
MultiMo: A Multimodal University Evaluation Software De-
signed for High Response Rates and Usability
Sebastian Müller, Max Gregor, Raoul van Rüschen, Rico Wildenhein, Reiner Creutzburg, Martin Christof Kindsmüller
Brandenburg University of Applied Sciences, Department of Informatics and Media, P. O. Box 2132, D-14737 Brandenburg, Germany

Abstract
This paper presents a software solution of the evaluation

problem faced by universities. The software consists of a REST
- server application and to date an Android client. The software
features automated processing of given answers, independency of
location, a flexible data model supporting multiple questionnaires
and an multimodal interface designed to be used effectively upon
first encounter. While our approach aims to support a high par-
ticipation rate of the evaluations it is currently tested in a live
environment to see if it reaches this goal. Findings of these tests
will be presented at the conference.

Motivation
In Germany universities are bound by law to evaluate their

courses at the end of each semester. The evaluation is based of the
opinions of participating students. At our university two depart-
ments (Engineering and Economics) had introduced web based
solutions, but that had let to a decrease in participation in com-
parison to the former paper based solution. That is the reason
our department (Computer Science and Media) still relies on the
paper based approach which is conducted within one of the last
lectures of a course and analyzed manually afterwards. In this
contribution we present a software solution that aims to automate
the analyzis process while maintaining a high participation rate.

Objective
The objective of this project is to create a system for evalu-

ating university teaching that does not fall behind a paper based
solution but instead makes the process more efficient. Therefore
it has to meet six main prerequisites:

1. The anonymity of the participants must be guaranteed.
2. The risk of compromising data or information theft through

an attacker has to be minimal.
3. The software must be designed to be easily usable by stu-

dents as well as tutors.
4. The speed with which the students can vote must be as fast

as the paper based approach allows or faster.
5. The quality and the quantity of the answers must be as high

as the paper based approach or higher.
6. The analysis of an evaluation must be fully automated.

To meet the third requirement it is not only necessary to craft an
accessible design but also to support multiple kinds of clients for
platforms that are used by today’s students.

Workflow Description
We developed a prototype of two clients for Android and

windows phone and a backend server software. The Android

client has reached production stage and will be further discussed
within this contribution. Additionally, we have developed a web
interface for the tutor(s) of a course which can be used to man-
age evaluations. Furthermore we developed strategies to ensure
anonymity and security of the data and implemented them into
the prototypes.

Our goal was to design the clients in such a way that the
workflow resembles the paper based approach. We guaranteed
that it is possible to combine the old paper based questionnaire
with our new automated approach. So that students without a
supported smart phone or unwilling to use the software solution
can participate the old way. The workflow of the different clients
differs only regarding system specific design guidelines. Thus the
following workflow description applies to both clients.

First the tutor opens the aforementioned web interface in his
browser and uses his university account information to log in and
verify his identity. He or she then has the option to create a new
evaluation. In order to do so the tutor first has to enter some basic
information. The most important one is the number of participat-
ing students since it determines how many tickets are created in
the following step. Figure 4 shows the frontend page to create a
new evaluation in its mobile version. With these information the
backend creates a PDF file which contains all tickets for this eval-
uation. The tickets are stored within QR codes. The QR code con-
tains the address of the backend-server as well. This is to ensure
that the clients are independent of the server location. Therefore
each department can host their own server, so that sensitive eval-
uation data stays within the the boundaries of the infrastructure of
the department. The tutor can now hand out these QR codes to the
students. The students use the client app applicable for their smart
phone architecture to scan the QR code (as seen in figure 2). The
app automatically tries to connect to the backend server. It sends
the ticket and a unique session ID generated beforehand. This ID
is generated after the app was started and is discarded upon fin-
ishing the evaluation, scanning in another QR code or closing the
app. Upon retrieving the ticket and the unique ID the server stores
them together in the database. Is the same ticket send with another
unique ID the server knows that another user tries to use the same
QR code and stops him or her from using this particular code. As
soon as the student sends his evaluation information back to the
server the unique ID is erased from the database. Upon closing the
evaluation the server automatically deletes all remaining entries.

