks
Digital watermarks have been traditionally used to protect

the authenticity of media data in order to enforce copyright and
indicate the ownership of a digital multimedia signal. The main
security property of such watermarks is their robustness against
tampering or noise. Attempts to remove or distort a robust wa-
termark should lead to a degradation of quality of the media data
itself to the point where it is no longer usable and all its value
is lost. This ensures that the watermark always remains present
in the multimedia signal and the only way to remove it without
knowledge of the secret key, is to destroy the signal altogether.

Additionally, watermarks can be used to protect the integrity
of media data, i.e. to verify that the multimedia signal has not
been modified or tampered with. This is typically achieved by
using fragile watermarks, which are designed to be destroyed if
the media data undergoes any form of modification. This ensures
that the watermark can only be detected if the signal is complete
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and unmodified, whereas the probability that a tampered signal
contains the watermark is negligible.

Fragile watermarks are useful to prevent any form of modi-
fication on the watermarked signal. However, it is often helpful
to prevent only specific operations while allowing others. For
example, the author of an image likely approves that the image
is compressed in order to achieve a smaller file size. However,
the author most likely wants to prevent that parts of the image are
removed or added. Such a selective approach can be achieved by
using semi-fragile watermarks that distinguish between legitimate
and illegitimate distortions. Semi-fragile watermarks are designed
to survive legitimate distortion while being destroyed by illegit-
imate. Therefore, only signals that have undergone legitimate
transformations will contain the watermark.

Another type of watermark that shares a similar goal as semi-
fragile watermarks but allows a more informed decision making is
a telltale watermark. Its aim is to detect how an image was modi-
fied rather than whether it was modified [5]. Telltale watermarks
utilize the fact that the watermark undergoes the same transfor-
mation as the host signal [1]. By analyzing the distortion applied
to the watermark, it is possible to estimate which operation and
distortion was applied to the signal and by this, to decide whether
the distortion can be considered legitimate or not.

Despite its usefulness, very limited research has been done
on telltale watermarks. This is mostly because it is difficult to
design a watermark that allows to draw meaningful conclusions
from the distortion. Additionally, there appears to be disagreement
on how to classify telltale watermarks among the existing literature.
While some see telltale watermarks as a separate category along-
side (semi-)fragile and robust watermarks [5], it was originally
introduced as a form of fragile watermark [11].

The general notion and first example of a telltale watermark
has been introduced by Kundur and Hatzinakos [10, 11] in 1998.
The authors propose to embed a watermark in the discrete wavelet
domain by quantizing selected wavelet coefficients in different
subbands. By analyzing in which subbands the watermark bits
have been corrupted, it is possible to hypothesize which operation
was performed. This is because different operations affect different
subbands. For example, JPEG compression neglects information
of higher frequencies and therefore corrupts the watermark bits
in those frequency ranges [10]. On the other hand, if regions
are replaced or changed, the lower frequencies will also differ.
Other examples of telltale watermarks are localization watermarks
that allow to identify the regions of the signal that have been
corrupted [5, p. 410].

We believe that the best way to classify telltale watermarks
is to see them as a sub-category or extension of semi-fragile wa-
termarks. This seems intuitive since both types of watermarks are
destroyed by certain distortions. The main difference is that semi-
fragile watermarks merely survive legitimate distortions, i.e. are
binary detectors. Telltale watermarks, on the other hand, further
allow to derive information based on the condition of the modified
watermark, i.e. are parametric detectors.

JPEG Block Convergence
Digital watermarks can generally be embedded in any digital

signal. In this paper, we focus on the common case of digital
images. More precisely we investigate images that are compressed
with the popular image compression standard JPEG. JPEG speci-
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Figure 1. Example of block convergence in greyscale images, q = 100

fies a series of lossy and lossless compression steps. In the simple
case of grayscale images, the image is split into non-overlapping
8×8 blocks and each block is individually transformed into the fre-
quency domain by using a Discrete Cosine Transformation (DCT).
The resulting coefficients are then quantized and rounded. The
decompression operation performs each step in reversed order and
truncates the values to the range of [0,255]. To formalize this trans-
formation, we can follow the notation in [3, pp. 32 sq.] and assume
that xxx(t)� is a matrix of serialized blocks after the t-th JPEG com-
pression of an image. Each column contains the intensity values
of one block in column-major order. With this, the compression
and decompression operation can be expressed using the following
recursion:

xxx(t+1)
� = tr

([
DDDT
(

qqq
[
qqq−1

(
DDD · xxx(t)�

)])])
, (1)

where DDD denotes the 2D-DCT transformation matrix, qqq the quanti-
zation matrix, [·] denotes rounding and tr(·) truncates to the value
range.

During repeated JPEG compression and decompression of
images a phenomenon called block convergence can be observed.
It describes that the intensity values of an image converge during
repeated compression and decompression under the same settings.
The analysis of block convergence has been first utilized by Lai
and Böhme [12] in 2013 in order to estimate the number of times
a grayscale image has been JPEG compressed with quality factor
100. The authors define a block as stable after t iterations if its
values in t +1 equal its values in t. The ratio of stable blocks can
then be used to estimate the number of compressions by comparing
it to reference values. For this analysis, the authors excluded blocks
that only contain a single value. These blocks are called flat and
are stable from the beginning.

