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Abstract 

Palmprint recognition as a novel biometric identification 

method for contactless mobile devices has been received substantial 

attentions in recent years. Palm landmark detection is one of the key 

technologies of palmprint identification and verification system. 

However, the differences of hand positions, complex backgrounds 

and various lighting conditions in unrestrained environment with 

low-resolution cameras make palm landmark detection in the wild 

difficult. In this paper, we proposed a new palm landmark detection 

approach based on Supervised Descent Method (SDM). SDM uses 

the relationship between the feature representation and the position 

of a landmark point to build an optimization problem for palm 

landmark detection. The optimization target function is the distance 

of feature representations between current position and the ideal 

position of a palm landmark point. After optimization, a linear 

function of the position displacement and the feature representation 

of current landmark is obtained. The linear function can be learned 

from palmprint image samples with labeled landmark positions. 

Given an input image in detection process, the initial position of a 

landmark is set by the mean position of the landmark in the training 

set, then the optimal landmark position can be calculated iteratively 

using the learned linear function. The effectiveness of the proposed 

method is proved on a mobile phone captured palm image dataset. 

1. Introduction 
In recent years, personal recognition on mobile devices is 

becoming increasingly important. Biometrics, one of the most 

reliable methods in this area, including face, voice and fingerprint, 

has been widely used. Compared with other biometric features, 

palmprint as a relatively new biometric recognition method contains 

more information and needs cheaper capture devices. Palm 

landmark detection plays a critical role in getting better rates and 

selection of region of interest for palm recognition and identification.   

Most approaches use databases collected from fixed image 

acquisition equipment with monotone or restricted backgrounds to 

get rid of the complex localization and segmentation problems [10]. 

Systems based on those approaches thus require usage of physical 

restraints to guarantee consistent hand positioning. However, the 

problem is challenging when hand images are taken by touch-less 

and unrestricted systems with extreme poses, lightings, and 

backgrounds, which becomes an obstacle of the popularity of 

contactless palmprint recognition system on mobile devices [8]. 

Existing approaches of palm location and segmentation in 

complex backgrounds can be generally divided into two parts: the 

pixel-based approaches and the model-based approaches. Color 

detection is a typical pixel based example that has been adopted in 

[1], [2]. The disadvantage of this method is that the images cannot 

be separated exactly when there are objects with skin color in the 

background. The model-based approaches fit a generative model for 

the global hand appearance. Doublet [3] used the active shape model 

(ASM) [4] for the contact-less palmprint system. The ASM 

approach chooses a set of shape parameters for a Point Distribution 

Model (PDM), calculates the main template of variance of the PDM 

and fits test image to the templates iteratively. However, ASM uses 

only shape information and its performance is thus impacted. Murat 

Aykut [6] developed another popular model based method for palm 

location called Active Appearance Model (AAM) [5]. AAM 

improves the accuracy of landmark localization of ASM by using a 

combined statistical model of shape and texture. The weakness is 

that AAM and its extensions are difficult to optimize.  

In this paper, we employ Supervised Descent Method （SDM） 

to palm location in the palmprint recognition and identification 

system. SDM was first proposed by Xiong et al. [7] for minimizing 

a nonlinear least squares function basing on the Newton’s method. 

As a typical optimization tool, Newton’s method plays an important 

role in smoothing twice-differentiable functions. Mathematical 

optimization algorithms such as Newton’s method can solve many 

detection and location problems in computer vision. However, 

Newton’s method cannot be directly applied to landmark detection 

problem for the following reasons: (1) The Newton steps will 

sometimes be taken in the wrong direction because the Hessian 

matrix can be positive somewhere in addition to the local minimum 

point. (2) Considering of the large dimension of the Hessian matrix, 

it will be computationally expensive when inverting or estimating 

the gradient of the Hessian matrix. For solving these problems, 

Supervised Descent Method is used to learn the descent directions 

in a supervised manner. During training, SDM learns a sequence of 

optimal descent directions. In testing, SDM minimizes the nonlinear 

least squares objective using the learned descent directions without 

the need for computing the Jacobian and Hessian.  Experimental 

results show that SDM achieves great efficiency by tackling those 

two common troubles faced by 2nd order descent method mentioned 

above. With the location of landmark points on the palm determined 

from the fitted SDM, we can segment the region of interest and 

extract features for identification and verification. Moreover, our 

approach allows palm pictures taken in various environment. 

