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Abstract
A distinguishing element of the different models in the

Retinex family, is the process by which the space surrounding the
target pixel is explored. Several models use a process define
in terms of repeated sampling, prescribe to compute a synthesis
quantity out of each pixel sample and finall to take an average
of those quantities to determine the output. For instance, in MI-
Retinex each sample is define by a memoryless random walk,
connecting a randomly chosen reference pixel to the target, while
in RSR the sample is define by a random set of points centered on
the target; in both the averaged quantity is a suitably computed
sample maximum. Here we discuss the advantages that arise from
a probabilistic reformulation of each of those statistical sampling
process, with reference to two recently formulated Retinex mod-
els: ReMark and QBRIX. In those two algorithms the sampling-
computing-and-averaging process is replaced by the direct calcu-
lation of the sampling means of the synthesis quantity, out of the
whole population of possible samples. In QBRIX – inspired to
RSR – this corresponds to computing, for each pixel, the proba-
bility that it becomes the maximum of a spray: overall it reduces
to the determination of a high quantile of the histogram of pixel
intensities. In ReMark – based on MI-Retinex – this corresponds
to computing, for each pixel, the probability that it represents the
last point of reset, before the random walk meets the target: this
entails rethinking the process as a Markov Process and comput-
ing its absorption probabilities, by solving a linear system. In this
work, we compare informally the two approaches and argue that
reasoning in terms of population models can bring new insight
into the features of the distinct Retinex variants and highlight con-
nections and differences among mathematical models.

Introduction
The Retinex model by Land and McCann [1, 2] is a model of

the Human Vision System (HVS) consisting in some well estab-
lished core elements and in some other elements, which, along the
years, have undergone several different formalizations. Among
the variants of the model, some are based on a repeated sampling
and averaging process: here we focus on two specifi sampling-
based models, MI-Retinex [3] and RSR [4].

Repeated sampling is a process that can either be enacted,
as in MI-Retinex and RSR, to compute the average of a sample
define quantity f (e.g. the maximum intensity of the sample),
or be modeled probabilistically. In the second case one can, in
principle, obtain the limiting value of the average by computing
the mean of f over the population of all the possible samples.
Hereafter we refer to those algorithms that prescribe to enact the
repeated sampling as sampling based models, and to those algo-
rithm which attempt to compute the mean of the sample based
quantity out of the population of all the possible samples as pop-
ulation based models, the short for sampling population models,
or sampling distribution models.

In this note we describe MI-Retinex and RSR and then re-
view their probabilistic formalizations , respectively ReMark [5]
and QBRIX [6]. The present work complements the formaliza-
tions in [5] and [6] by developing the discussion at an informal
level and by leveraging intuitive arguments. We focus on some of
the relationships among models and not on their ability to repro-
duce the HVS behavior.

We are aware that, in the case of ReMark, interesting links
with existing models could arise from the continuum-space limit
of the corresponding Markov Chains, and from the implied PDE
models; however, highlighting the differences with the existing
PDE models would require a careful and long discussion: due to
the complexity of the subject and to space limitations, this topic
is left outside the scope of the present paper.

The paper is structured as follows: firs we recall the defin
ing elements of the Retinex model; then we recall the definitio of
MI-Retinex and of its ”point spray” based approximation, RSR;
subsequently we present, in order of increasing complexity, the
population based representations of RSR (QBRIX), and the pop-
ulation based representation of MI-Retinex (ReMark). In each
case we point to merits and draw-backs of the sampling- and of
the population-based representations.

