

Improving the RDP based applications by using HTML5 content
representation
Rama Rao Ganji1, Mihai Mitrea1,2, Dancho Panovski1, Bojan Joveski2; 1Institut Mines-Telecom ; Telecom-SudParis ; UMR 8145 –
MAP5 and 2Ustartapp (France)

Abstract

Despite the large variety of “off the shelf” solutions and
academic research studies, application virtualization for cloud
distribution is still an open research topic, with significant issues
to be solved, ranging from bridging the gap between users
expectation of simple, intuitive and user-friendly access from any
type of terminal and the fragmented landscape of SaaS offer, with
peculiarities related to the hardware/software configurations and
the optimization of the technical resources consumption.

Our study investigates the possibility of using HTML5 a
virtualization tool for RDP-based applications. Architectural
modules related to the RDP content interception, conversion,
adaptation, remote rendering and interaction are specified,
designed and implemented. This architecture is validated under the
framework of the MEDUSA European project, in partnership with
medical institutions. The testbed considers a server and 5 mobile
users, with heterogeneous devices (tablets, smartphones, laptops)
running under iOS, Android and Windows operating systems. The
objective/subjective evaluations demonstrated that: (1) the user
experience is not reduced by the virtualization, (2) the network
consumption is reduced by a factor of 1.8 with respect to state-of-
the-art solutions.

Introduction and state-of-the-art
The mobile devices proliferation and the virtualization of the

applications in the cloud raise the need of a solution that will
answer the user exigencies. Under this framework, defining a
virtualization mechanism suitable for any type of mobile thin client
remains a challenging research topic: ensuring a high performance
compression algorithm for heterogeneous content and affording
versatile, user-friendly and real time interaction are issues to be
jointly dealt with. The underlying technical deadlocks are mainly
connected to the network (between the cloud and the terminal) and
to the terminal capabilities.

However, the nowadays state-of-the-art is very broad and
reach, see Table 1.

Joveski et al. [2][3] addresses the existence of large variety of
“off the shelf” solutions, but almost all of the solutions are based
on RDP (Remote Desktop Protocol)[5] and RFB (Remote Frame
Buffer).

RDP is a proprietary protocol developed by Microsoft, which
provides a visual/audio description (graphics, images, video,
music) generated by the applications that are running on a remote
Windows operating system. The protocol specification is public,
thus encouraging a development of new type of applications based
on RDP. Typically RDP is used to remotely access the
applications, executed on a Windows server, by using a Windows
RDP client.

 RFB is remote access protocol to graphical user interfaces
that works on the framebuffer level. The framebuffer provides only

the pixels information, thus making the protocol on the one hand
universal (all the types of operating systems) but on the other hand
very limited (ignores the graphical primitives available). Virtual
Network Computing (VNC) and its derivatives mainly use RFB.

As VNC protocol doesn’t support the 3D applications,
Deboosere et al. [10] proposed solution for thin clients
virtualization based on low-motion and high-motion scenarios in
Linux/Unix applications. They used VirtualGL [13] open-source
project which enables 3D rendering in a thin client. VirtualGL
helps to send OpenGL commands to GPU at the server side and
reads back the rendered images. The other graphical commands (X
commands) are send to X server. VirtualGL operates in two
modes: Raw and Direct Mode. In VirtualGL Raw Mode, the virtual
X Server (X Proxy) is used in order to receive all the graphical
content and to send them to thin clients. The thin client user
interactions like mouse/keyboard events are send to X Proxy
(TurboVNC). In VirtualGL Direct Mode, the thin client has two
libraries: 1) X Server who takes care of all the standard Xlib
functionality and 2) a VirtualGL client who decompresses the
image stream sent by VirtualGL Direct Mode. The results are
illustrated for two scenarios. First, in the low-motion case, both
text editing (typing, scrolling, inserting….) in Open Office 2
Writer and browsing (a sequence of website visited in Mozilla
Firefox 2.0) are considered. Secondly, in high-motion scenario, a
user is alternatively watching a video with VLC / Windows Media
Player 10 or the content generated by a 3D-game (Unreal
Tournament 2004). The results are benchmarked according to the
CPU usage at the client side as well as to the network bandwidth
consumption. All these results are compared to various other state-
of-the-art solutions like RDP, CitrixICA, VirtualGL Direct [13],
FreeNX ADSL, VNC Turbo, VNC Tight, VNC standard, VNC
Hextile. It is concluded that not all the protocols are able to support
high-motion visual content. Moreover, in the case of 3D games,
the protocols which are able to run smoothly (VirtualGL Direct
mode and VirtualGL Raw mode) require a very high bandwidth,
thus becoming prohibitive in mobile environments. In order to
overcome this limitation, Weidong et al. [11] proposed a solution
based on Virtual OpenGL driver and converting the images into
MPEG-4 AVC (H.264) video stream to reduce the network
bandwidth consumption.

