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Abstract
The retinex theory of color vision has been a light of inspira-

tion for color researchers since its inception 50 years ago. It has
been adapted to work for different goals such as shadow removal,
high dynamic range imaging, or computational color constancy.
Back in 2007 a variational perceptually-based color correction
model related to Retinex was presented by Bertalmı́o and col-
leagues. In this paper we first comment on this model and later
we review different image processing applications that have been
obtained by performing small modifications to it, namely color
gamut mapping and image dehazing.

Introduction
The Retinex theory of color vision [9] has been a very pow-

erful influence for color researchers for almost 50 years. Retinex
postulate can be over-summarised to the following idea: the colour
of an object is not determined by the spectral composition of the
light reaching to the eye, but is determined by the comparison
between the three lightness values generated by this spectra at each
cone photoreceptor and the values generated by a white stimulus
spectra (considered to be the spectra of maximum radiance) in
all three bands. Edwin Land hypothesized that this effect was
happening either at the retina, the cortex, or at both levels, and
therefore he created the portmanteau word ’Retinex’ to express the
effect.

Therefore, the main question that arises is: how do humans
compare a particular color to a white reference that might be far
away in the scene? Land and McCann [10] solved this issue by
comparing points of the scene that are far apart through paths. This
path computation allowed the authors to define three main mecha-
nisms that should be accomplished: ratio, product, and reset. The
product and ratio mechanisms are based on their proposal for the
computation of the aforementioned comparison. First, this compar-
ison is considered to be the ratio between the points, and second,
this ratio is approximated through local comparisons among the
path, i.e. the ratio of the two end points can be decomposed as
the sequential product of ratios of each point of the path to the
following one. This leads to the reset postulate that claims that the
ratio between any point and its sequential one should be smaller
than a unity. If this does not happen, it means that the radiance
of the latter point is larger than the radiance of the previous point,
and we should reset the sequential product of ratios to one. In this
way, for any path, we will be always computing the ratio between
the end point and the point with maximum value along the path,

which is the approximation to the maximum radiance point [12].
Retinex has been characterized using diverse mathematical

formulations during all these years. The straightforward random
path-based computation presented by Land and McCann [10] has
been modified to consider various models such as random sprays
[13], Brownian motion [11, 14], or swarn termites movement [15].
Retinex has been also mathematically defined using minimizations
based on the Laplacian of the image [6] or variational-based energy
minimizations [7].

Bertalmı́o, Caselles, Provenzi and Rizzi presented a varia-
tional perceptually-based color correction model [2] that was later
proved to exhibit the main mechanisms of the original Retinex
explained above: ratio, product, and reset [1]. In this paper, we
will review on this particular method and its modifications to deal
with different image processing applications. In particular, this
model have been adapted to deal with color gamut mapping and
image dehazing.

This paper is organized as follows. In the next section we will
review the main characteristics of Bertalmı́o -et al.- model. Later
in sections 3 and 4, we will explain the modifications performed
to the model to deal with color gamut mapping and image dehaz-
ing, respectively. Finally, conclusions are summed up in the last
section.

Variational perceptually-based color correc-
tion

Bertalmı́o and colleagues [2] proposed an image energy func-
tional whose minimization complies with some very basic visual
perception principles, namely those of grey-world, locality and not
excessive departure from the original data:

E(I) =
α

2 ∑
x

(
I(x)− 1

2

)2
− γ

2 ∑
x

∑
y

w(x,y)|I(x)− I(y)|

+
β

2 ∑
x
(I(x)− I0(x))

2 , (1)

where α,β and γ are constant and positive weights, I is a color
channel (R,G or B), w(x,y) is a normalized Gaussian kernel of
standard deviation σ , and I(x) and I(y) are two intensity levels at
pixel locations x and y respectively.

This model can be understood as a competition between three
different terms. With a positive sign, there are two attachments:
one to the original image and another to 1

2 , which is the expected
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mean of the image after white patch. With a negative sign, there is a
contrast maximization term. In this way, the images resulting from
the model represent a contrast-enhanced version of the original
image without deviating too far it and staying closer to 1

2 .
The authors proved that the solution to the minimization of

Eq. (1) can be found as the steady state of the evolution equation

Ik+1(x) =
Ik(x)+∆t

(
α

2 +β I0(x)+
γ

2 RIk (x)
)

1+∆t(α +β )
, (2)

where the initial condition is Ik=0(x) = I0(x). The function RIk (x)
indicates the contrast function:

RIk (x) =
∑y∈I w(x,y)s

(
Ik(x)− Ik(y)

)
∑y∈I w(x,y)

(3)

where x is a fixed image pixel and y varies across the image. The
slope function s() is a regularized approximation to the sign func-
tion, which appears as it is the derivative of the absolute value
function in the second term of the functional; in the original paper
the authors choose for s() a polynomial of degree 7. In this work
we review two image processing applications where the model of
Bertalmı́o -et al.- has been adapted to work, namely color gamut
mapping and image dehazing.