Retinex models
Among the core components of the Retinex algorithm for-

malizations are the chromatic channel separation, the reset mech-
anism and the thresholding mechanism. The firs component is
motivated by the observation that the HVS operates in three inde-
pendent retinal-cortical systems, processing respectively the low,
middle and high frequencies of the visible spectrum: algorithmi-
cally it translates into the prescription that each channel has to
be processed independently of the others. The reset and thresh-
olding mechanisms are motivated by the observation that color
sensation, and consequently color appearance, are not based on
the color stimulus at the point, but rather on the relative spatial
arrangement of the stimuli in the observed scene [7]: both inten-
sities and gradients take part into the determination of the out-
put. Each Retinex system attenuates smooth changes in intensity
– arising for instance from gradients of the illuminant – and en-
hances sharp changes, i.e. the edges; furthermore, each Retinex
system estimates the appearance of a point by relating the value
in the point to a local reference white found within the image and
rescales all the intensities of the region with respect to that refer-
ence. Algorithmically, in the original path based formulation of
Retinex, these observations were rendered by a path-level mech-
anism, called reset, which would change the current reference
white whenever the path exploring the image met a new maxi-
mum, and by a step-level mechanism, called thresholding, that
would discount small intensity gradients found along the path.

Beside those well established elements, the early Retinex
formulations contain components which have been often reinter-
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preted and given different algorithmic formalizations: the most
relevant of those components is the space sampling process, i.e.
the process by which the space surrounding the target pixel is ex-
plored. This process contributes in a decisive way to the deter-
mination of a desirable feature of the HVS models, the so called
locality, which consists in the fact that the correction at a point
depends strongly on the input intensities of the closer regions and
weakly on those of farther regions. We return on locality later.

The space sampling process proposed in the early Retinex
formulations consisted in a pixel (or region) sampling guided by
a path whose deterministic or random character depended on the
implementations. Some relevant variants define by means of
path-based sampling are MI-Retinex [3], Termite-Retinex (TR)
[8], Energy-driven Termite Retinex (ETR) [9] and the algorithm
by Montagna and Finlayson [10].

In MI-Retinex [3] the paths are define as memoryless ran-
dom walks starting from a randomly chosen pixel and stopping
the firs time the path meets the target pixel. In Termite Retinex
[8] the paths are define by stigmergic random walks: each path
proceeds randomly but choses preferably the regions less visited
by the previous paths (the history of the previous paths is cap-
tured by a ”pheromone landscape” to which every path equally
contributes its ”pheromone trail”). In ETR [9] the paths are not
determined by a local search, but by a search in the path space:
the algorithm selects, from the collection of all paths connecting
a random starting points to the target, those that fulfil a set of spe-
cifi constraints: they are local minima of a complex energy func-
tional, taking into account the pheromone landscape, the distance
from the target and the intensity gradients. Finally the model by
Montagna and Finlayson [10] uses a pseudo-Brownian path, con-
strained so as to guarantee a lower bound to the number of visits
to each pixel, and an even average number of visits per pixel.

Besides the formalizations of the paths, other definin ele-
ments contribute to the diversity of Retinex variants: the combina-
tion of mechanisms is also open to different choices. For instance
in MI-Retinex the quantity computed along the path is used to up-
date the target pixel only; on the contrary, in the more classical
version by Land and McCann [1, 2] and in the version by Mon-
tagna and Finlayson, each pixel along the path is updated with the
information collected by the path up to that point.

MI-Retinex
In MI-Retinex (as in TR and ETR) the image exploration

process is based on repeated statistical sampling: each random
walk connecting the random starting point to the target provides
a sample of pixels; MI-Retinex prescribes to compute a synthe-
sis quantity out of each path and eventually to take an average
of those synthesis quantities to determine the output value at the
target pixel. The synthesis quantity from each sample is com-
puted (in each chromatic channel) by applying the reset and the
thresholding mechanism to the products of the ratios of intensi-
ties of subsequent pixels along the path: the thresholding consists
in forcing the ratio to one when it is within some small threshold
from the unit; the reset consists in forcing the product of the ratios
to one whenever it exceeds one (for a formal account see [5]).

Sometimes – since it has been observed [3] that the suppres-
sion of gradients has a minor impact on the output from most
natural images – the MI-Retinex model is implemented without
thresholding (we called this variant Reset-only MI-Retinex). In

that case the computation of the synthesis quantity out of a path
can be shown to reduce to the computation of the maximum in-
tensity of the set of pixels visited by the path. This quantity is
averaged over all the paths and used as a new reference white
level for the target, with respect to which the input is rescaled.

It is worth pointing out that applying the reset mechanism is
equivalent to enforcing a memory-loss to the path every time it
find a new maximum: in the Reset-only version, the value con-
tributed to the target for the computation of the reference white
level equals the intensity of the last reset point.