Formally, we can express the phenomenon of block conver-
gence for a block xxxi, i.e. for the i-th column of xxx� as:

∀i,∃t : xxx(t)i = xxx(t+1)
i . (2)

The conjecture is that every grayscale JPEG block will eventually
become stable during its compression and decompression life-
cycle. Further compression and decompression will then no longer
alter the block.

Figure 1 illustrates this concept using an 8×8 block from an
image of the BossBase image database [2]1. Since the marginal
pixel differences between the blocks are difficult to see for the

1BossBase image “1.pgm”, rows 481–488, columns 41–48, stable after
2 compressions
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human eye, we also report the pixel positions that change from
one iteration to the next. While white denotes pixels that have
not change, black denotes pixels that have. The figure shows that
the first two JPEG compressions of the block lead to information
loss and only a slightly different version of the block can be recon-
structed. Therefore the block changes with each compression and
decompression. However, with the third compression, the block is
stable and the pixel values do not change anymore. Therefore the
exact block can be reconstructed, despite JPEG compression. This
also holds true for all subsequent compressions of this block.

Preliminary work of this paper extended the analysis of block
convergence to color images where color conversion as well as
chrominance sub- and upsampling influence the convergence [4].
Color conversion separates chrominance and luminance informa-
tion by converting the color values from the RGB to the YCbCr
model. This separation allows to value chrominance information
differently than luminance information. Usually, color information
is stored in a lower resolution since variations in color are less
perceptible to the human eye. Extending the previously introduced
notation, we assume that xxx(t)� is now a matrix of serialized JPEG
blocks that successively contain the intensity values of the three
YCbCr channels [3, pp. 32 sq.]. In other words, each column cor-
responds to one block and holds the intensity values, first of the
Y channel, then of the Cb and Cr channel in column-major order.
With this notation we can construct transformation matrices to
formally express the JPEG compression for color images. The
quantized DCT coefficients can be calculated, as:

yyy(t+1)
� =

[
qqq−1

(
DDD
(

HHHsub

(
CCCYCbCr xxx

(t)
�

)))]
. (3)

Here, DDD is used for the DCT transformation and CCCYCbCr denotes
the color conversion matrix. Additionally, HHHsup denotes the linear
filter to subsample the chrominance information and qqq denotes the
quantization matrix.

By using the quantized DCT coefficients, we can express the
decompression operation to reconstruct the pixel values:

xxx(t+1)
� = tr

([
CCCRGB

(
HHHup

[
DDDT
(

qqqyyy(t+1)
�

)])])
, (4)

where CCCRGB transforms the image back to the RGB color space
and HHHup upsamples the chrominance information.

The extension to color has shown that the analysis of block
convergence needs to be slightly adapted for the colored case [4].
First, convergence needs to be analyzed for all channels. We
cannot consider a block converged until none of the intensity
values of the red, green and blue channel change. Second, the
analyzed block-size needs to be adapted to the subsampling rate.
With chrominance subsampling, fewer values are stored for the
chrominance channels. Chrominance blocks therefore represent a
larger area. For example, with the most common subsampling rate
4:2:0, each chrominance block represents a 16×16 area. Hence,
block convergence needs to be analyzed for macro-blocks, i.e.
the area covered by a chrominance block. However, we can also
observe that despite these adaptions, Equation (2) does not always
hold for the colored case. In the following section, we evaluate
this exception to block convergence and utilize it to create a new
kind of telltale watermark.
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Figure 2. Exemplary macro-block that does not converge but leaves two

cyclic final states, q = 100
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(a) Simple subsampling
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(b) Fancy upsampling

Figure 3. Typical sub- and upsampling methods [4, 9]

Contribution
Cyclic Blocks

Generally, block convergence also occurs in color images and
the blocks for all color channels converge during repeated com-
pression and decompression. However, when using chrominance
subsampling it is possible that chrominance upsampling introduces
an error into the decompression that interferes with this conver-
gence path. If this error reverts a block to an earlier state, a cycle
is created where the macro-block never becomes stable. Instead
it cycles through a fixed number of states with each compression
and decompression. This section evaluates when the upsampling
error occurs and investigates how to use this peculiarity to create a
unique watermark that counts the number of JPEG compressions.

An example of the convergence path for a cyclic 16× 16
macro-block in an image of the RAISE image database [6] is
shown in Figure 22. Again, we also report the pixel positions that
change from one block to the next. With the first two compressions
the block converges as expected but after the second compression
it ends in a cycle where it alternates between two different states
and never converges.

The occurrence of cyclic blocks is highly dependent on the
used sub- and upsampling algorithm. The above example was
observed when using a combination of “simple subsampling”
and “fancy upsampling” as available in the popular JPEG library
libjpeg up to version 6b. Figure 3 visualizes this sub- and upsam-
pling procedure for the popular subsampling rate 4:2:0. “Simple
subsampling” merely calculates and stores the average of a 2×2

2RAISE image “r000da54ft.TIF”, rows 2385–2400, columns 433–448
cyclic after 8 compressions
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Cycle
length: 4

Figure 4. Example of a counter block with cycle length four, q = 100

pixel area as shown in Figure 3(a). To upsample the image, “fancy
upsampling” employs a linear interpolation where the stored val-
ues are weighted by proximity. While the the nearest chrominance
pixel is weighted with 9/16, the two orthogonally adjacent pixels
are weighted with 3/16 and the diagonally adjacent pixel with 1/16,
as shown in Figure 3(b) [4, 9].