If the ticket sent to the server is valid, the server sends all in-
formation needed for this evaluation, including all questions and
answers, to the client. Upon retrieving all information the stu-
dent is asked to determine his study path. In the next step the
student enters the voting phase in which one is able to answer
all questions previously send. These questions are displayed in a

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.7MOBMU-303

IS&T International Symposium on Electronic Imaging 2016
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2016 MOBMU-303.1



predefined order. The students can go through the questionnaire
following this predefined order or use the menu to jump to any
question they want. Upon sending the vote the server once more
verifies the validity of the ticket and, if the ticket was valid, stores
the answers in the database. At this point the ticket can only be in-
valid if the evaluation was closed before the ticket was send back
to the server. The exchange of the unique ID at the beginning
ensures that a scenario in which a student must repeat answering
the questionnaire because his or her QR code was already used
cannot occur. After sending the data back to the server the app
deletes said data including taken images and closes itself. The
web interface on the backend server shows the number of com-
pleted questionnaires (see figure 3). This enables the tutor to end
the evaluation as soon as all students have voted.

After all students have send their votes, the tutor can close
the evaluation within the web frontend. The server then generates
an excel file containing all answers of every student. If there were
students not using our software based solution the tutor can man-

Figure 1. Frontend interface for creating a new evaluation

Figure 2. First screen of the app: Scan a QR code ticket to proceed

Figure 3. Frontend in mid-evaluation

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.7MOBMU-303

IS&T International Symposium on Electronic Imaging 2016
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2016 MOBMU-303.2



ually add their information to the excel file (like it was done in the
paper evaluation in the last 10 years). Note that the student is at
no point forced to enter login data or other information that could
lead to the discovery of their identity. At no point does the client
send user or smart phone specific data. Therefore there is no data
processed or stored in the system, that allows for revealing the
identity of the student.

Design Description
The main goal when designing the app was to ensure easy ac-

cessibility. Under these circumstances the app had to be designed
in a way that users can immediately start to work with it and do
not need to think about the purpose of some interface elements. In
fact the app should be as easy to use as a paper questionnaire, i.e.
without consulting a manual or training (walk up and use situation
[18]). Therefore we refrained from using exotic or custom inter-
face elements and instead only used elements that we expected
the user to be accustomed to through the usage of other apps on
their smart phones.

Figure 4 shows the Android app in a mid-evaluation state.
Currently one of the three supported question types is displayed.
In the next section the elements of the interface of a generic sin-
gle choice question are explained. The standard way of navigating
to the next or to the previous question is by applying horizontal
swipe gestures. The user can discover this by a self revealing ges-
ture [3]. Touching the screen reveals the possibility to swipe. The
affordance [2] ”swipe me” is additionally supported by showing
the other questions left and right as signifiers. The toolbar at the
top of the screen shows a ”burger menu” which on touch opens
up a navigation list to jump directly to other questions. Below
the toolbar a pager tab strip is used to show the number of the
currently displayed question and the number of questions overall.
Below that the text of the question is placed followed by a num-
ber of buttons representing the possible options for this question.
The app supports questions from two to seven options whereas
”not applicable” is an option always included and placed verti-
cally at the right edge of the screen. If a button is pressed the app
automatically navigates to the next question visually marking the
chosen answer in the process so that when a user returns to this
question he or she sees which answer was chosen before. As seen
in figure 5 the app also supports questions with bipolar answering
schemes.

We use a traffic light inspired scheme to colour the buttons
to enable the user to better and faster judge in which directions
the Likert Scales [4] are poled.

Besides single choice questions our app also supports open
ended questions. Figure 7 shows the interface for this kind of
question. Below the question a text input box was added to sup-
port long texts with multiple lines. As we strived to make our
app as easily accessible as possible we encountered the problem
that typing answers can be perceived as cumbersome. While it is
possible with our app to use Google Nows speech recognition to
transform speech into text it compromises the privacy of the user
if someone were to eavesdrop their spoken answer. As a solution
to this problem we implemented a camera functionality to give the
users the possibility to write down their answer and take a photo
of it instead.