Locality
The combined effect of path-based exploration and memory

loss at reset points determines a desirable feature: the ”locality”
of filtering A filterin is local if the information received and
used at the target point comes preferably from nearby points. If
the information from a point is used equally over the whole im-
age, the correction is global. A prototypical example of global
algorithm is the von Kries filte , a.k.a. Scale-by-Max algorithm,
which looks for the maximum intensity present in the image and
uses that single value as the reference white level for all the pixels.

MI-Retinex is local by construction. In MI-Retinex locality
is due to two definin factors: a geometric factor and a mechanism
related factor. The geometric factor depends on the fact that the
algorithm uses those random paths that have an end at the target
and another at a uniformly randomly chosen point of the image:
as a consequence the points visited by the paths will be located
more frequently in proximity of the target (this locality determin-
ing mechanism is image-independent).

The second locality determining factor is built-in in the re-
set mechanism: due to the memory loss enforced by the reset
mechanism, the information arriving to the target is determined
by the closest reset point met by the path (this locality determin-
ing mechanism is image-dependent).

RSR
The Random Spray Retinex (RSR) [4] algorithm builds on

the modeling features formalized by the Reset-only MI-Retinex
and achieves a higher efficien y, by trying to retain most of the
qualitatively desirable features of the path-based algorithm.

The key observation of RSR is that one could replace the ex-
pensive process of random walk generation by a more efficien
one. The MI-Retinex process is inefficien in that the local search
of the target can take a very long time and in that intermediate
pixels visited several times do not bringing extra information.
The authors of [3] propose to substitute each random path by a
set of points – called spray – generated so as to loosely mimic
the path sampling: they choose to defin the spray as a set of
points sampled from a radially symmetric sampling profil (for-
mally, the process corresponds to an isotropic non-homogenous
Poisson point-sampling process with intensity decreasing as the
distance from the target increases).

In RSR, locality is obtained and controlled by the geometry
of the sampling profile i.e. by the speed of decrease as a function
of the distance from the target (for a recent variant of RSR see
also [11]).
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From sampling-based to population-based
representations

When the values obtained by computing a sample based
function f repeatedly over different independent samples are ag-
gregated by taking their arithmetic average 〈 f 〉, one can think of
the resulting quantity as of an estimate of the true mean µ f of the
sample based function. Often the latter can be computed with pre-
cision directly out of the reference population, without resorting
to sampling-computing-and-averaging process (which can yield
only approximate results, a potential source of noise).

Consider the following illustrative example. Take a random
uniform variable with values values i ∈ [0,1] (a density over the
continuous standard unitary interval). Consider a fi ed sample
size n. Choose n values randomly and independently, so as to
obtain the sample {i(s)k }nk=1 (the exponent s indexes the sample),
finall compute the maximum of the sampled values:

ms ≡max
{
i(s)k
}n

k=1
.

Pick a large but finit number N of fi ed size samples and repeat
the above procedure, i.e. compute, for each sample, the maximum
value ms; finall average the sample maxima:

µ̂m =
1
N ∑

s
ms .

This process can be thought as the computation of the estimate of
the true mean of the sampling maximum (a quantity which could
be in principle recovered only in the limit of an infinit number N
of samples). Note, in passing, that running this estimate procedure
several times (each time with N samples) would yield each time a
different value: the estimates fluctuat around the true value µm.

On the other hand, this process can be modeled probabilisti-
cally, considering the population of all the possible samples. The
probability (density) that a given value of i is the maximum of
a sample of n randomly and independently chosen values from a
uniform density is gmax(i) = ni(n−1), and its center of mass is

µm =
n

n+1
.

This corresponds to the exact value of the mean of the sampling
maximum, recovered by direct computation out of the population.

This toy example illustrates the relation between a sampling-
based algorithm to estimate the sampling maximum and the cor-
responding population-based computation.