The organization of this paper is as following. Section 2 

introduces the SDM based method and discuss the algorithm used 

to fit a model to palm landmark detection. Section 3 describes the 

experimental results from the palm dataset that we collected under 

various backgrounds and lighting conditions. And the final 

conclusions are drawn in section 4. 

2. Method 

2.1. Mathematical derivation of SDM 

Suppose we have an image 𝐈 ∈   𝑀∗𝑁  of M*N pixels. There 

are p landmarks in the image. Each landmark has a 2-D coordinate 

xi (mi, ni) and all p landmarks are denoted by 𝒙 ∈   2p∗1. ∅(𝒙) is 
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the nonlinear feature descriptor of the landmarks 𝒙 such as SIFT 

features [9]. The SDM consists of two stages: training and testing. 

In the training part, location of the correct p landmarks 𝒙∗ are known. 

The initial configuration of the landmarks 𝒙𝟎 was represented by the 

average location of the training data. Landmark location can be 

converted to minimizing the objective function over offset ∆𝒙 : 

𝑓(𝑥0 + ∆𝑥) = ‖∅(𝑥0 + ∆𝑥) − ∅∗‖2                                     (1) 

In this function, ∅(𝑥) represents the nonlinear feature values 

(SIFT) extracted from patches around the landmarks 𝑥.  ∅∗ = ∅(𝒙∗) 

is the feature values of labeled landmarks in training data. There are 

some illustrations of Eq.1: (1) In the training images, the correct 

landmarks are labeled already. Based on the calculated average 

location of landmarks 𝒙𝟎, ∅∗ and ∆𝒙 are both known. (2) Instead of 

learning any model appearance in advance from training data, Eq.1 

just need to calculate average landmark locations 𝒙𝟎 and optimize 

the landmark locations x directly. This non-parametric shape model 

can generalize better to fit multi-pose palm situations. (3) The 

nonlinear SIFT operator we use is not differentiable. Using first or 

second order methods to minimize Eq.1 will lead to numerical 

approximations of Jacobian and Hessians which are 

computationally expensive. Therefore SDM learns a series of 

descent directions and rescaling factors to update the landmark 

positions  (𝒙𝒌+𝟏 = 𝒙𝒌 + ∆𝒙𝒌) , to make the positions calculated 

from training data converge from  𝒙𝟎 to the correct position 𝒙∗ step 

by step. 

Assume that ∅(𝒙) is twice differentiable for derivation purpose. 

Then a second order Taylor expansion was applied to Eq.1 as 

follow:  

𝑓(𝑥0 + ∆𝑥) ≈ 𝑓(𝑥0) + 𝐽𝑓(𝑥0)𝑇∆𝑥 +
1

2
∆𝑥𝑇𝐻(𝑥0)∆𝑥             (2) 

where 𝐉𝐟 (𝐱𝟎 ) and  𝑯(𝒙𝟎)  refer to the Jacobian and Hessian 

matrices of function 𝒇 at 𝒙𝟎 .   
Take the derivative of both sides with respect to ∆𝒙  and set the 

derivative at 𝒙𝟎 + ∆𝒙 to zero to minimize the function 𝒇(𝒙𝟎 + ∆𝒙), 

then we can get an update of x: 

 

𝐽𝑓(𝑥0+∆𝑥) = 𝐽𝑓(𝑥0) + 𝐻(𝑥0)∆𝑥                                                (3) 

∆𝑥1 = −𝐻−1𝐽𝑓 = −2𝐻−1𝐽∅
𝑇(∅0 − ∅∗)                                 (4) 

We omit 𝒙𝟎 in Eq.4 and the following equations to simplify the 

derivation. And 𝑱𝒇 = 𝑱∅
𝑻(∅𝟎 − ∅∗) is obtained from the relationship 

between f and ∅ shows in Eq.1 using chain rule, where ∅𝟎 = ∅(𝒙𝟎). 

So the update value ∆𝒙 can be explained as the projection of ∅∗ =

∅(𝒙∗)  onto 𝑹𝟎 = −𝟐𝑯−𝟏𝑱∅
𝑻 in another way. It shows the linear 

relationship between ∆𝒙 and the difference of the feature values ∆∅. 