Weidong et al. [11] proposed SHARC (Scalable 3D Graphics
Virtual Appliance Delivery in Cloud) to address the virtualization
of 3D applications like video games in cloud. As 3D applications
require very resource intensive computation and graphics, SHARC
uses virtual OpenGL driver [13]. The Graphics Rendering Server
receives the 3D graphics from multiples applications, and generate
custom JPEG stream that is sent to media streaming server. Upon
receiving this stream, the Media Streaming Server converts it to
MPEG-4 AVC video stream and sends it to the clients.

Rodríguez-Silva et al. [12] proposed (VIMAIN) the
virtualization of the applications based on QEMU-KVM open

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.7MOBMU-293

IS&T International Symposium on Electronic Imaging 2016
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2016 MOBMU-293.1

source hyper visor. The virtualization is based on the VNC server
and WebM [14] video streaming. When the applications are
generating low-motion content, the graphical output of the
application is send by using the VNC server. When the application
generates high-motion graphical content, the graphics are encoded
as video in WebM format, and then sent to the clients. The
virtualization is independent of the application operating system.

The experimental results are conducted on both subjective and
objective basis. The subjective evaluation considers 20 users who
are inquired about the quality of experience with 5-slide
PowerPoint slideshow. It was concluded that the user experience is
better when WebM video streaming is used for high-motion
scenarios. The objective evaluation is represented by a
benchmarking against RDP, VNC-raw, VNC-zlib, VNC-tight, and
OnLive. The minimal bandwidth is required by VIMAIN;
however, this is achieved at the expense of increasing the CPU
(mainly for video encoding).

Table 1. Synopsis of state-of-the-Art solutions

In all the above cases, regardless of its original type, the

heterogeneous graphical content (text, image, graphics, video, 3D,
…) generated by the application is converted into sequences of

images (eventually a mixture of images and graphics), which are
subsequently interactively displayed on the terminal.

In order to ensure a true multimedia experience, Joveski et al
[15][3] advanced an architecture which intercepts the graphical
content generated by the application (text, image, video, 2D/3D
graphics) and converts it into an MPEG-4 BiFS multimedia scene.
This scene is subsequently adapted, compressed and stream
towards the mobile client, where it is rendered inside a MPEG-4
BiFS player. Initially they considered only Linux applications and
they further extend it to include [2] Windows applications by
accessing them via Remote Desktop Protocol (RDP).

In our previous study [1] we provided a way to virtualize the
Linux applications by intercepting X11 commands and converting
them to HTML5 <canvas> elements. The converted graphics are
compressed and streamed towards the HTML5 supported clients.

Advanced architecture:
The present paper reconsiders and extends the client-server

architecture presented in [1][2][16]. The following components are
developed: Application Execution, Content analysis, HTML5
description, Pruning and Compression & streaming, see Figure 1.

Figure 1. Improved architecture for HTML5 content representation.

Application Execution:
The Application Execution is standalone module where the

applications are executed and their graphical output is captured and
forwarded to Content analysis component via RDP [5].

Content analysis:
The Content analysis component interprets the RDP content

and identifies the graphical primitives like rectangle, lines, glyphs
and images… All these graphical primitives and images are sent to
HTML5 description component in order to convert them into
HTML5 <canvas> elements graphics, as exemplified in Table 2.