Sampling-based and population-based methods are comple-
mentary to one another and are endowed with advantages and
drawbacks. Sampling-based methods are easy to formulate, offer
a direct perception of possible mechanism variants and mecha-
nisms approximations (consider for instance the relation between
MI-Retinex and its RSR approximation), however they are intrin-
sically noisy. MI-Retinex and RSR can be considered sampling-
based algorithms having the purpose of computing an estimate of
a given quantity (the white-reference level for a target pixel). As
such they can be affected by noise: repeating the procedure for
nearby pixels of similar intensity can yield perceptibly different
corrections, i.e. introduce noise into the filtere image. The price
to pay to avoid this effect amounts to using a large number N of
samples (the precision of the estimate scales with the usual square

root reciprocal law). So, both MI-Retinex (as the other path based
algorithms) and RSR are need in general a non-negligible compu-
tational effort to make the noise non perceivable.

Population-based methods, on the other hand are intrinsi-
cally noise-free, however they are in general more difficul to for-
malize and often entail a complex implementation. An advantage
of population-based models is that their form is, in a sense, closer
to the description of the output, so that they can give useful hints
about the outcome and suggest useful approximations. Moreover,
when the population-based model is an exact translation of the
sampling-based model, the parameters of the latter are in direct
correspondence to the parameters of the former, so one can more
directly appreciate the effect of a parameter value change. Fi-
nally such models can point to other high level models (e.g. links
among analytical models) and solution/computation tools (or ex-
clude that some tools can be used in the modeling).

QBRIX: a population model inspired to RSR
The general qualitative characters of the population-based

representation of RSR are rather straightforward to obtain from
the sampling-based model. RSR depends on a small set of param-
eters: the shape of the sampling profile the number of points n
in a sample (a spray), and the number N of sprays used for each
target pixel. Normally, with RSR, one filter an image by tuning
the parameters until a satisfactory output is obtained.

In a population model the parameter N can be thought as set
to +∞, so in a population model of RSR one is left only with
two parameters: n and the sampling profil . In order to appreciate
the qualitative features of the population-based representation of
RSR let us consider a fla sampling profil (the spray pixels are
sampled with the same probability from any point of the image),
and consider n as the only variable parameter. We call this model
global-RSR, or gRSR (due to the fla sampling profil the influ
ence of the pixels over the target does not depend on their distance
from the target): gRSR is a 1-parameter model.

Now let us reconsider the above toy example, i.e. imagine
taking samples of size n out of a uniform density: this density can
represent the idealized intensity histogram of a toy image whose
intensities are uniformly distributed over the interval [0,1] (no-
tice that, since the spatial sampling profil is flat the geometric
arrangement of the intensities in this image is irrelevant). How-
ever, let us introduce a key difference: out of each sample let us
compute, not the maximum intensity, but its reciprocal 1/ms and
finall take the average

µ̂ 1
m

=
1
N ∑

s

1
ms

.

This formulation corresponds to running gRSR(n) over the
input image: indeed the algorithm define the output value ôgRSR
of a pixel intensity based on the input value i of the pixel intensity
as ôgRSR = i ∙ µ̂ 1

m
, or, equivalently, using the reference white level

ŵ, define by the harmonic mean 1
ŵ = µ̂ 1

m
, as

ôgRSR =
i
ŵ

Now let us think of µ̂ 1
m
as to an estimate of the ”true” mean µ 1

m
of the sample-based function 1/m: thanks to the fact that we are
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using the above define toy image, it very easy to work out the
”true” mean and the corresponding ”true” reference white level
w = 1/µ 1

m
. It turns out that (for the details of the computations

see [6]) the gRSR reference white level over this image is

w= 1−
1
n
.

Based on this value, the output ogRSR of any target pixel of the toy
image can be computed out of the target input intensity i as

ogRSR =
i
w

= i
(

1−
1
n

)−1
.