There exist several alternative approaches for sub- and up-
sampling, most notably simple upsampling and DCT scaling [7,
16]. Even though it is theoretically possible that the error intro-
duced by other upsampling methods creates cyclic blocks, we
have not observed any cyclic behavior when applying these meth-
ods. Additionally, there is a lot of controversy surrounding the
usefulness of DCT scaling [14, 8], and the combination depicted
in Figure 3 is by far the most popular approach to chrominance
subsampling. The vast majority of popular JPEG libraries use this
approach by default, e. g. libjpeg 6b [9], libjpeg-turbo [15]
and mozjpeg [13].

While the previous example shows a block that alternates
between two different states, much longer cycles are possible. This
depends on the block and the error introduced by chrominance
upsampling. The cycle length of a block describes the number of
different states that the block traverses before reaching its initial
state again. As an example, Figure 4 shows a cyclic block with
cycle length four3. Again, the pixel difference between the blocks
are reported. Note that each modified pixel is changed at least
twice, such that the pixel returns to its original value and the block
remains the same after a full cycle.

Counter Blocks
Since cyclic blocks constantly change based on the number

of JPEG compressions, they can be used to construct a watermark
that counts the number of JPEG compressions. By placing several
blocks of different cycle length into an image, we can observe in
which state the blocks are and use this information to accurately
identify how often the image has been (re-)compressed up to a
large number. Since these blocks allow us to count the number
of compressions the image has undergone, we name this type of
watermark “counter blocks”.

Figure 5 illustrates how different cycle lengths uniquely iden-

3RAISE image “r0176fbcat.TIF”, rows 945–960, columns 385–400,
cyclic after 5 compressions
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Figure 5. States of counter blocks exactly identify the number of compres-

sions due to different cycle lengths

tify the number of compressions. As an example, three counter
blocks with cycle length l1 = 2, l2 = 5 and l3 = 9 and their respec-
tive states for every compression are shown. All blocks start in
their initial state and cycle through their respective states with each
compression. While blocks with shorter cycle length require fewer
compression to complete a cycle, longer cycle lengths require more
compressions. Because of this, the combination of states uniquely
identifies the number of compressions. In this example, the blocks
xxx(0) and xxx(90) are the first blocks that share the same combination
of states. Therefore, these three blocks allow to identify up to 90
different compressions.

Generally, the number of compressions that can be tracked
by counter blocks depends on the cycle lengths of the used blocks.
With only a single counter block, the maximum number of de-
tectable compressions is the cycle length of the block. With more
counter blocks in an image, this number increases to the Least
Common Multiple (LCM) of all cycle lengths. Therefore, the
cycle lengths of the counter blocks should be chosen to have a
large LCM.

Block Discovery
Several approaches can be used in order to find appropriate

counter blocks. In general, the solution space for cyclic blocks is
defined by a very complex system of equations. The system can
be formed by using Equation (4) and solving for the values of xxx(0)

to meet the following condition:

xxx( j) = xxx(l+ j) ∀ j ∈ {0, . . . , l−1} (5)

By choosing a cycle length l, a cyclic block of desired cycle length
can be found.

Unfortunately, the formed system of equations can be very
complex and difficult to solve. For this reason we also evalu-
ate a more practical solution to find counter blocks, namely an
exhaustive search. By evaluating the convergence behavior for
a multitude of blocks, many counter blocks with different cycle
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(a) Image (b) Random (c) Smooth
Figure 6. Types of counter blocks

lengths can be identified. Generally, different sources can be used
for such an exhaustive search. As an example, the blocks of natural
images can be analyzed. An example of a cyclic block found in the
RAISE image database [6] is shown in Figure 6(a)4. A problem
with an exhaustive search over image data is that a lot of blocks
are flat. Since flat blocks do not converge at all they do not qualify
as counter blocks. Depending on the image content, these blocks
can be very common which makes it difficult to find blocks with
long cycle lengths.

As an alternative, it is also possible to analyze the conver-
gence of randomly generated blocks. This is possible, since the
convergence path of blocks has been reported to be widely inde-
pendent of the image content [12]. For this reason, the distribution
of cyclic blocks between image and random data is very similar.
An example of a randomly generated counter block is shown in
Figure 6(b). A problem with such blocks is the unnatural look
which makes them more intrusive when embedded into an image

Lastly, we also introduce randomly generated blocks with less
variance. For this we randomly choose a base color of the block.
Then, we randomly permute the pixel values but require that the
difference between neighboring pixels is at most one per channel.
This creates a much smoother block that has a more natural look.
This can even make it possible to embed the block directly into
the image content. Additionally, such smooth blocks have a lot
of favorable properties as the following sections will reveal. To
avoid confusion, we will refer to these blocks as “smooth” in the
remainder of this paper. An example of a smooth counter block is
shown in Figure 6(c).