As can be seen in figure 7 a taken picture is placed below
the edit text field. A press upon it enlarges the picture so that the

student is able to confirm if the text is readable (figure 6). Upon
entering such a question a camera symbol appears in the toolbar.
Touching it opens the native Android camera app. The third sup-
ported question type is a numerical text question. Internally it is a
text question with constraints. Namely that only numbers can be
typed into the edit text field. For this kind of question the camera
functionality gets deactivated.

Implementation
The core of our solution is a REST[1] based backend server

application with a SQL database. It uses Spring Boot[15] as a
framework and multiple libraries such as Lombok[8] and Joda
Time[12] to ease the development process. The following sec-
tion describes which libraries are used and what features were
realised with them. ZXing[9] is used to generate QR codes which
are then stored in a PDF document created with Apache PDF-
Box[10]. Thymeleave[11] is used to design the frontend of the

Figure 4. Android app in mid-evaluation. Showing interface with Likert

Scale rating question

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.7MOBMU-303

IS&T International Symposium on Electronic Imaging 2016
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2016 MOBMU-303.3



server side and Apache POI[17] is used to create the Excel docu-
ment after an evaluation has ended.

Currently the Android client implementation has reached
production stage. The following section describes how the fea-
tures mentioned in the chapter Design Description are imple-
mented. The Android client uses multiple libraries to enhance
the development process of certain features. The network com-
munication with the backend server is realised with Retrofit[14].
ZXing is used on the client side as well, here to read the generated
QR codes. Jackson 2[13] is used to transform Java objects into
instances of String which are representing the encoded objects as
JSON thus making it possible to easily transmit those objects over
the network.

One of the more complex problems to solve was the im-
plementation of image processing that does not block the main
thread, does not clutter the storage of the smart phone with un-
needed images or causing an out of memory exception effectively
crashing the app. For this to understand it is necessary to know

Figure 5. The most positive answer is placed in the middle of all options

that Android uses the bitmap format to store images in RAM. If
the user takes a photo with the built-in camera and an app tries to
display it as it is it can cause an out of memory exception since
the camera takes images in an resolution that is most of the times
far greater than the RAM allocated for one app can handle. To
reduce the size of the image in memory it must be scaled down.

In the app there are three variants needed for each picture
taken. The first variant, visible in figure 7, is a thumbnail dis-
played directly below the answer. The second variant is needed
when touching the thumbnail. As already mentioned in Design
Description an enlarged version will be displayed. This image is
scaled so it fits the whole screen. The last variant is the image
that is send over the network. Besides being rescaled it is also
transformed into a JPEG image to reduce network load. The cre-
ation of all three image variants must be done on a different thread
than the main thread. The CPU heavy operations would other-
wise render the user interface unresponsive. To solve the issue of
transforming the image into a JPEG file in a background thread

Figure 6. Figure shows the app after a touch on a thumbnail

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.7MOBMU-303

IS&T International Symposium on Electronic Imaging 2016
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2016 MOBMU-303.4



the library RXJava [6] is used in conjunction with RXAndroid[7].
Those libraries introduce a multithreadable observer pattern into
the app environment. The library Picasso [5] is used to display the
thumbnail and the enlarged version. This library manages caching
and prevents the aforementioned out of memory exception. Lastly
to prevent cluttering of the storage an Android Service is used.
Such a service runs in a background thread and can, if correctly
configured, run independently from the app it was started from.
The service implemented in our project has no other function than
to listen when the app is closed. When Android notifies this lis-
tener the service loops through all stored images related to our
app and deletes them sequentially. Afterwards it stops itself. This
approach is needed since Android itself defines when an app is
closed and removed from memory. The development tools used
for the different clients and for the backend are Visual Studio for
the Windows Phone app, Android Studio for the Android app and
IntelliJ for the development of the backend software.

Figure 7. Interface for text based question. Photo thumbnail displayed

below text field.

