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Abstract
More recently, the smartphone intergrated powerful camera

is an efficient platform for location-wareness. The matching of
smartphone recordings with a database of geo-referenced images
allows for meter accurate infrastructure-free localization. How-
ever, for high accuracy indoor positioning using a smartphone,
there are two constraints that includes: (1) limited computational
and memory resources of smartphone; (2) user’s moving in large
buildings. These constraints are also typically more severe for
systems that should be wearable and used indoors. To address
these issues, we proppose a novel smartphone camera-based al-
gorithm for supporting a scalability and high accuracy indoor
positiong service. In order to obtain an accurate image match-
ing, we proppose a new feature descriptor that efficiently fused of
HOG and LPQ feature. The novel feature is the local phase quan-
tization of a salient HOG visualuizing image. The specific prop-
erties of this feature is robust in the indoor scenarios. In order to
reduce the network latency and communications traffic, we intro-
duce a basestation based indoor positiioning system for providing
a coarse location. Comparing to other states of art methods, ex-
perimental results show that our algorithm allowed instantaneous
camera-based indoor positioning with very low requirements on
the available network connection.

INTRODUCTION
Indoor positioning is considered an enabler for a variety of

applications, such as guidance of passengers on airports, confer-
ence attendees, visitors in shopping malls, and for many novel
context-aware services, which can play a signicant role for mon-
etarization. The demand for an indoor positioning service or in-
door LBS (iLBS) has also accelerated given that people spend
the majority of their time indoors [2]. Over the last decade, re-
searchers have studied many indoor positioning techniques [18].
In addition, with the development of the integrated circuit tech-
nology, multi-sensors, for example, camera, Earths magnetic
field, WiFi, Bluetooth, inertial module, have been integrated in
smartphones. Therefore, smartphones are powerful platforms for
location-awareness.

The traditionally used outdoor localization method Global
Navigation Satellite System (GNSS) is not available in indoor en-
vironments,even though navigation tasks on street level are very
precise. A catalog of alternative localization techniques has been
investigated, such as infrared- [13], sensor- [15][4], wireless-
[36][7], communication basestation-based technologies[34] ,
Pseudolite [25] or visual markers [11]. However, most those tech-
nologies, however, relying on wireless technology, faces issues in
the presence of RF interference (RFI), and interference of Non

Line of Sight (NLOS) caused by dense forests, urban canyons,
terrain [17]. Moreover, some of those technologies work in a lim-
ited area like inertial-sensor based approaches, or some need a
particular environmental infrastructure and augmentation like Lo-
cata that is a pseudolite positioning system. Therefore, smart-
phone camera-based indoor positioning is a promising approach
for accurate indoor positioning without the need for expensive in-
frastructure like acess points or beacons.

The key method of camera-based localization is image
mtaching. Images taken by a smartphone camera are matched
to previously acquired reference images with known position
and orientation.The matching of smartphone recordings with a
database of geo-referenced images allows for meter accurate
infrastructure-free [28]. According to the matched reference im-
age, the location of the smartphone is calculated. In mobile indoor
scenarios that are shown by Fig.3, the users usually walk during
positioning and navigation procedure. Therefore, the captured im-
ages by smartohone cameras are scaled, rotated, even blured be-
cause of hands shaking. Moreover, Recently, most of researchers
focus on invariant features extraction. Ravi and his co-workers ex-
tracted color histograms, wavelet decomposition and image shape
for image matching to locate the user’s position [26]. Kim and Jun
proposed a method based on image colorfu histogram feature for
positioning by using augmented reality tool[12]. However, the po-
sitioning accuracy of those two methods would work inefficiently
in the varying light and crowed scenarios. In order to extract
the invariment features, SIFT and its improved algorithms are
widely used for image-based indoor locatilization. Kawaji et al.
used PCA-SIFT feature for railway museum indoor positioning.
Werner and his colleague proposed a camera-based indoor posi-
tioning by using SURF feature for speeding up the image match-
ing [32]. Li and Wang [16]introduced A-SIFT feature for image
matching achieved by RANSAC, which increased the matching
accuracy. Tian and his co-workers [28] proposed a similar method
to [16] for indoor positioning, However, those two complex com-
putational methods is not suitable for smartphone-based indoor
positioning. This is beause of limited computational resources of
mobile devices. Zachariah and Jansson [33] extracted the edge-
based features from the visual tags image, and those features are
fused with inertial information for indoor navigation. Kazemipur
et al. [11] used the Sobel filter intergrating mean structural sim-
ilarity index for estimating the arrival of angle and height during
the indoor localization. However, those two methods need ad-
ditional visul marks for assisting smartphone camera for detect-
ing features, which increases the indoor positioning cost. Mean-
while, all of those research work mainly focus on improving im-
age matching accuracy. Some of these algorithms are, however,
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quite demanding in terms of their computational complexity and
therefore not suited to run on mobile devices, which need smart-
phones with high hardware configuration. Aathough smartphpone
phones are inexpensive, they have even more limited performance
than the aforementioned Tablet PCs. Phones are embedded sys-
tems with severe limitations in both the computational facilities
and memory bandwidth. Therefore, natural feature extraction and
matching on phones has largely been considered prohibitive and
has not been successfully demonstrated to date [29]. To address
these issues, Opdenbosch et al. [28] used the improved Vector
of Locally Aggregated Descriptors (VLAD) image signature and
emerging binary feature descriptor BRIEF to achieve the smart-
phone camera-based indoor positioning. Besides, in order to re-
duce the overall computational complexity, they proposed a scal-
able streaming approach for loading the reference images onto
the phones. Different with their method, this paper prosposed
a efficient feature descriptor named Turbo Fusing Histograms of
Oriented Gradients (HOG) and Local Phase Quantization (LPQ)
Salient feature (TFHLS). The TFHLS features are extracted from
the partial image which are salient image regions, and they are
invarient to the illumination, scale, rotation and blur caused by
cmera shaking. Moreover, a wireless-based indoor positioning
method TC-OFDM are introduced to calculate the coarse posi-
tions for supporting the floor number to the smartphone, which
would reduce the number of images downloaded onto the smart-
phones. By using this approach, our camera-based indoor posi-
tioning algorithm results in the reduction in computational com-
plexity, hardware requriment, and network latency.