Therefore, by learning 𝑹𝟎 from training data, the calculation of 

Jacobian and Hessian matrices can be avoided. So 𝑹𝟎  can be 

regarded as a descent direction. In addition, the function f is not 

limited as twice differentiable. During testing, ∅∗  of the real 

landmark is unknown but fixed. So we can convert Eq.4 to the 

following form： 

∆𝑥1 = 𝑅0∅0 + 𝑏0                                                                  (5) 

 

In training part, SDM will learn the parameters 𝑹𝟎 and 𝒃𝟎 in 

the above-mentioned update procedure. The details of learning 

process will be explained in the next section.   

In general, the function 𝒇(𝒙)  is more complicated than 

quadratic polynomials, so during training, we will get several offsets 

∆𝒙𝒌 : 

∆𝑥k = 𝑅k−1∅k−1 + 𝑏k−1                                                        (6) 

where ∅𝒌−𝟏 = ∅(𝒙𝐤−𝟏)  is the SIFT feature values at the 

landmark locations getting from (k-1)th step. 𝒙𝒌 will converge to the 

exact landmark location 𝒙∗ iteratively： 

𝑥𝑘 = 𝑥𝑘−1 + 𝑅𝑘−1∅𝑘−1 + 𝑏𝑘−1                                              (7) 

2.2. Hand landmarks detection based on SDM 

2.2.1 Preprocess 
According to the theory analysis above-mentioned, SDM uses 

linear model to build the relationship between coordinates and 

feature space. But the simple form will easily lead to over fitting. 

The training set should be large enough to reduce the susceptibility 

of initial configuration. However, the training data we collected is 

not that big. So we need to add disturbance to the training samples 

to reduce the susceptibility. 

Add disturbance to each image from the training data {𝑰𝒊}: 

𝐼𝑘
𝑖 = 𝐴(𝑎𝑘 , 𝑢𝑘 , 𝑣𝑘)𝐼𝑖 = [

𝑎𝑘 0 𝑢𝑘

0 𝑎𝑘 𝑣𝑘
] 𝐼𝑖 , 𝑘 = 1,2 … 𝑛          (8) 

where 𝑨(𝒂𝒌, 𝒖𝒌, 𝒗𝒌) is the perturbation matrix.  

 

2.2.2 Feature extraction  
The next step is feature extraction from key points. SIFT 

descriptors are chosen because it is invariant to uniform scaling, 

orientation, and partially invariant to affine distortion and 

illumination changes. In order to achieve orientation invariance, the 

coordinates and gradient orientations are rotated relative to the key 

point orientation.  During experiment, it is found that the most stable 

result is obtained when the SIFT descriptors are computed on 

16*16(4*4 histograms) local patches around each key point. Each 

histogram has 8 bins covering the 360 degree range of orientations. 

Therefore, each SIFT descriptor is a vector with 4*4*8=128 

dimensions.  

 

 
Figure 1. Representation of the region of interest (red box). 
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2.2.3 Training phase 
The core step of SDM training is to learn the descent direction 

𝑹  and constant 𝒃 . Given the training image set { 𝑰𝒊 } and their 

corresponding hand-labeled landmarks { 𝒙𝒌
𝒊 }, 𝒙𝟎

𝒊  is the initial 

position given by centering the mean position at the normalized 

square of all the images from training set. Solve  𝑹  and 𝒃 by 

minimizing the L2-loss function: 

argmin
𝑅𝑘𝑏𝑘

∑ ∑ ‖∆𝑥∗
𝑘𝑖 − 𝑅𝑘∅𝑘

𝑖 − 𝑏𝑘‖
2

𝑥𝑘
𝑖𝐼𝑖                                    (9) 

Applying the update rule in Eq.7 with 𝑹𝒌−𝟏，𝒃𝒌−𝟏  learned 

from the last step, new ∆𝒙∗
𝒌𝒊 and ∅𝒌

𝒊  will be computed, which means 

we generate a new training data. At the first step, we initialize k=0 

and ∆𝒙∗
𝟎𝒊 = 𝒙∗

𝒊 − 𝒙𝟎
𝒊 .  