HTML5 description:
HTML5 description contains three modules Conversion,

Encoding and Caching. The graphical primitives received from
Content analysis are converted into HTML5 <canvas> element
graphics by describing them in JavaScript. Moreover the images
are encoded using the appropriate compression algorithms like

Method Specification Remarks

O
ff-

 th
e-

sh
el

f s
ol

ut
io

ns
 VNC

application Desktop applications

content Images Based on RFB
protocol

interaction Operating system Keyboard / Mouse

RDP client

application Desktop applications Windows
applications

content Graphics, 2D, 3D,
audio, video

Additional setup at
client side

interaction Operating system Keyboard / Mouse

R
es

ea
rc

h
st

ud
y

Deboosere
et al.

application 3D Linux applications

content Solution based on
VirtualGL 3D & X11

interaction / Not part of the
study

Rodríguez�
Silva et al.

application Desktop applications Any type, targeted
2D

content RFB images + WEBM
video

interaction / Not part of the
study

Weidong et
al.

application Gaming 3D games

content
converts the images
sent by VirtualGL into
H.264 video stream

Video

interaction / Not part of the
study

Joveski et
al.

application Desktop applications

Initially Linux(2D)
and later extend it
to windows
applications

content Graphics, 2D, audio,
video

interaction yes

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.7MOBMU-293

IS&T International Symposium on Electronic Imaging 2016
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2016 MOBMU-293.2

PNG, JPEG, or WebP, according the browsers capabilities (for
example WebP is only supported by Chrome).

After the content is converted into HTML5 and before
sending to the Pruning module, it is cached. This caching
component allows us to buffer the content for several milliseconds
for further analysis by the Pruning module.

Table 2. Conversion of RDP graphics into HTML5 <canvas>

RDP content HTML5 <canvas> conversion
LineTo: to draw line in RDP
Required fields:
 XStart, YStart, XEnd, YEnd,
BackgroundColor, PenStyle,
PenWidth, PenColor

dL: draw the line on canvas
Required fields:
xstart,ystart,xend,yend,
background_color, line_style,
line_width, line_color

OpaqueRect: Drawing opaque
rectangle.
Required fields:
LeftRect, TopRect, Width,
Height, Red, Green, Blue.

dR:
Required fields:
xstart, ystart, width, height,
RGB

ScrBlt: copy a rectangle area
from source position to
destination position.
Required fields:
LeftRect, TopRect, Width,
Height, Rop, XSrc, YSrc.

copyArea: fucnction copy area
from source to destination
Required fields:
srcX, srcY, destX,destY, width,
height, rop

MemBlt: render a cached
bitmap stored bitmap cache or
offscreen bitmap cache
Required fields:
cacheId, leftRect, TopRect,
Width, Height, SrcX, SrcY, Rop,
cacheIndex.

drawbitmap:

Required fields:
src_id, dst_id, srcx,srcy,width,
height, dstx,dsty,rop

Pruning:
The main functionality of the Pruning module is to optimize

the HTML5 content by analyzing the images and rectangles that
are generated. Usually, when images and rectangles are generated
very fast on a small piece of area, the pruning algorithm makes a
decision of the number of images and/or rectangles to be sent. This
decision is based on the network and device capabilities, and the
number of updates.

For example, in the Figure 2, the seven updates from 1 to 7
can be considered as images/rectangles. The Pruning mechanism
analyses each update (position size) and checks whether it’s
possible to remove some updates based on. In the example, the
result is remove the update 1.

Figure 2. Pruning mechanism example

After the optimization is performed the content is queued and
ready to be compressed and streamed.

Compression & streaming:
The compression component applies the browsers and

websocket supported compression, permessage-deflate [1]. The
WebSockets server establishes a bidirectional connection with the
clients’ browser and is kept open during its usage. The websocket
also is in charge of receiving the user interactions like mouse
move/click, key click, touch etc…

Experimental Setup
The experiments consider 5 users, each of which using three

different Windows applications: Internet Explorer version 9, MS
Word version 2010, DICOM image viewer [18].

The usage of each application respects a pre-established
scenario, including heterogeneous interaction modes and
generating various types of visual content, as explained below.

For text editing, each user is typing for 5 minutes the
beginning of the Plato’s Republica. According to their typing
speed, they generate between 550 and 1100 characters.

For the Internet browsing, each user performs a 9 step
scenario: (1) load Google page, (2) type “Wikipedia mobile”, hit
enter and wait for the page to be loaded, (3) click the Wikipedia
mobile link and wait for the Wikipedia page to be loaded, (4) type
“chocolate” in the search area, hit enter and wait for the searched
result page to be displayed, (5) click the link “bitter” and wait for
the new page to load, (6) click the “Bookmark” menu item, select
the google.news link, and wait for the page to load, (7) click the
home icon, and wait for the www.debian.org home page to load,
(8) three times scroll down, (9) click the exit icon.