An important observation at this point is that w corresponds
to a high quantile of the uniform distribution (it is the complemen-
tary quantile CQ( 1n ) = F(−1)(1− 1

n ) of the fraction
1
n ) and here

its value depends directly upon the only parameter of the gRSR
model, i.e. n. Specificall , the higher is n, the closer w is to 1
(the global maximum of the image). This is the starting point of
the QBRIX algorithm. Let us call gQBRIX the global version and
lQBRIX the local version of the algorithm: the equations above
can be rewritten as

ogQBRIX =
i
w

=
i

CQ( 1n )
= i/CQ(q),

where q can be used as a parameter of gQBRIX , in place of 1/n.
Of course in general the determination of w is not straightfor-

ward when the input image is not as simple as this one. Nonethe-
less, given the image intensity histogram, one can tune the filte -
ing by changing q until the output image is satisfactory. Further-
more, when the sampling profil is non-flat one can defin a local
version of the algorithm, lQBRIX , by which the program receives
in input, for each target pixel, not the original image intensity
histogram, but rather an histogram obtained by weighting the in-
tensities based on the distance from the target and according to
the spatial sampling profile We stress that lQBRIX is not the ex-
act population-based model corresponding to RSR, but rather an
approximation obtained on the basis of firs principles: whatever
the value of n in RSR, the reference white level will turn out to be
a high quantile of the distance-weighted intensity distribution.

More details and examples are given in [6], where the quan-
tile based algorithm is define and the effect of the approximation
is discussed more thoroughly, also considering the fact that the
RSR algorithm prescribes to include the target pixel in each spray.

Let us conclude the discussion about RSR by pointing out
that, thanks to the quantile view of RSR/QBRIX, one can estab-
lish a relation between known models: the von Kries/Scale-by-
Max filte , for instance, can be seen as a special case of gQBRIX ,
using the highest quantile.

In synthesis, the QBRIX algorithm is a population-based
model providing an approximation of the exact population-based
mapping out of a sampling-based model (in other cases an exact
mapping can be used, as illustrated below for MI-Retinex): the in-
sight provided by the new model suggests to use a new parameter,
closer to the description of the output, a high quantile value of the
intensity histogram (here indicated by 1− q): this implies that it
is the fraction q of top intensity pixels (weighted by their distance
from the target), that determines the reference white level.

ReMark: the population model of MI-Retinex
MI-Retinex samples the image by repeatedly generating

memoryless random paths, connecting a randomly chosen point
of the image to the target: each path brings to the target a contribu-
tion computed along the path by means of the threshold-and-reset
functional. For the sake of simplicity we limit the discussion to
the Reset-only version of MI-Retinex, whose distinguishing ele-
ment consist in the fact that the quantity computed along the path
reduces to the maximum pixel intensity.

The Reset-only MI-Retinex prescribes to consider a ran-
domly chosen starting point in the image, called (initial) refer-
ence, to build a memoryless random walk starting from that point
and to stop the walk the firs time it meets the target: this process
determines a sample, consisting in the collection of pixels visited
by the walk (each pixel can be visited several times, except the tar-
get, but to the outcome of the computation the number of visits has
no relevance). We indicate by n the number of distinct visited pix-
els, and the collection of their intensities by {i(x(γ)

k )}nk=1, where
γ is the index referring to the individual walk. Then (as in RSR,
which was inspired to this algorithm) the Reset-only MI-Retinex
prescribes to compute the maximum of the sample of values;

mγ ≡max
{
i
(
x(γ)
k

)}n

k=1
.

The path based pixel sampling and the following maximum com-
putation are repeated a large number N of times; finall the recip-
rocals of the sample maxima are averaged to obtain the reference
white value ŵ from

1
ŵ

=
1
N ∑

γ

1
mγ

and the output, from the target intensity i, as oMIRetinex = i/ŵ.
To provide a population-based translation of this process,

one has to compute a weighted sum, and weight the intensity of
each pixel by the probability that it becomes the maximum of a
reference-to-target path, then take the result as the white refer-
ence level to compute the output. The computation of the relevant
probability is non-trivial. In [5] this is accomplished by modeling
the joint process – consisting in memoryless random walk over
the image and in the the path functional computation – as a suit-
able Markov Process. Those models allow to consider at the same
time two levels of description: in our case, the description of the
walk displacement in the 2D geometric space of the image, and
the evolution of the information carried by the walk (the maxi-
mum intensity found up to the current step).