Preliminary Result
Up until now three courses were evaluated using the Android

app. In total 61 students evaluated their course with the app suc-
cessfully. Some students of these courses had to use the paper ver-
sion due to a lack of an Android smart phone or were unwilling to
use the new app. 6 students tried to use the client but were unable
to due to an exception that ended the app. 3 students were unable
to install the app probably due to the fact that their smart phones
used a different language than is currently supported by the app.
This needs further investigation. The following section describes
the findings of the first evaluated course. The data of the other
two is currently in the process of further analysis. The course had
16 attendants. Of those 16 all used the MultiMo app. Of those 16
students one was not able to install the app but was able to vote
with another smart phone. One student was not able to vote the
first time because the app crashed before he could send the data.
The high participation was supported by 5 pre-configured smart
phones that were lent to the students without a suitable Android
smart phone. It was also observed that students shared their smart
phones once they were done. Other observations were:

1. Text answers were slightly shorter compared to the paper
versions over the last years.

2. Nobody used Google Now (speech recognition).
3. Nobody took a picture.
4. Nobody used the paper version instead.
5. Execution time was 20% increased compared to the paper

version. This was due to the time needed downloading the
app and due to the lack of experience the users had with the
new software. The core of the evaluation was faster than
with the paper version. We expect that in the long run the
time needed will be equal for both approaches.

6. The tutor rated the app as innovative and work load reduc-
ing. He was pleased when he learned that no manual cre-
ation of excel files was needed anymore.

In addition to these observations a heuristic evaluation [19]
with 16 usablity experts revealed some further problems with the
beta version: Many students complained that it is not possible to
delete a picture in the app. Currently a picture can only be re-
placed when another one is shot. That means once the picture
feature is used for one question it is not possible to not send a pic-
ture to the server for this particular question. Another requested
feature was that the enter button of the keyboard, displayed when
answering text answers, leads to the next question as soon as
touched. As a button touch also leads to the next question this
would improve the behavioral consistency of the app. On cer-
tain smart phones the pictures taken were not displayed. That is
most certainly related to a bug occurring in specific Android ver-
sions provided by specific vendors. Those versions do not prop-
erly store the taken image in the storage of the smart phone. As
it is not guaranteed that these vendors fix these bugs in the future
a generic workaround for this issue must be found. A severe bug
causing the app to crash occurred seldomly in all three courses.
This bug is caused when the app is pushed into the background
by the user. Apps waiting in the background are exposed to An-
droids self-optimization mechanics. If Android decides that the
RAM allocated for a background app is needed for a different
process this allocated RAM is cleared and reallocated once the
user decides to return to the app. For MultiMo this behaviour has

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.7MOBMU-303

IS&T International Symposium on Electronic Imaging 2016
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2016 MOBMU-303.5



fatal consequences since all questions and answer as well as the
ticket and the generated unique ID are stored in RAM. To circum-
vent this issue a library was implemented prior to the tests in the
courses saving the data to the smart phone storage every time it
is changed. Obviously there are still some flaws that need to be
fixed.

Outlook
MultiMo is currently under revision to get the stability and

usability issues fixed. The next step will be a more comprehensive
field test. At this point we have some preliminary evidence that
our approach is able to maintain the high response rate of the pa-
per based solution. But further investigation is necessary before
we can make this claim. It is counterproductive to high partici-
pation if some students cannot use the software solution due to
a scarcity of supported devices. Therefore the main goal for the
future must be to create clients for all smart phone architectures
that are used by todays students. Namely the Windows Phone app
must be developed further until it reaches the level of the Android
app. It is also planned to develop an iOS app and a web-based
app following the Responsive Web Design principle introduced
by Marcott [16]. Our app currently only supports three question
types. It is also planned to further the functionality of the fron-
tend. Currently all questionnaires need to be hard coded into a
specific backend class. It would be better if the frontend sup-
ported a way to add a new questionnaire without the need to shut
the server down and recompile the backend. Our first ideas in this
direction are to allow either a file upload or to create a form in
whose fields all information must be entered. Implementing the
file upload solution would need an implementation of a parser on
the backend side which processes the uploaded files. In order to
enable our parser to add the questionnaire supposedly contained
in the uploaded file to the database the file has to be formatted
in a specific way. Another feature that will be implemented in
the coming versions are ad hoc questions which can be added by
any tutor to the predefined questionnaire in order to get informa-
tion about course specific aspects. The security specialists of our
university have volunteered to put the security measurements we
have taken so far under stress, trying to find ways to improve those
measurements in future releases.