For the Dicom viewer, each user performed the following six
steps: (1) start Dicom viewer application (2) open one Dicom
image (3) click menu Image àColor Map à Select Color Map à
smart (4) click on Image information icon (5) click the Line icon
on side bar, and measure the distance between two points, and
delete the line (6) Close the application.

The Windows applications are running inside a windows
(version 7) virtual machine.

The client terminal is of Samsung Galaxy Tab 10.1 (model
GT-P7510) Running OS Android 4.0.4. The client terminals are
installed with the Chrome browser, Firefox browser and bVNC
application (for the evaluation purposes).

The client terminal is connected to the server through the
wireless network.

In-order to benchmark our HTML5 based solution we
consider: 1) network bandwidth consumption, 2) CPU
consumption and 3) image quality.

On the one hand, when evaluating the network bandwidth, the

HTML5 based solution is considered two cases: 1) compressed and
2) uncompressed. On the other hand, when evaluating the CPU
consumption, the HTML5 based solution is considered two cases:
1) accessing from Chrome and 2) accessing from Firefox.

All the results are benchmarked against the VNC Raw, VNC
Hextile and VNC Tight [17] based solutions.

The measurements are obtained in the following setup:

• The applications are running on windows 7 virtual machine
o RAM: 3GB
o Process: 2
o Applications: IE version 9, MS Word 2010.

• Imaging Client is running on Ubuntu 14.04 server.
o RAM: 2GB RAM
o Process: 2

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.7MOBMU-293

IS&T International Symposium on Electronic Imaging 2016
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2016 MOBMU-293.3

• The client terminals consists of the following
o Samsung Galaxy Tab 10.1 (model GT-P7510)

Running OS Android 4.0.4
§ Memory:1GB
§ Hard disk: 16GB
§ Process: Nvidia Tegra 2 dual core 1Ghz
§ Chrome Browser
§ Firefox Browser
§ bVNC

• Network
o Belkin- N6000 DB Wireless N+ Router

Experimental Results
Network bandwidth measurements
For the text editing experiment, the values (in KBytes) of the

bandwidth required by the corresponding cumulative down-link
traffic, averaged over the 5 users, are plotted as a function of time
(indexed in minutes) in Figure 2; the value “0” on the abscissa
refers to the scene initialization.

Note that in this experiment, the number of scene updates
varies with the scene updates generated by each user (i.e. with the
number of letters they actually typed in each time interval).

The www browsing experiment is illustrated in Figure 3,
where the values (in KBytes) of the cumulative network traffic,
averaged over the 5 users, are plotted as a function of the 9 steps.

The DICOM image viewer experiments are illustrated are in
Figure 4, where the values (in Kbytes) of cumulative traffic,
averaged over the 5 users, are plotted as function of 6 steps.

The HTML5-Compression performs better than the VNC
HEXTILE (by factor of 1.33) and VNC RAW (by factor of 7.98)
when 5 users are typing. However when compared to VNC Tight
the network bandwidth required VNC Tight outperforms the
Imaging client by factor of 1.14

Figure 2. MS Word typing for 5 Mins in KB (kilo bytes)

For Internet Explorer, HTML5-Compression performs better
than VNC Hextile by a factor of 2.2 and VNC Raw by a factor of
7.97. But VNC Tight outperforms the HTML5-Compression by a
factor of 2.45.

For Dicom viewer, HTML5-Compression performs better
than VNC HEXTILE (by factor of 1.10) and VNC RAW (by factor
of 5.4). However, when we compared the VNC Tight with

HTML5-Compression, VNC Tight outperforms the HTML5-
Compression by a factor of 3.4.

Figure 3. IE Browsing steps 1 to 9 and network consumption in KB (kilo bytes)

Figure 4. DICOM viewer steps 1 to 6 and network consumption in KB (kilo
bytes)

CPU measurements
This section assesses the processor power (expressed in %

from the total available CPU on the client device) needed to run
the remote display in order to render all the received content.

In order to assess the CPU usage, we benchmarked VNC
Hextile, VNC Tight, and HTML5 in two browsers, namely
Chrome and Firefox. When executed in Android operating system,
the Chrome browser automatically launches three processes,
namely the chrome process, privileged process and sandboxed
process. Consequently, the average and maximal CPU activity for
Chrome browser, was measured by considering the average and
maximal value over three process.