As the number of iteration increase, the error between the 

current position and the hand-labeled landmark will decrease. The 

experiment showed that the results tend to converge after about 5 

steps.   

In practical training, the premature convergence cases occur 

because of limited data size, which will influence the length of {𝑹𝒌} 

and {𝒃𝒌} and worse the detecting results. 

 

2.2.4 Detecting phase 

During detection, given the test image 𝑰𝒕, descent direction 

  {𝑹𝒌} and constant {𝒃𝒌}  learned from training set and mean 

position 𝒙𝟎
𝐭 , the aim is to calculate the landmarks according 

to the model trained from training set and the information 

from test images. The specific approach is as follow: 

Calculate the feature vector extracted at present landmark 

locations from  𝒙𝟎
𝐭 , iteratively update the current position 

using Eq.7, and then output the convergent result.  
 

2.2.5 ROI extraction 

Since the purpose of the palm landmarks detection is correctly 

selected the palmprint region, which called Region of Interest (ROI) 

as shown in Figure 1. We choose 4 points at the valleys between the 

fingers (Point A, B, C, D). These 4 points are also chosen by many 

other approaches because they are sufficient for ROI determining. 

Line up Point B and Point D to get the X-axis of the ROI coordinate 

                                                                 

 

 
1 The dataset is available upon request for research purpose. 

system. Draw a line passing through Point C which is perpendicular 

to the X-axis, and another line passing through Point A which is 

parallel to the X-axis. The cross point of those two lines is the center 

of the ROI square. The length of the side is set according to the 

length of Segment BD. After normalization, the extracted ROI 

images can be sent to a palmprint recognition system. 

3. Experimental Results 

3.1. Hand image dataset 
We set up a dataset1 of hand images in complex background 

for development and testing of the palm graph based landmarks 

detection approach. 1,112 images were collected from 75 

individuals. Images were taken by smartphone cameras with a fixed 

size of 512*512. Examples of the images are shown in Figure 2. In 

order to facilitate the performance of the proposed method 

realistically, palm of each person was imaged with different 

scenarios including the change of backgrounds, positions, rotation 

degrees and lighting conditions. More specific requirements are as 

follows: (1) People are asked to present their palms toward camera 

with spread fingers. The whole hand from fingertips to the heel of 

the hand should be contained in the image. (2) Each person is asked 

to put his or her left hand in different complicated backgrounds and 

white backgrounds. (3) Users are also asked to rotate their hands 

with different degrees and different distance to the camera. (4) To 

obtain the images in various lighting conditions and make the 

sample more representative, we captured the images under different 

occasions and in different time. After image collection, we marked 

the landmarks manually. 

3.2.  Detection accuracy 
We use the point-to-point errors metric to measure the 

performance. For each image, normalize the Euclidean distance 

between the detected landmark points ( 𝒙𝒕 ) and corresponding 

reference landmark points( 𝒙∗
𝒕) by the distance from the first valley 

point between the thumb and forefinger to the fourth valley point 

between the little and ring fingers (𝒅𝑨𝑫 ). The relative error (�̃�) 

represents the accuracy of the algorithm: 

  �̃� = ‖
𝑥𝑡−𝑥∗

𝑡

𝑑𝐴𝐷
‖                                                                         (10) 

 

 
 

 
Figure 2. Examples of landmarked images from the palm dataset. Hand positions and poses vary significantly between users. 
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After calculating the errors of all the images in the testing set, 

cumulative accuracy curves are given to show the percentage of 

images which have normalized errors under a threshold level in all 

the testing images. The reliability of detection ability increase with 

the steepness and rate of climb of the cumulative curves.  

We conducted several experiments on the palm dataset we set 

up. The dataset was divided into two parts as training set and test set. 

Training set contains 356 images which were carefully selected to 

ensure the representation ability of the variations on the shape and 

background of the palm images. And the left 756 images are 

contained in the test set. Two performance metrics are used on the 

test set: One is the average normalized error mentioned above. The 

second one is the cumulative error curve. Figure 4 shows the 

visualized detecting results. 

We classify the testing set in order to compare the 

performances in different conditions including the backgrounds and 

the degrees of hand rotation. 