This paper is organized as follows to achieve our investiga-
tions. First of all, we discuss the reated work on HOG and LPQ
feature extraction in Section . Then, we introduce our image fea-
ture extraction based on fusing HOG and LPQ in Section. After
that, we test the proposed algorithm on the TUM Indoor Dataset
[34] and BUPT Indoor Dataset collected by our lab, and the eva-
lution of our algorithm is also shown in this section. Finally, in
Section we conclude the paper and provide an future work on
possible extensions.

RELATED WORK
Finding efficient and discriminative descriptors is crucial for

indoor complex scenarios. HOG descriptor was proposed by
Dalal .et al. for human detection [1]. The main idea behind HOG
is based on the local edge information [6]. Because of its efficient
performance, HOG feature are widely used in human detection
[23] [35], face recognition [14] [31], and image searching [27].
All of those applications show that HOG feture is invariant to the
illumination. According to our experiment, HOG feature is not
robust when the humans are crowded and the images are blurred.
Wang and his co-workers combined the HOG and Local Binary
Pattern (LBP) features for human detection [30]. However, they
calculated that their detector cannot handle the articulated defor-
mation of people.

Recently, LPQ is insensitive to image blurring, and it has
proven to be a very efficient descriptor in face recognition from
blurred as well as sharp images [5] [24][6]. LPQ was originally
designed by Ojansivu and Heikkila similarly to the LBP method-
ology as a texture descriptor[22]. In our opinion, robust and ef-
ficient image matching requires several different kinds of appear-
ance information to be taken into account, suggesting the use of

heterogeneous feature sets. In our prposed algorithm, the HOG
features are extracted from the salient regions, and LPQ featrues
are extracted from the HOG vVisualizing image. Therefore, the
HOG and LPQ are intergated for buiding a efficient feature that is
TFHLS for indoor image matching.

PROPOSED SMARTPHONE CAMERA-
BASED INDOOR POSITIONING

The smartphone camera-based indoor positioning procedure
by using TFHLS feature is shown in fig.1. Meanwhile, the frame-
work of our smartphone camear-based indoor positioning system
is shown by fig.2.

Flowchart.png

Figure 1. The module of smartphone camera-based indoor positioning.
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and Position Module.png

Figure 2. The framework of smartphone camera-based indoor positioning.

Study Materials
In our indoor positioning scenario, the reference database

contains images captured inside buildings and can be queried with
an image taken by a smartphone camera. The position informa-
tion attached to the most similar reference view serves as the lo-
cation estimate. It is noticed that in order to test and evaluate
the proposed algorrthm, two databsets are used. The frist one is
supported by Technische Universität München (TMU) [28]. The
researchers in TMU emploied the virtual view approach proposed
by Huitl et al. [8] for building a meter-accurate localization sys-
tem with the possibility and calculating viewing angles. In TMU
dataset, there are 54, 896 reference views, which covers 3, 431
positions with 1 meter accuracy. The examples of TMU dataset
are shown by fig.3. Another dataset is collected by our lab who
caputred 1000 indoor images using smartphone cameras in BUPT
campus. The examples of BUPT dataset are shown by fig.4. Dif-
ferent with TMU dataset in calculating the reference positions, a
static measurement system based on TC-OFDM and Beidou Real
Time Kinematic (RTK) is introduced. By using this system, the
scalable locations with positioning accuracy (0.6∼meter) are ob-
tained. The BUPT dataset covers four buildings and results in
total of 2,189 positions.