Color gamut mapping
Color gamut mapping deals with the problem of modifying

the gamut of an input image to make it consistent with the gamut
of a particular device (printer, screen, projector, etc...). Generally,
two different possibilities are considered: i) the gamut of the
image should be reduced to fit into a smaller destination gamut
(called gamut reduction), or ii) the gamut of the image should be
increased to better cover a bigger destination gamut (referred as
gamut extension). In a recent work, Zamir -et al.- [18] modified
the model of [2] to perform gamut reduction and extension; this
involved two significant modifications. First, they considered the
mean of the original image as the expected mean for the final
image (this modification was already applied in [3]). In this way,
the new functional was defined as

E(I) =
α

2 ∑
x
(I(x)−µ)2− γ

2 ∑
x

∑
y

w(x,y)|I(x)− I(y)|

+
β

2 ∑
x
(I(x)− I0(x))

2 , (4)

where µ represents the mean of the original image. This implies,
that the evolution equation for Eq. 4 can be written as

Ik+1(x) =
Ik(x)+∆t

(
µα +β I0(x)+

γ

2 RIk (x)
)

1+∆t(α +β )
(5)

Second, the authors showed that the sign of the contrast term
modifies the behavior of the model, so that it performs gamut
reduction when the sign is positive and gamut extension when it is
negative. Let us explain in detail how they used this observation in
both cases.

Gamut reduction
Authors devised a double-iterative process for the gamut re-

duction case in order to select the best weight to be applied to

the contrast term. The double iterative process works as follows.
At each iteration, Eq. (5) is run for some particular α , β , and γ

until the steady state is reached. The steady state of each iteration
provides some pixels of the final result. At iteration 1, values are
set to β = 1, α = 0, and γ = 0, and therefore the original image
is obtained as the steady state. At this point, those pixels already
belonging to the destination gamut are selected for the final image
and leaved untouched for the following iterations. At iteration
2, γ is decreased (for example, γ =−0.05) and α is increased in
relation to γ by |γ|20 . Eq. (5) is run again until steady state, and it
is checked whether any of the colors that were outside the gamut
at the previous iteration have been moved inside the destination
gamut. If this is the case, those pixels are selected for the final
image and leaved unmodified for the following iterations. This
procedure continues by decreasing γ (and increasing α accord-
ingly) until all the out-of-gamut colors come inside the destination
gamut.

Gamut extension
In this case, the authors proposed to extend the gamut of the

original image by using a unique gamma value. For selecting the
gamma value, Eq. (5) is applied to different values of γ and let
the original gamut exceed the destination gamut upto a certain
threshold level (Te). Later on, the colors that were placed outside
the destination gamut in the previous stage are mapped back inside
using the gamut reduction algorithm presented previously.
An example of both gamut reduction and extension with the
method of Zamir -et al.- is shown in Figure 1. The top row shows
an original image (left) and its gamut reduced version (right), while
the bottom row presents an original image (left) and its gamut ex-
tended version (right).

Joint gamut reduction and gamut extension
Although much research has been devoted independently to

gamut reduction and gamut extension, the more general gamut
mapping case where the intersection of source and target gamut is
not equal to one of the two gamuts has received little attention. To
fill this gap, Vazquez-Corral and Bertalmı́o [17] recently showed
that by defining a smooth transition on the contrast enhancement
parameter over the color space, it is possible to simultaneously
reduce the input gamut in some areas of the color space while
increasing it in others without introducing color artifacts or halos.
This ability to modify at will the image colors allowed them to
convert the palette of colors of an original image into the palette
of colors of an unrelated second image, as can be seen in Figure
2. This figure contains the original image (left), the target image
(right), and the result obtained by Vazquez-Corral and Bertalmı́o
[17] (center).