When constructing counter blocks, it has to be considered that
the cyclic behavior of blocks dependens on the specific compres-
sion settings. This means that counter blocks are only cyclic under
the settings that they have been constructed for. These settings
include the choice of quality factor, (Fast-)DCT implementation,
choice of subsampling rate and algorithm, among others. If any
of the setting is changed, the blocks have a different convergence
path and thus loose their cyclic behavior. Further, the choice of
settings also influences the frequency of different cycle length. For
example, we focus on the highest quality factor 100 throughout this
paper. Cyclic blocks also exist for lower quality factors, however,
typically have a shorter cycle length. This is because compressions
with a lower quality factor tend to converge much faster.

To evaluate how frequent cyclic blocks occur, we perform an
exhaustive search over 1,000,000 16×16 blocks for each block
type. As image-data we use blocks of images taken from the
RAISE image database [6]. Figure 7 shows the distribution of
cycle lengths for all evaluated blocks on a logarithmic scale. As
we can see from the dashed line, the distribution is almost log-
linear. Here, a cycle length of one denotes stable blocks that

4RAISE image “r002fc3e2t.TIF”, rows 433–448, columns 257–272,
cyclic after 15 compressions
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Figure 7. Distribution of cycle lengths for 16×16 blocks

do not cycle between different states. The results show that the
vast majority of blocks become stable. However, roughly 7.5%
of blocks show cyclic behavior, i.e. have a cycle length higher
than one. This holds true for all three evaluated block types and
confirms that the convergence path is mostly independent from the
image content as discovered in [12]. About 66% of these cyclic
blocks alternate between two different states, i.e. have a cycle
length of two. We do observe much longer cycles, however, these
cycles are considerable less common.

The longest cycle in our experiment alternates between twelve
different states. Counter blocks with such a long cycle are very
useful for our watermark since they allow us to track a very high
number of compressions. With all cyclic blocks we discovered,
it is possible to uniquely identify up to 2520 JPEG compressions.
With a more elaborate construction and search of cyclic blocks
even much higher numbers might become possible.

Padding
Up until now, we observed the convergence behavior for iso-

lated blocks without the influence of surrounding blocks. Since
our aim is to embed blocks as a watermark into images, we need
to investigate which influence surroundings can have on the cyclic
behavior of counter blocks. In JPEG, the influence between neigh-
boring blocks is typically very limited since each block undergoes
a separate transformation as highlighted by Equations (3) and (4).
This means that the compression and decompression of blocks is
mostly independent. However, when using “fancy upsampling”
the decompression is no longer confined within a block. This can
be intuitively visualized by assuming that the center line in Fig-
ure 3(b) is a block boundary that separates two macro-blocks. In
this case the outermost values of the blocks are interpolated using
information from both blocks.

The influence that blocks have on their neighbors is called
“spill-over” [4] since changes to a block can spill into their neigh-
boring blocks, causing them to change. These effects are problem-
atic when embedding counter blocks, since spill-overs can change
the counter blocks and cause them to alter or lose their cyclic
behavior. This renders the block useless for our watermark, since
the number of compressions can no longer be identified.

To protect counter blocks from spill-over, it is necessary
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(a) Mirrored blocks (b) Repeat border values

Figure 8. Padding strategies (illustrated using the block from Figure 6(a))

to reduce the error introduced by chrominance subsampling at
the block boundaries. This can be achieved by surrounding the
block with content that is similar at the block boundaries. An
intuitive choice is to protect the block using the mirrored block
itself, such that the values at the block boundaries perfectly match.
An example of this padding strategy is shown in Figure 8(a), using
the block from Figure 6(a) to illustrate the concept. The marked
block in the middle is the original block which is surrounded by
mirrored versions of itself. Even though this can reduce the error at
the block boundaries, it comes with several drawbacks. On the one
hand, some of the mirrored blocks will also show cyclic behavior
since the DCT-transformation is invariant to certain rotations. This
creates varying spill-over on the block since some padding blocks
cycle while others do not. These varying conditions are difficult to
manage and increase the probability of undesired spill-over. On
the other hand, cyclic padding blocks themselves are particularly
susceptible to spill-over effects and would need to be protected
as well. This strategy therefore shifts the initial problem to the
padding blocks instead of solving the problem.

An alternative padding strategy is to repeat the outermost
value of the row or column for an entire macro-block. This strat-
egy creates a macor-block where the entire row or column consists
of the value at the block boundary. Therefore, this strategy also
matches the pixel values at the block boundaries but creates a more
robust block that is much less susceptible to spill-over or other com-
pression errors. The repeated color values make the block much
easier to compress, which reduces the error rate. Figure 8(b) illus-
trates this padding strategy. Again, the original block is marked
in the middle and the block is surrounded by one macro-block in
each direction.

Note that the counter block can also be padded with more than
a single macro-block in each direction. The more padding blocks
are used, the longer it takes for spill-overs to affect the counter
block since the spill-over has to propagate through several layers
of padding blocks. Nevertheless, this only delays the problem of
spill-over. For this reason, it is desirable to create conditions where
a single layer of blocks is able to protect the counter block.