Turbo HOG-LPQ Feature Extraction Approach
HOG Features Extraction and Visulization

Compare to the original HOG, the integrated HOG feature
without trilinear interpolation is easier and faster to be computed,
which was improved in [9]. However, the HOG’s performance
would be worse. Therefore, we introduced a constrained trilinear
interpolation approach to replace the general trilinear interpola-
tion. A novety 5× 5 convolution kernel that similar to [30] is
built to be implemented. For a 8-bit image, the kernal template is
shown by eq.1.

ConvHOG = 1
256


1 3 4 3 1
3 6 8 6 3
5 12 16 12 5
3 6 8 6 3
1 3 4 3 1

 (1)

Moreover, in order to reduce the space complexity of the integral
image method, the kernal in 1 is convoluted with the salient rect-

angle not the whole orignal image.

LPQ Feature Extraction From HOG Visulization Imgae
More recently, LPQ features were used for face recognition.

LPQ was originally built by Ojansivu and his co-workers as a tex-
ture descriptor, which was similar to the Local Binary Pattern
(LBP) [20]. While, LPQ is robust to image blurring, and it has
proven to be a very efficient descriptor in face recognition from
blurred as well as sharp images[19][3]. Moreover, according to
our previous research, the LPQ features extracted from indoor
scences images are less precise in positioning than used in face
recognition. For the indoor images with low textures, it is dif-
ficult to extract salient feature because of low contrast between
objects and background. Meanwhile, the contrast of the HOG in-
tegral image is good to be used for LPQ extraction. In this paper,
we intrduced a HOG visualizing method proposed by Vondrick
al et.[21]. Different with their complex method, an simplified
method based on eq.2 is prposed, which remain the performance
as the orignal visualizing method in [21].

φ
−1(y) = argmin

x∈RD
‖ φ(x)− y ‖2 (2)

where x ∈ RD is an salient rectangle subimage and y = φx is the
corresponding HOG feature descriptor. In this paper, HOG fea-
ture visualization is posed to be a feature inversion procedure.
In order to optimizing 2, we used gradient-descent strategies by
numerically evaluating the derivative in image space with Least
Squares method. After inverting HOG features into an image
YHOG, LPQ features are extracted from YHOG by using a sim-
ple scalar quantizer ??. LPQ feature is based on quantifying the
Fourier transform phase by considering the sign of each compo-
nent in Fourier coefficients G(x).

qi(x) =

{
1 i f gi(x)≤ 0
0 otherwise

(3)

where gi(x) is the ith component of G(x). Then the phase infor-
mation of the 8-bit HOG visualizing image described using 4.

fLPQ(x) =
8

∑
n=1

qn2n−1 (4)

The final LPQ features are used as a feature vector to represent an
indoor subimage.

Human Positioning by Using TFHLS Feature
Matching

The main advantage of the binarization, apart from a re-
duced memory footprint, is a very fast matching process using the
Hamming distance h(x,y). This distance can be computed very
efficiently using intrinsic processor instructions, which are also
available on modern mobile devices. For the ranking process, we
match every subsection bi of the rectangle subimage separately.
The final score f for query image q and database image d is calcu-
lated as:

f (bq,bd) =
1√
|Fq||Fd |

∑
i∈F1∩Fd

1−
h(bq,i,bd,i)

l ′
(5)
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(a) Low textures (b) High textures (c) Blurred Image (d) Building Hall (e) Hallway (f) Illumination
change

Figure 3. Exemplary queries for all classes from TMU.

(a) Low textures (b) High textures (c) Blurred Image (d) Building Hall (e) Hallway (f) Illumination
change

Figure 4. Exemplary queries for all classes from BUPT.

where Fq and Fb are the sets of visual words observed in the
database and query image, respectively. When dealing with larger
datasets, e.g., whole cities, we employ a TC-OFDM indoor posi-
tioning system to locale the building where user is, which pro-
vides fast approximate nearest neighbor search.