We compared the performances on the images taken in white 

background with images taken in complex background. Figure 3(a) 

shows the results on both two sets. It can be seen that the method 

can get good results in complex background as well as white 

background. We also compared the performance of different 

rotation degrees on the test set. The result can be seen at Figure 3(b). 

The rotation of the palms within a range of 30 degree has little 

influence of the detection accuracy. Figure 3(c) shows the validation 

error for the four different landmark points. The average normalized 

error comparisons are shown in Table 1. (Table 1. (a) Gives the 

normalized error values of different type of backgrounds. Table 1. 

(b) Gives the normalized error values of each points. Table 1. (c) 

Gives the normalized error values of with different degrees of 

rotations.) 

 
(a) 

  
(b)  

 
(c) 

 

 
 Figure 3. Cumulative error curves on the test set.  (a) Errors of the 
palms in white background and complex background are compared. 
(b) Errors of the 4 points are compared. Point A represents the 
landmark between the thumb and the forefinger. Point B and Point C 
represents the two valley points around the middle finger. The fourth 
valley point between the little and ring fingers is represented by 
Point D. (c) Errors of the palms with different degree of rotations are 
compared. 
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0°

10°-30° to the left

10°-30° to the right

30°-45° to the left

30°-45° to the right

Table 1. Comparisons of average normalized errors. 

Background Complex White 

�̃� 0.05 0.04 

 
(a) 

 

Point Pt. A Pt. B Pt. C Pt. D 

�̃� 0.08 0.04 0.04 0.05 

 
(b) 

 

Rotation 
degree 

0° 
10°- 30° 

(left) 

30°- 45° 

(left) 

10°- 30° 

(right) 

30°- 45° 

(right) 

�̃� 0.04 0.05 0.06 0.09 0.13 

 

(c) 
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The proposed method was compared with the AAM method 

that utilizes shape and texture information [6] [11]. In [6], the 

maximum deviation from the landmark points of the reference 

model are 4.5%, while ours is 4.1%. It can be seen that the proposed 

method achieved higher accuracy than the AAM method. 

Furthermore, most of the methods like AAM method mentioned 

above are tested on images that collected from fixed camera systems 

with relatively fixed postures. While our dataset has the most 

complex background and the least constraints of postures, lighting 

conditions and rotations. It can be concluded that the proposed 

method has better performances and can be used in more complex 

situations. In terms of time complexity, the proposed method 

introduced a little overhead. The detecting stage is real-time. The 

algorithm is implemented in C++ and takes 0.05 second to process 

one image on an Intel i7-3700 CPU. 

3.3. Error analysis  
It can be noticed from Table 1 that different orientations of 

palms to the left and right have different performances. The reason 

is that because our system is applied on the smartphone and most 

users are right-handers, when taking the palm images by themselves, 

they tend to lean their left hands to the right. In order to adapt to the 

reality conditions, we put more right-slanting hands into the training 

set than the left-slanting hands. 

The first point between the thumb and the forefinger has a 

worse detection accuracy compared with other points, as shown in 

Figure 5. It can be attributed to two reasons. The change of the arc 

between the thumb and the forefinger is larger than the other three 

points. In addition, due to the wide radian, the point-to-point error 

measurement is not very suitable because the landmark cannot be 

defined at a specific point. 

However, the first point is not as important as the other 3 

points in finding the ROI of palm, the worse performance of 

the first point will not lead to a bad influence for the follow-

up work of palm recognition and identification.  

 

4. Conclusions 
This paper shows that SDM is suitable for palm landmark 

detection in unconstrained environment. The performance of the 

method is tested on the dataset, which has been constituted with the 

hand images taken by low-resolution camera on the smartphone 

under unconstrained background and lighting condition. As the 

experiments show, the proposed method achieves accurate palm 

landmark localization within a certain angle of orientation in the 

wild. 

In future work, we plan to collect a significantly larger dataset 

of palm images and use this dataset to build a better training set to 

get more accurate results. And apply the palm landmark detection 

method to a complete palmprint identification and verification 

system on mobile devices. Furthermore, we will focus on the 

mathematical theory of SDM to have a deeper analysis of the 

convergence properties and make it more adaptable to palm 

landmark detection. 
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Figure 5. Examples of inaccurate test results. The first point between 
the thumb and the forefinger has a worse detection accuracy. 
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