Embedding
Once the block is adequately protected from spill-over, it can

be embedded into an image as a watermark. To do so, a dedicated
image area can be chosen where the selected counter blocks are
placed. As an example, the bottom of the image can be reserved
for the watermark. In our case, we pad the bottom of the image
with 80 pixels of a neutral gray background. This gives enough
room to place the padded 48× 48 blocks and leaves one macro-

12

10

7

6

Cycle length

Figure 9. Image marked with four padded counter blocks

block of space to the image content. Note that this is not required
for the watermark, but solely for visual purposes. Then, we place
several counter blocks of different cycle length centered and evenly
spread on the gray area. Since our watermark utilizes the blocking
structure of JPEG, each counter block needs to be aligned to the
grid-structure. This ensures that each counter block forms a new
macro-block and retains its cyclic behavior.

Figure 9 exemplarily shows an image that has been marked
with the proposed watermark. We chose four different counter
blocks of length l1 = 6, l2 = 7, l3 = 10 and l4 = 12. All blocks
were found with an exhaustive search, using the “smooth” block
type. The blocks are padded by repeating-the border value as
introduced in the previous section. The counter blocks and their
respective cycle lengths are shown on the right.

When the image is JPEG compressed and decompressed, the
placed counter blocks will cycle through their respective states. By
observing in which state each counter block is, the exact number of
compressions can be identified. In the example above, the chosen
counter blocks allow to uniquely identify up to 420 consecutive
compressions.

One drawback of this embedding strategy is that the water-
mark is visible and influences the appearance of the image. With
subsampling rate 4:2:0, one counter block requires at least 16×16
pixels. In order to track the number of compressions up to a high
number, several blocks are required. Further, to protect the block
from spill over, the block should be padded adequately, which
requires at least 48×48 pixels per counter block. To avoid this,
we can also search for already existing cyclic blocks in a given
image. This allows to create a completely non-intrusive and in-
visible watermark. The amount of cyclic blocks in a given image
depends on the number compressions that the image has undergone.
Typically the first cyclic blocks appear after several compressions.
For an uncompressed image barely any blocks show cyclic behav-
ior. In these scenarios we need a “warm up” period of several
compressions in order to find possible counter blocks.

Figure 10 shows an example of a non-intrusive watermark.
Exemplarily, four cyclic blocks with a cycle length of up to three

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.8.MWSF-072

IS&T International Symposium on Electronic Imaging 2016
Media Watermarking, Security, and Forensics 2016 MWSF-072.6



3

3

2

2

Cycle length

Figure 10. Example of non-intrusive counter blocks

are marked. Again, the counter blocks and their respective cycle
lengths are shown on the right. However, due to the shorter cycle
lengths, the chosen counter blocks only allow to track up to six
compressions. Generally, it is also possible to find cyclic blocks
with longer cycles. However, given the rarity of long cycle lengths
(cf. Figure 7), this approach is mostly limited to track fewer
compressions or to very large images.

Given the rarity of cyclic blocks, it is interesting to evaluate
how large an image needs to be, such that chosen cycle lengths
occur with sufficiently high probability. In other word, we want to
state the probability of cyclic blocks as a function of the image size.
To do so, we utilize the empirical distribution from Figure 7 and
denote the probability of a cycle length l as pl . Given n different
blocks, the probability that none of the blocks will have a cycle
length of exactly l can be expressed as (1− pl)

n. Consequently,
we can calculate the probability P of the complementary event, i.e.
that at least one block will have cycle length of exactly l:

P = 1− (1− pl)
n (6)

By solving the equation for n, we can calculate how many blocks
are required, such that the occurrence of a cycle length l is at least
P:

n≥ log1−pl
1−P. (7)

For example, if we want to observe a counter block of cycle length
exactly 2 with at least 90% probability, we can calculate the re-
quired number of blocks as:

n≥ log1−0.056 1−0.90 = 39.96, (8)

where p2 = 0.056 as shown in Figure 7. This means we require at
least 40 ·16 ·16 = 10240 pixels in the image for the probability of
a cyclic block to be sufficiently high.

An additional benefit of the non-intrusive watermark is that
the cyclic blocks tend to be well padded, for several reasons. First
of all, blocks in natural images are often surrounded by similar
content. In the example above, the image features a large blue sky
where pixel values are very similar. This reduces the influence of
spill-over effects. Secondly, when analyzing the image for cyclic
blocks only already well padded blocks will show cyclic behavior.
Therefore, this watermark does not require any further padding.

Successful protection from spill-over for one cycle

Block type

Padding Image Random Smooth

None 00.00% 00.00% 00.00%
Mirrored blocks 65.80% 00.60% 04.00%
Repeat border values 93.20% 28.40% 53.40%

Evaluation
This section validates the proposed telltale watermark regard-

ing its robustness. For our experiments we utilize the very popular
JPEG library libjpeg 6b [9] with quality factor 100 and the de-
fault settings, i.e. “slow” DCT algorithm, “simple subsampling”
with subsampling rate 4:2:0 and “fancy upsampling”. All experi-
ments are performed using 8156 never-compressed color images
obtained from the RAISE image database [6].