EXPERIMENTAL RESULT
Query Dataset and Setup Description

We recorded a query set of 128 images captured by a iPhone
6 smartphone with manually annotated position information. The
images are approximately 5 megapixels in size and are taken using
the default settings of the iPhone 6 camera application. Further-
more, the images consist of landscape photos either taken head-
on in front of a store or at a slanted angle of approximately 30
degrees. After obtaining the images, Next, we run the remaining
query images with successful retrieved database images through
the pose estimation part of the pipeline. In order to characterize
pose estimation accuracy, we first manually ground truth the posi-
tion and pose of each query image taken. This is done by using the
CAD map of the buildings in BUPT and distance measurements
recorded during the query dataset collection. For a detailed evalu-
ation, the query set has been split into classes that is the same with
the TMU databse: high texture, low texture, hallways, ambiguous
objects and building structure, where each query can be assigned
to more than one class (fig.3 and fig.4). It is should be known that
we ignore the orientation information calculation.

Our method was implemented by using Matlab 2015a, and
this method was coded by integrating C# and matlab. It is no-
ticed that the camera-based positioning method proposed by [28]
is used to compare with our proposed method, and the test data

and matlab code of that method are both supported by Opden-
bosch.

Feature Matching Evaluation
In order to identify optimal parameters for the approach

described above, several experiments are conducted with vary-
ing settings. fig.5 summarizes the performace of comparing the
TFHLS feature matching to the method proposed by [28] . In this
experiment, we successfully match 113 of 128 images to achieve
a retrieval rat of 93%. As shown in fig.5 (a), successful retrival
usually involves matching of object textures in both query and
database imgaes. According to fig.5 (b), we can find that our pro-
posed TFHLS feature is efficient to match the blurred images. As
shown in Table1, the proposed method achieves to match the im-
ages of TMU databse with a highest success in 15.7ms for each
image. where LS means linear search, LSH means locality-

Matching Result

Setp Running Time Matching rate

TFHLS Detector 89% 13.2 ms
FAST Detector 68% 0.98 ms
FAST Detector 68% 0.98 ms

BRIEF Descriptor 73% 4.77 ms
SURF Detector 82% 232.6 ms

BVLAD Matching(LSH) 85% 53.74 ms
BVLAD Matching (LS) 87% 100.17 ms

sensitive hashing. In order to measure the running time of feature
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(a) TFHLS features matching for high textures image

(b) TFHLS features matching for blurred image
Figure 5. TFHLS features matching for BUPT images.

extraction, a laptop intergrated an Intel Core i7 x64 system with
2.8GHz is used.

Positioning Result Evaluation
fig.6 summarizes the performance of the location informa-

tion estimation, and the comparison result, which was tested
on TMU database, between our method and the BVLAD-based
method is shown in fig.6(a), and the positioning result tested on
BUPT database is shown by fig.6(b). From fig.6(a) and fig.6(b),
we are able to localize the position to within sub-meter level of
accuracy for over 56% of the query images. Furthermore, 85% of
the query images are successfully localized to within two meters
of the ground truth position. As seen in fig.5 (a), when the loca-
tion error is less than 1 meter, the TFHLS features of correspond-
ing corridor signs present in both query and database images are
matched together well. Conversely, in less accurate cases of pose
estimation where the location error exceeds 4 meters, more false
matching corresponding features between query and database im-
ages. Moreover, we find that the TFHLS detector extracted more
features than [28] even throgh the images are blurred, which is
shown in fig.6(b). As shown in fig.7, we plot the estimated and
ground truth locations of the query images onto the New Re-
search Buildings 2D floorplan. As seen from this figure, there is
close agreement between the two. The Root Mean Square Error
(RMSE) between estimated and ground-truth positioning results
is 1.253 meters.

CALCULATION
We present a scalable and efficeient mobile camera-based lo-

calization system. To this end, we propose a modified version
feature of combining HOG and LPQ descriptors, which is based
on texture and phase features and jointly addresses the problem

(a) Positiong result based on TMU dataset

(b) Positiong result based on BUPT dataset
Figure 6. Positioning performance comparison.

Figure 7. The module of smartphone camera-based indoor positioning.
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of limited computational capacity, as well as the required mem-
ory footprint. For rapid and accurate matching, we extract the
features from the salient sub-images, which reduces the featture
searching space. Those are also our main contribution. More-
over, in order to provide an efficient approach of fetching the ref-
erence images from the database server, we employs TC-OFDM
indoor positioning for supporting the corase positioning knowl-
edge related camera location for the smartohone, where make the
feature space in a certain radius.This results in a significant reduc-
tion in data rate down to 70% of the communication traffic, while
maintaining the full positioning performance. According to the
test on the BUPT databse, the Root Mean Square Error (RMSE)
between estimated and ground-truth positioning results is 1.253
meters, which shows that our smartphone camera-based indoor
positioning is precise and accuracy. The other contributions of
this paper lead to an indoor localization system intergating cam-
era and RF module of a smpartphone, which allows instantaneous
camera-based indoor positioning with very low requirements on
the available network connection.
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