Image dehazing
Image dehazing, i.e. robustly recovering visual information

in bad weather conditions, is currently a key pre-processing task
for many different computer vision applications such as tracking,
video surveillance, or autonomous driving cars. Many different
methods have been defined over the last years to handle this prob-
lem, with the majority employing some form of constrast or satu-
ration enhancement [16], [5]. This is the key connection between
the model of [2] and image dehazing methods.

Galdran -et al.- [4] modified the model of [2] in two different
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Figure 1: Top row: Original image (left) and gamut reduced version (right) by Zamir -et al.- method [18]. Bottom row: Original image
(left) and gamut extended version (right) by Zamir -et al.- method [18].

Figure 2: Original image (left), target image (right), and the result of the color modification performed by [17](center).
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manners in order to perform image dehazing. First, they modified
the expected value of the image mean. To this end, they applied
the Koschsmeider law of image formation in order to obtain the
expected mean of the clean image instead of the expected mean of
the original image. Mathematically, they started considering the
Koschsmieder law [8], that is written channel-wise as

I j(x) = J j(x)t(x)+(1− t(x))A j, (6)

where j ∈ {R,G,B}, x is a pixel location, I(x) is the observed
intensity, J(x) is the scene radiance, corresponding to the clean
image, transmission t(x) is a scalar quantity that is inversely related
to the scene’s depth,and A is the airlight.

Galdran -et al.- rearranged the previous equation and took the
average of each term leading to

mean(J j · t) = mean(I j)−mean((1− t)A j).

From this point, two crutial assumptions are considered: i) On a
haze-free image, we can expect colors to be independent of where
the object is located in the scene. Thus, we can assume that J j and
t are uncorrelated, and ii) t has a uniform distribution across the
image, i.e., depth values are equally distributed. From these two
assumptions, mean(J j) can be estimated as:

mean(J j)/2≈mean(I j)− (1/2) mean(A j).

Finally, as the airlight A can be roughly approximated by the
maximum intensity value on each component, the estimation of
the mean of the clean image is:

µ
j = mean(J j)≈ 2 mean(I j)−A j. (7)

Second, they introduced two new negative competing terms
to couple the color channels. They correspond to the two inter-
channel contrast differences (for example, in case of the red chan-
nel, red versus green and red versus blue). Mathematically, they
define the inter-channel contrast as

η

2

∫
x,y

ω(x,y)|I j(x)− I j+1(y)| (8)

where as in the original model od Bertalmı́o -et al.- [2] w(x,y)
is a normalized Gaussian kernel of standard deviation σ , η is
a constant and positive weight, and I j(x) and I j+1(y) are two
intensity levels at pixel locations x and y from the color channels
j and j + 1, respectively. Galdran and colleagues showed that
by maximizing these new two terms (via a minimization of the
energy functional) they increase the difference in values between
the channels, therefore increasing the saturation of the images,
which is related to the dark channel image dehazing idea [5].

The ensemble of both modifications lead to the following
image energy functional

E(I j) =
α

2

∫
x
(I j(x)−µ

j)2 +
β

2

∫
x
(I j(x)− I j

0(x))
2

− γ

2

∫
x,y

ω(x,y)|I j(x)− I j(y)|

− η

2

∫
x,y

ω(x,y)|I j(x)− I j+1(y)|

− η

2

∫
x,y

ω(x,y)|I j(x)− I j+2(y)|, (9)

where j, j+1, and j+2 represent the three color channels.
This new energy functional has as solution the steady state of

the following equation

Ik+1(x) =
Ik(x)

1+∆t(α +β )

+
∆t
(

α

2 +β I0(x)+
γ

2 RI j ,I j (x)
)

1+∆t(α +β )

+
∆t
(

η

2
(
RI j ,I j+1(x)+RI j ,I j+2(x)

))
1+∆t(α +β )

(10)

In this case R(I j, I j+1) is defined as

RI j ,I j+1(x) =
∑y∈I w(x,y)s

(
I j(x)− I j+1(y)

)
∑y∈I w(x,y)

(11)

Figure 3 illustrates the image enhancement produced by the
method devised in [4] by Galdran et. al. (right images) over the
original hazy images showing the cities of Bilbao and London (left
images).

Conclusions and further work
In this paper we have reviewed the variational perceptually-

based color correction model of Bertalmı́o and colleagues [2],
and its applications to image processing applications, such as
color gamut mapping and image dehazing. Further work is being
performed to adapt the energy functional of [2] to take into account
different priors such as natural image statistics or more complex
color constancy formulations, and to improve its computational
time.
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Figure 3: Original images (left) and images dehazed using Galdran -et al.- method [4].
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