Robustness Against Spill-Over
First, we evaluate whether the presented padding strategies

can protect the counter blocks from spill-over effects. For this we
compare all block types (cf. Figure 6) combined with all padding
strategies (cf. Figure 8). We embed the padded counter blocks
into a randomly selected image in a dedicated gray area with at
least one macro-block between the padded watermark and the the
image content (cf. Figure 9). Then, we JPEG compress the entire
image and observe whether the convergence of the counter block
differs in comparison to its isolated convergence path. Note that
in this setup the choice of image has a rather low influence on the
watermark. Since we are embedding the watermark in a dedicated
area with a gray background, most of the spill-overs on the block
come from those neighboring blocks. Nevertheless, since we are
possibly tracking hundreds of JPEG compressions, the spill-over
created by the image content is able to propagate through the entire
image and may also affect the watermark.

Table 1 shows the percentage of images that were successfully
protected from spill-overs for an entire cycle length. The results
show that blocks without padding are always affected by spill-
overs. Not one of the tested blocks remained the same after a full
cycle, regardless of block-type. This can be easily explained, since
the watermark is surrounded by a vastly different area. In our setup,
we choose a dedicated area with a neutral gray color to embed our
watermark. This increases the subsampling error and causes the
outermost values of the block to change after one compression and
decompression cycle. With the next compression the introduced
change propagates through the entire block due to the DCT and
IDCT transformation. This result highlights that the right padding
strategy is essential when embedding counter blocks.

Note that protection for one cycle does not prevent that blocks
are affected by spill-overs during subsequent compressions. Spill-
overs are propagating very slowly through an image and even
the slightest change in one block can cause a chain reaction that
can slowly affect the entire image. Nevertheless, changes due to
spill-over are most probable after the very first compressions and
changes after an entire cycle length are less common. Therefore,
the protection during the first cycle gives a good indicator on how
well the block is protected.

When using mirrored blocks to pad the watermark, the results
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are mixed. With blocks taken from images, the strategy is able to
protect the majority of blocks. However, when using randomly
generated blocks, the protection rate is much lower and almost no
blocks can be protected. The major problem of mirrored blocks
is their own high variance and weak stability. This makes them
prone to compressions and subsampling errors. Depending on the
rotation, the padding blocks can even be cyclic themselves which
leads to changing spill-overs on the watermark which are harder to
manage.

By far the most successful padding strategy in our experiment
is repeating the border values of the block. With blocks from
image data, almost all blocks could be successfully protected from
spill-over. On the one hand, this strategy replicates the outermost
values, which reduces the error through interpolation at the block-
boundaries. On the other hand, this strategy reduces the variance
of the padding blocks by often repeating the same color value.
Either an entire row or an entire column consists of the same color.
This reduces the variance within the padding blocks which makes
them less susceptible to compression errors. Unfortunately, for
randomly generated blocks the success rate of this padding strategy
is much lower due to their high variance. To some degree, this
can be mitigated by using smooth blocks, where a base color is
chosen randomly but the variance remains low. Again, this makes
the padding blocks more robust against compression errors and
thus improves the protection rate.

Overall, repeating the border values has shown the best per-
formance. Nevertheless, the creator of the watermark can evaluate
how robust the watermark is, beforehand. Therefore, counter
blocks and padding can always be chosen accordingly to prevent
spill-over.

Robustness Against Tampering
Next, we evaluate the robustness of counter blocks against

active tampering. In line with our previous definition of a telltale
watermark as a subcategory of semi-fragile watermarks, counter
blocks are destroyed by illegitimate distortions. So, if an active
attacker changes the compression setting or replaces pixel values
in order to influence the convergence behavior or states of the
embedded counter blocks, they indicate this kind of illegitimate
modification. For example, the attacker can slightly adjust the
luminance of the image or JPEG compress it with different settings.
In both cases the convergence path for all blocks is set back and
the cyclic behavior of counter blocks is lost.

If the counter blocks are known to the attacker, e. g. because
they are embedded in a dedicated area (cf. Figure 9), the attacker
may remove or distort the counter blocks. Again, the analyst de-
tects that the counter blocks have been transferred into a non-valid
state, but it remains unclear which operations were performed.

Since the attacker knows the initial state of (her copy of)
the counter blocks she might replace the counter blocks with an
earlier or later state in order to pretend that the image has been
compressed a different number of times. In this scenario the
analyst might remain oblivious that the image has been tampered
with. To prevent an attacker from manipulating the counter blocks
we can hide them, e. g. by using our non-intrusive watermark (cf.
Figure 10) or by embedding a block in similar image content. In
this case, the attacker cannot easily forge the state of the counter
blocks, because it is not easy to locate the blocks. Additionally, if
the counter blocks are spread evenly within the image, it prevents

the attacker from local tampering, as she is oblivious if she destroys
one of the counter blocks.

Lastly, the attacker can also estimate the counter blocks, e. g.,
by performing an exhaustive search over the whole image in order
to find cyclic blocks. Again, this might allow to manipulate the
states of the counter blocks. Additionally, by calculating the LCM
of all counter blocks, the attacker can fool the analyst by compress-
ing the image more times than are detectable. With counter blocks
alone, this kind of attack cannot be prevented.

Overall, counter blocks are not robust against an active attack,
thus fulfilling the fragile demand of a telltale watermark. By hiding
the counter blocks, it is possible to prevent that an attacker can
forge a different number of compressions but it remains difficult
to prevent that the watermark is removed from the image.