To represent the latter, in [5] a 3D embedding is used: two
dimensions are reserved to the displacement over the image (rep-
resented as a diffusive process) and the third to the displacement
in the 1D space of the carried information as illustrated in Fig.
1. Notice that to each reset point of the walk (a point where the
path has found a new maximum of intensity), corresponds a level
jump in the 3D representation: those points are seen as sinks of
the Absorbing Markov Chain by a level and as sources by another.

Notice also that the target is represented by different points:
the distinct target representatives are situated along the same ver-
tical: if the path meets one of those points it stops and contributes
to the target the value of the intensity level on which it is walking.
By using Absorbing Markov Chains one can compute for every
source point, situated on its its 2D coordinate and at its level of
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Figure 1. An example random walks from the 2D space representation (top) to the 3D Markov Chain representation (bottom). The different
colors in 2D space represent different intensities of a single chromatic channel: the closer the center of the image, the higher the intensity of
the region. In the Reset-only MI-Retinex [3] the 2D random walk carries the information about the latest intensity maximum found in exploring
the image. Every time a new maximum is found, the carried information is updated: the point of the image where the update takes place
is called reset point. This process can be modeled as a 3D Markov Process: two dimensions are used to model the spatial diffusion, the
third dimension to model the carried value: reset points correspond to upward jumps in the 3D representation. The target pixel x is pictured
by a vertical array of target representatives: each representative absorbs and stops the walk. The fraction of walkers absorbed by target
representative located at a level i corresponds to the probability pi that that level of intensity contributes to the target. ReMark [5] uses those
probabilities as weights to compute 1/w ≡ ∑i pi/i and takes w as new reference white level for a target x; then it computes the output o(x)
from the input i(x) as o(x) = i(x)/w.
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intensity what is the probability that a random walk starting from
there will be absorbed at in correspondence of a representative of
the target. One can also aggregate the sources from the same start-
ing level: the Absorbing Markov Chains provide the fraction of
the population of ”walkers” absorbed at each representative point
and use that fraction as a weight. Finally, by weighting the re-
ciprocal of the absorption levels by that weight one obtains the
desired reference white value for the target.

The actual computation consists in the inversion of a large
matrix, the so called Fundamental Matrix of the Absorbing
Markov Chain, derived from the transition matrix. Since the ma-
trix is sparse (each state is connected only to few neighbors) one
can manage to process even large images, despite the large num-
ber of states involved (bound superiorly by the number of pixels
times the number of levels). Still the computation of this exact
mapping of MI-Retinex is rather expensive. Nonetheless, if one
aims at producing noise-free filtere images, the algorithm, called
ReMark, turns out to be more efficien than the strictly memory-
less random walk of MI-Retinex [3] (further details in [5]).

As usual, the population-based model is characterized by a
lower number of parameters w.r.t. the sampling-based model. In-
deed, ReMark is define mainly by the spatial distribution of the
sampling profil used for choosing the starting point of the walk.
Instead, the corresponding sampling-based model, MI-Retinex, is
controlled by the following additional parameters: the number
Nre f of reference pixels sampled for each individual target; the the
number Nwalks of walks for each reference-target pair; the maxi-
mum length S of a walk, i.e. the maximum number of reference-
to-target steps that a random walk is allowed to take. The firs and
the second parameter control the noisiness of the output, the third
is used to control the execution time: in practical implementations
it is necessary to set this cutoff threshold because the convergence
of random walk local search for the target is exceedingly long.
Ideally in the corresponding population model, i.e. in ReMark,
all the three parameters are set to +∞.

The comparison of this ideal case can be used to probe the
limits of the necessarily finit values of some sampling model pa-
rameters. For instance, an observation that emerged in [5] points
to the fact that the parameter S, apparently a nuisance parameter,
has a perceptible role in controlling locality: comparing the Re-
Mark output to the MI-Retinex output for different values of S one
can see that it takes a very high cutoff value S in the number of
steps (of the order of 105 for a 100× 100 image) to approximate
adequately the ideal output.

Conclusions
Sampling-based Retinex models and population-based

Retinex models are complementary to one another – metaphor-
ically, as the individual tree view vs. forest view – and are each
endowed with merits and drawbacks. Original insights into the
modeled phenomenon can be provided by each type of model in-
dividually and by their mutual comparison.
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