References
[1] Fielding, R. T. (2000). Architectural Styles and the Design of

Network-based Software Architectures. (Diss., University of Califor-
nia, Irvine, CA).

[2] Norman, D. A. (2013). The Design of Everyday Things. New York,
NY: Basic Books.

[3] Wigdor & Wixon (2011). Brave NUI World: Designing Natural User
Interfaces for Touch and Gesture. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

[4] Likert, Rensis (1932). ”A Technique for the Measurement of Atti-
tudes”. Archives of Psychology 140: 1–55.

[5] Square (2013): A powerful image downloading and caching library
for Android. Available online: http://square.github.io/picasso/ Last
visited: 2016-01-08

[6] ReactiveX (2012): Reactive Extensions for the JVM. Available on-
line: https://github.com/ReactiveX/RxJava Last visited: 2016-01-08

[7] ReactiveX (2013): Reactive Extensions for Android. Available on-
line: https://github.com/ReactiveX/RxAndroid Last visited: 2016-01-

08
[8] Reinier Zwitserloot (2009): Very spicy additions to

the Java programming language. Available online:
https://github.com/rzwitserloot/lombok Last visited: 2016-01-08

[9] zxing (2013): Official ZXing (”Zebra Crossing”) project home. Avail-
able online: https://github.com/zxing/zxing Last visited: 2016-01-08

[10] Apache (2002): Apache PDFBox - A Java PDF Library. Available
online: https://pdfbox.apache.org/ Last visited: 2016-01-08

[11] THE THYMELEAF Team: thymeleaf. Available online:
http://www.thymeleaf.org/index.html Last visited: 2016-01-08

[12] JodaOrg (2002): Joda-Time is the widely used replace-
ment for the Java date and time classes. Available online:
https://github.com/JodaOrg/joda-time Last visited: 2016-01-08

[13] FasterXML (2009): Jackson Release: 2.0 Available online:
http://wiki.fasterxml.com/JacksonRelease20 Last visited: 2016-01-
08

[14] Square (2010): A type-safe HTTP client for Android and Java Avail-
able online: http://square.github.io/retrofit/ Last visited: 2016-01-08

[15] Pivotal Software (2012): Spring Boot. Available online:
https://github.com/spring-projects/spring-boot Last visited: 2016-01-
08

[16] Ethan Marcotte, Responsive Web Design, A Book Apart, New York,
NY, 2011

[17] Apache (2002): Apache POI - the Java API for Microsoft Docu-
ments. Available online: https://poi.apache.org/ Last visited: 2016-
14-01

[18] DIN ISO 20282-1:2008-10 (E), Ease of operation of everyday prod-
ucts - Part 1: Design requirements for context of use and user char-
acteristics (ISO 20282-1:2006). Geneva, Switzerland: International
Organization for Standardization

[19] Nielsen, J. (1994). Heuristic evaluation. In J. Nielsen & R.L. Mack
(Eds.), Usability Inspection Methods. New York, NY: John Wiley &
Sons.

Author Biography
Sebastian Müller, Max Gregor, Raoul van Rüschen and Rico

Wildenhein received their Bachelor of Science in 2014 and are now in the
process of acquiring their respective Master of Science at Brandenburg
University of Applied Sciences.

Martin Christof Kindsmüller studied computer science, psychology
and media arts and sciences at Karlsruhe Institute of Technology
(KIT), Germany, Berlin University of Technology (TUB), Germany
and Massachusetts Institute of Technology (MIT), Cambridge, MA,
USA. He holds Master degrees in computer science and psychology
from TUB and a PhD in natural sciences from Humboldt Univer-
sity Berlin. He is now professor for Human Computer Interaction and
Mobile Computing at Brandenburg University of Applied Sciences (THB).

Reiner Creutzburg studied Math and Physics at Rostock University
and took his Ph.D. in Math in 1985. His research interests include,
digital signal and image processing, image compression, computer
security and forensics, Internet of things and mobile systems security. He
is a Professor of Applied Computer Science since 1992 at Brandenburg
University of Applied Sciences in Brandenburg, Germany.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.7MOBMU-303

IS&T International Symposium on Electronic Imaging 2016
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2016 MOBMU-303.6