Conclusion
This work proposes a new kind of telltale watermark that

allows to track the number of JPEG compressions an image has un-
dergone. Telltale watermarks are a rare type of digital watermarks,
typically seen as a sub-category of semi-fragile watermarks. While
semi-fragile watermarks aim to detect whether a digital signal
has been modified, telltale watermarks aim to detect how it was
modified [5]. They utilize the fact that the watermark undergoes
the same distortion as the image and infer the type of modification
from the distortion of the watermark. Our proposed watermark
changes based on the number of JPEG compressions and thus al-
lows to accurately identify the number of compressions the image
has undergone.

The JPEG compression standard divides an image into sev-
eral blocks to improve the performance of the algorithm. Dur-
ing repeated JPEG compression and decompression these block
usually converge, a phenomenon known as block convergence.
Additionally, JPEG usually reduces the color information in color
images since the human eye is less sensitive to information loss in
color. However, when using a linear interpolation to upsample the
chrominance information, a peculiarity in block convergence can
be observed. It is possible that blocks never converge but instead
cycle through a fixed number of different states. The cycle length
of cyclic block can vary depending on the block which we utilize
to count the number of compressions. By placing several of these
“counter blocks” with different cycle lengths in an image, we can
observe the states of the counter blocks and use this information to
uniquely identify the number of compressions up to a very large
number. In our experiments, we were able to track more than
two thousand consecutive JPEG compressions of an image. Since
our approach utilizes the JPEG blocking structure, the watermark
needs to be aligned to the block-grid of the image. When the image
is illegitimately modified, e. g. by using a different compression or
by applying a global filter, the watermark is fragile and destroyed.

The proposed watermark can be useful in image forensics
where the compression history of an image is an important indica-
tor to identify forgeries. By marking an image with the proposed
watermark, the number of (re-)compressed can be accurately
tracked. Due to its semi-fragile nature, the watermark is destroyed
by tampering and thus indicates illegal modifications. Addition-
ally, counter blocks give rise to new application scenarios, due to
the very high number of compressions that can be counted. For
example, the watermark can be used as a hop-counter or to count
how often an image has been forwarded in a social network. In
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these scenarios, each compression counts an intermediate step of
the image. Lastly, a fingerprinting algorithm can be constructed,
where each copy of an image has been compressed a different
number of times. As long as the individuals do not collude, this
allows to attribute each copy to the individual.

Counter blocks can be found by solving a complex system of
equations or through an exhaustive search over image or random
data. To protect the cyclic behavior of counter blocks when embed-
ded into an image, they need to be shielded from the influence of
surrounding blocks. This is because the chrominance interpolation
is not confined within a macro-block and thus interpolation errors
can occur at the block boundaries. To protect blocks from these
errors, they need to be surrounded with similar content at the block
boundaries. By far the best protection we found was to repeat the
outermost value of the row or column for an entire macro-block.
With this strategy the majority of blocks kept their cyclic behavior
even after embedding.

Even though the cycle length of randomly generated blocks
follows a similar distribution, random blocks are much more dif-
ficult to protect from spill-over. This is due to the high vari-
ance between pixel values which increases the error introduced by
chrominance subsampling. To mitigate this, it is better to choose a
random base color and randomly permute some of the pixel values
to reduce the variance in the randomly generated blocks.

One drawback of the presented watermark is that it is a visible
watermark that needs to be embedded somewhere in the image.
In our experiments we usually chose a dedicated gray area at the
bottom of the image. However, to make it less visible it can also
be embedded into similar looking image content. Alternatively, it
is also possible to look for already existing cyclic blocks in a given
image. Even though this allows to create an invisible watermark it
is typically limited to detect fewer compressions due to the rarity
of longer cycle lengths.

Overall the existence of counter blocks is a nice phenomenon
but limited to very constrained application scenarios. The most
crucial limitation is the high sensitivity to the exact JPEG compres-
sions settings as well as the dependence on high quality compres-
sion. Even though cyclic blocks exist with lower quality factors,
they are considerable less common and typically of shorter cycle
length. As an example, less than 1% of blocks show cyclic be-
havior with quality factor 99 and most cycles have a cycle length
shorter than five.

Finally, future research should focus on cyclic blocks that
are less sensitive to specific compression settings. The proposed
counter blocks can be removed from an image by other com-
pressions settings such as a different quality factor or different
subsampling algorithms. Counter blocks that are less sensitive to
these settings can be easier applied in practice. Additionally, it is
likely that counter blocks exist in other lossy compression stan-
dards that do block-wise wise transformation followed by rounding
to integers.
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Appendix
In order to make our results reproducible, we have reported

the block positions of all natural image blocks used throughout this
paper. In addition, Table 2 reports the pixel values of the counter
block with cycle length 12 in Figure 9. The values are reported
as hexadecimals for each channel. We have observed the cyclic
behavior by using the JPEG library libjpeg 6b [9], compiled
on a Windows system with an Intel Core i7-3770 processor using
MinGW and the GCC compiler. The block has been compressed
using the highest quality factor 100 and the default compression
settings, i.e. subsampling rate 4:2:0, simple subsampling, fancy
upsampling as well as the “slow” DCT implementation.