Both the average and the maximal CPU usage (over the 5
users) are evaluated as a function of time (or steps) and reported in
Figure 5 to Figure 10, for MS Word text editing, Internet Explorer
www browsing and DICOM Viewer, respectively.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.7MOBMU-293

IS&T International Symposium on Electronic Imaging 2016
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2016 MOBMU-293.4

Figure 5. Average CPU peaks during MS Word typing after each min

Figure 6. Average Maximum CPU peaks during MS Word typing after each
min

Figure 7. Average CPU peaks during IE browsing

Figure 8. Max CPU peaks during IE browsing

Figure 9. Average CPU peaks during DICOM viewer

Figure 10. Max CPU peaks during DICOM viewer

The Maximum CPU usage for MS Word typing is Chrome by
reaching a peak of 95%, for Internet Explorer is VNC Tight by
reaching a peak of 180% (considering 2 CPU available for total of
200%), for DICOM viewer is VNC Hextile and VNC Tight by
reaching a peak of 125%.

Image quality:
The process of conversion from RDP to HTML5 intrinsically

introduces some differences between the original and the converted
visual representations. The aim of this sub-section is to evaluate
the artifacts induced by such a conversion.

Figure 11, Figure 12 and Figure 13 illustrate the quality of the
converted content, represented on the HTML5 <canvas>, for the
three above-mentioned experiments. No illustration has been done
for VNC RAW, VNC HEXTILE and VNC Tight, as their visual
content is kept unchanged during the transmission and displaying.

With a simple visual inspection Figure 11, Figure 12 and
Figure 13, no visual disturbing artifacts can be identified: graphics,
icons and text are spatiotemporally synchronized and
colors/shadows are kept unchanged.

Consequently, we objectively evaluated the differences
between the original RDP content and its HTML5 converted
counterpart. The experiments considered six objective full-
reference image quality measures of two types: (1) pixel difference
based measures (PSNR - peak signal to noise ratio, and IF - image
fidelity) and (2) correlation based measures (CQ - correlation
quality, SC - structural content, NCC - normalized cross-
correlation, and SSIM – structural similarity). The average values
are presented with a 0.01 precision; the PSNR values are expressed
in dB.

Note that as the VNC, VNC HEXTILE and achieves lossless
image compression, their objective measures reach the ideal limits:
PSNR → ∞, IF = 1, CQ = SC = NCC = SSIM = 1.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.7MOBMU-293

IS&T International Symposium on Electronic Imaging 2016
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2016 MOBMU-293.5

The images are captured after each step and compared to the
original images. For MS Word, there are more than 500 images,
for Internet Explorer we captured 9 images after each step;
similarly for DICOM viewer we captured 6 images for
comparison.

Figure 11. Screenshots of MS Word typing in in HTML5 <canvas>

Figure 12. Screenshots of internet explorer in HTML5 <canvas>

Figure 13. Screenshots of DICOM viewer in HTML5 <canvas>

Table 3: Image quality

App/Metrics MSWord IE DICOM

PSNR 71.48 68.70 71.33

IF 0.999 0.999 0.999

SC 1.00 1.00 1.00

NCC 0.999 0.999 0.999

CQ 0.999 0.999 1.001

SSIM 0.999 0.999 0.999

Conclusion
The present paper provides the POC (proof-of-concepts) for

the use of the HTML5 (Hyper Text Markup Language) as
alternative virtualization tools for RDP-based applications (e.g.
MS Windows applications).

From the methodological point of view, the main novelty
consists in designing an architecture allowing the conversion of the
RDP content into a HTML5 content representation and
subsequently streaming this content by compressing to the clients
where the HTML5 content is rendered.

The testbed considers a server and user devices. The
experimental validation considers 5 users and three RDP
applications (MS Word, Internet Explorer and DICOM viewer).
The advanced solution is benchmarked against three state-of-the-
art technologies (VNC Raw, VNC Hextile and VNC Tight). The
visual quality is evaluated by six objective measures (e.g.
PSNR>68dB, SSIM>0.99). The network traffic evaluation shows
that: (i) for text editing, the HTML5-based solutions outperforms
the VNC Hextile by a factor 1.33; however VNC Tight
outperforms it by factor of 1.14 (ii) for Internet browsing, the
HTML5 solutions outperform VNC Hextile by factors of 2.2 but
VNC Tight outperforms it by factor of 2.4 (iii) for DICOM viewer,
the HTML5 solutions outperform VNC Hextile by factors of 1.1
but VNC Tight outperforms it by factor of 3.4. The average CPU
consumption for Chrome is lower than Firefox, VNC Hextile and
VNC Tight for all the three applications. The maximal CPU usage
for MS Word typing is Chrome, for Internet Explorer is VNC
Tight, for DICOM viewer is VNC Hextile and VNC Tight.