Pixel values of counter block with cycle length 12

22 21 21 22 23 22 22 22 22 22 22 22 24 23 23 22

21 21 21 21 22 21 22 20 1f 1f 1f 1e 21 1f 20 1f

24 21 23 23 25 21 21 1f 1d 1c 1c 1b 1e 1d 1f 1d

25 22 22 25 25 25 23 21 21 1f 1f 1d 1f 1e 21 20

24 21 22 23 23 24 22 20 21 21 20 1f 1f 1e 21 23

23 20 1f 22 22 23 23 22 22 22 22 21 22 21 23 25

22 1e 1c 1d 1e 1e 20 20 1e 1f 1e 1f 1e 1c 1f 1f

22 20 1e 1f 1e 1d 1e 1d 1c 1d 1b 1b 1c 19 1c 1c

24 22 21 22 20 20 23 1f 1d 1e 1d 1c 1c 1b 1d 1d

24 22 21 22 21 20 21 1f 1d 1f 1d 1a 1c 19 1a 1b

22 20 21 22 1f 1d 1f 1e 1d 1c 1b 18 1a 17 1b 1c

24 22 21 23 20 1d 1f 1f 1d 1e 1d 19 1a 17 1a 1c

24 25 22 25 23 1e 1f 1f 1e 20 20 1b 1c 1a 1c 1e

24 23 24 25 23 1c 1f 1e 1d 1e 1b 18 15 16 18 19

28 26 25 27 24 20 23 21 20 20 1e 1b 19 19 1b 1c

28 26 25 28 29 22 26 24 23 24 23 1f 20 1d 22 25
(a) Red

a8 a7 a5 a6 a7 a6 a8 a8 a8 a8 a6 a6 a5 a4 a4 a2

a5 a5 a5 a5 a6 a5 a6 a6 a5 a5 a3 a2 a2 a0 a1 9f

a6 a3 a4 a5 a7 a5 a5 a3 a3 a2 a0 9f 9f 9e 9e 9c

a6 a3 a3 a6 a7 a7 a7 a5 a7 a5 a3 a1 a0 9f a0 9f

a5 a2 a3 a4 a5 a6 a6 a4 a7 a7 a4 a3 a0 9f a1 a0

a4 a1 a0 a3 a3 a4 a7 a6 a8 a8 a6 a5 a3 a1 a3 a2

a6 a2 a0 a1 a2 a2 a4 a4 a4 a5 a2 a0 9e 9c 9f 9e

a6 a4 a2 a3 a2 a1 a2 a1 a2 a3 9f 9c 9c 99 9c 9b

a5 a3 a2 a3 a1 a1 a4 a3 a3 a4 a1 9d 9c 9b 9d 9e

a5 a3 a2 a3 a2 a1 a2 a3 a3 a5 a1 9e 9c 99 9b 9c

a6 a4 a2 a3 a3 a1 a3 a3 a3 a3 a0 9c 99 96 9c 9d

a5 a3 a2 a4 a4 a1 a4 a4 a4 a5 a2 9c 9b 98 9b 9d

a4 a5 a1 a4 a4 a1 a4 a4 a5 a7 a5 a0 9f 9a 9c 9f

a4 a3 a1 a1 a4 9f a2 a3 a3 a4 9f 9c 98 96 98 99

a5 a3 a0 a3 a3 a0 a3 a4 a4 a6 a2 9f 9b 99 99 9a

a5 a3 a0 a4 a5 a1 a6 a7 a7 aa a7 a3 a0 9d 9d a0
(b) Green

2d 2c 2b 2c 2f 2c 2d 2b 2f 2f 2e 2e 2e 2e 30 31

2b 2b 2b 2b 2c 2b 2c 2b 2a 2c 2b 2a 2b 2a 2d 2e

2c 29 2d 2b 2d 2b 2b 29 28 29 28 28 29 28 2b 29

2f 2c 2c 2f 2d 2b 2d 2b 2c 2c 2b 2a 2a 29 2b 2a

2f 2c 2d 2d 2b 2c 2e 2c 2e 2e 2c 2b 29 28 2a 2a

2e 2b 2a 2d 2c 2d 2f 2e 2f 2f 2e 2d 2c 2a 2c 2c

2f 2b 29 2a 2b 2b 2d 2d 2b 2c 2b 29 27 25 28 29

2f 2d 2b 2c 2b 2a 2b 2a 29 2a 28 25 25 22 25 26

2f 2d 2e 2f 2b 2b 2d 2b 2a 2b 29 26 25 24 26 27

2f 2d 2e 2f 2c 2b 2b 2b 2a 2c 29 26 25 22 24 25

2e 2d 2e 2f 2c 2a 2c 2c 2a 2a 29 25 24 21 26 27

2e 2c 2c 30 2d 2a 2d 2d 2c 2d 2d 28 27 24 27 27

2b 2c 2c 31 30 2d 2f 2f 2f 31 32 2d 2d 29 2b 2b

29 2a 2c 2f 30 2b 2e 2e 30 31 2f 2c 28 27 29 2a

2d 2d 2e 33 32 2f 32 32 34 35 34 31 2e 2c 2e 2f

2d 2d 2e 34 35 30 37 37 37 39 3a 36 33 30 35 38
(c) Blue

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.8.MWSF-072

IS&T International Symposium on Electronic Imaging 2016
Media Watermarking, Security, and Forensics 2016 MWSF-072.10