Future work will be devoted to extending the HTML5
virtualization solution for Internet of Things devices and
applications.

References
[1] R.R. Ganji, M. Mitrea, B. Joveski, F. Preteux, "HTML5 as an

application virtualization tool," Consumer Electronics (ISCE), 2012
IEEE 16th International Symposium on , vol., no., pp.1,4, 4-6 June
2012, doi: 10.1109/ISCE.2012.6241695

[2] B. Joveski, M. Mitrea, R.R. Ganji, “MPEG-4 solutions for
virtualizing RDP-based applications”, Proc. SPIE 9030, Mobile
Devices and Multimedia: Enabling Technologies, Algorithms, and
Applications 2014, 90300A (February 18, 2014);
doi:10.1117/12.2042342.

[3] B. Joveski, M. Mitrea, P. Simoens,I. J. Marshall, F. Prêteux & B.
Dhoedt, "Semantic multimedia remote display for mobile thin
clients", Multimedia Systems,October 2013, Volume 19, Issue 5, pp
455-474, DOI 10.1007/s00530-013-0304-6

[4] VNC, Virtual Network Computing description.
http://www.realvnc.com

[5] RDP, Microsoft—Remote Desktop Protocol: basic connectivity and
graphics remote specification. http://msdn.microsoft.com/en-
us/library/cc240445

[6] Microsoft Office, https://products.office.com/

[7] Internet Explorer, http://microsoft.com/ie/

[8] WebSockets API, https://www.w3.org/TR/2011/WD-websockets-
20110419/

[9] Websockets library, http://git.warmcat.com/cgi-
bin/cgit/libwebsockets

[10] Deboosere, L.; De Wachter, J.; Simoens, P.; De Turck, F.; Dhoedt,
B.; Demeester, P., "Thin Client Computing Solutions in Low- and
High-Motion Scenarios," Networking and Services, 2007. ICNS.
Third International Conference on , vol., no., pp.38,38, 19-25 June
2007

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.7MOBMU-293

IS&T International Symposium on Electronic Imaging 2016
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2016 MOBMU-293.6

[11] Weidong Shi; Yang Lu; Zhu Li; Engelsma, J., "Scalable Support for
3D Graphics Applications in Cloud," Cloud Computing (CLOUD),
2010 IEEE 3rd International Conference on , vol., no., pp.346,353, 5-
10 July 2010; doi: 10.1109/CLOUD.2010.76

[12] Rodríguez-Silva, Daniel A., Jaime Loureiro-Acuña, Francisco J.
González-Castaño, and Cristina López-Bravo. "Improving the
virtualization of rich applications by combining VNC and streaming
protocols at the hypervisor layer." Software: Practice and Experience
(2015).

[13] VirtualGL, http://www.virtualgl.org/

[14] WebM, http://www.webmproject.org/

[15] Bojan Joveski “Semantic multimedia remote viewer for collaborative
mobile thin clients” PhD theis., Ecole Nationale Supérieure des
Mines de Paris, 2012

[16] Rama-Rao Ganji, Mihai Mitrea, Bojan Joveski, Afef Chammem,
"Cross-standard user description in mobile, medical oriented virtual
collaborative environments", in Mobile Devices and Multimedia:
Enabling Technologies, Algorithms, and Applications 2015, Reiner
Creutzburg; David Akopian, Editors, Proceedings of SPIE Vol. 9411
(SPIE, Bellingham, WA 2015), 94110G

[17] TightVNC, http://www.tightvnc.com/

[18] Philips Dicom viewer,
http://clinical.netforum.healthcare.philips.com/global/Explore/Clinica
l-News/MRI/Philips-DICOM-Viewer-download-version-R30-SP3

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.7MOBMU-293

IS&T International Symposium on Electronic Imaging 2016
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2016 MOBMU-293.7

