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Abstract
This paper explores the interrelations between Retinex, neu-

ral models and variational methods by making an overview of
relevant related works in the past few years. Taking all the es-
sential elements of the Retinex theory as postulated by Land and
McCann (channel independence, the ratio reset mechanism, lo-
cal averages, non-linear correction), it has been shown that we
can obtain a Retinex algorithm implementation that is intrinsi-
cally 2D, whose results comply with all the expected properties of
the original, one-dimensional path-based Retinex algorithm (such
as approximating color constancy while being unable to deal with
overexposed images) but don’t suffer from common shortcomings
such as sensitivity to noise, appearance of halos, etc. An itera-
tive application of this 2D Retinex algorithm takes the form of a
partial differential equation (PDE) that it’s proven not to mini-
mize any energy functional, and this fact is linked to its limita-
tions regarding over-exposed pictures. It was proposed to modify
in this regard the iterative method in a certain way so that it is
able to handle both under and over-exposed images, the resulting
PDE now has a number of very relevant properties which allow
to connect Retinex with variational models, histogram equaliza-
tion and efficient coding, perceptual color correction algorithms,
and computational neuroscience models of cortical activity and
retinal models.

The Retinex theory and the Retinex algorithm
Land makes in [21] a very clear and detailed explanation of

his Retinex theory and the experiments that led him to its postu-
lation. An experiment carried out by Land and his team consisted
of arranging colored sheets of paper into two identical panels (so-
called “Mondrians”); quoting from [21]:
“Each ‘Mondrian’ is illuminated with its own set of three projec-
tor illuminators equipped with band-pass filters and independent
brightness controls so that the long-wave (‘red’), middle-wave
(‘green’) and short-wave (‘blue’) illumination can be mixed in
any desired ratio. A telescopic photometer can be pointed at any
area to measure the flux, one wave-band at a time, coming to the
eye from that area. [...] In a typical experiment the illuminators
can be adjusted so that the white area in the Mondrian at the left
and the green area (or some other area) in the Mondrian at the
right are both sending the same triplet of radiant energies to the
eye. Under actual viewing conditions white area continues to look
white and green area continues to look green even though the eye
is receiving the same flux triplet from both areas.”
A variant of this experiment was a color-matching test, where
the observer was presented simultaneously with the colored-sheet
panel under some experimental illuminant (this was seen through
the left eye), and a standard chart of color patches, the Munsell
Book of Color, under a “white” iluminant (seen through the right

eye). In each run of the test the observer was asked to look at
a given colored sheet on the left and select the Munsell patch of
the right that best matched its color. The experimental illuminant
was adjusted in each run so that the reference color sheet always
sent the same radiance to the eye, regardless of its reflectance:
gray, red, yellow, blue, and green sheets of paper were sending
the same radiant energy and hence would be deemed identical
by a photometer. But in each and every case, the observer was
able to match the colored sheet to the closest Munsell patch, i.e.
red sheet to red patch, green sheet to green patch, etc. In each
matching pair, sheet and patch had different radiances but the
same (scaled) integrated reflectance, which is defined, for each
waveband, as a ratio: the integral of the radiance of the object
(sheet or patch) over the waveband, divided by the integral over
the same waveband of the radiance of a white object under the
same illuminant. The scaling is a non-linear function that relates
reflectance to lightness sensation.

Land’s conclusion was that color perception had a physical
correlate in these scaled integrated reflectances, which implies
that in order to perceive the color of an object somehow our vi-
sual system is comparing the light coming from the object with
the light coming from a reference white, since both magnitudes
are needed to compute the ratio of the integrated reflectances. He
wondered how we are able to find this reference white “in the un-
evenly light world without reference sheets of white paper” [21].
The sensation of white will be generated by the area of maxi-
mum radiance in all three bands (this is the von Kries’ model or
“white-patch” assumption); this area could be used as reference,
but Land didn’t know how our visual system could “ascertain
the reflectance of an area without in effect placing a comparison
standard next to the area” [21]. The solution he proposed con-
sisted of comparing far-away points through paths: the ratio of
the values at the two end-points of the path can be computed as
the sequential product of the ratios of each point of the path with
the following point. This sequential product is reset to 1 when-
ever a point is reached where the value is larger than the previous
maximum along the path. In this way, the sequential product for
a path provides the ratio between the value at an end-point and
the maximum value of the path, which is the estimate for “refer-
ence white” that can be obtained with the given path. This is the
“ratio-reset” mechanism. The Retinex algorithm consists of as-
signing, for each point and each waveband (long, middle, short),
an estimate reflectance obtained as the average of the sequential
products obtained on many paths, all ending in the given point.
Land thought that this was a plausible explanation of how our vi-
sual system estimates reflectances but he didn’t want to venture
where exactly this type of operations were being carried out, in
the retina or at the cortex; therefore he chose the name “Retinex”
for his approach.
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The Retinex algorithm can be directly applied to digital im-
ages in a straightforward way, where the pixels will be the points
and the three color channels R, G and B will be the wavebands.
Over the years a great number of works have been published fol-
lowing and/or adapting the original formulation; see Bertalmı́o et
al. [3] for an overview of the most relevant ones and Provenzi et
al. [31] for a detailed mathematical description of the Retinex al-
gorithm. As proved in [31], Retinex always increases brightness
so it can’t be directly applied to overexposed pictures; also, if the
algorithm is iterated the results may improve but the convergence
image is flat white, so there is some “sweet spot” of the number
of iterations yielding the best output [3]. Another major source of
problems is Retinex’s reliance on paths: their length, shape and
number condition the results and many works have been proposed
trying to optimize the selection of these variables.

ACE
The Automatic Color Enhancement (ACE) algorithm of

Rizzi et al. [32] is also based on perception, and its relationship
with Retinex will become clear shortly.

ACE is designed to mimic some basic characteristics of the
human visual system, like the white patch and the grey world
mechanisms, lateral inhibition, the independence of chromatic
channels, or the influence of spatial relationships in the scene.
It consists of two stages, which are applied to each channel inde-
pendently:

• In the first stage, given an input one-channel image I, an
intermediate output image R is computed in this way:

R(p) =
1
M ∑

j

r(I(p)− I( j))
d(p, j)

, (1)

where p, j are pixels, r(x) is a non-linear, sigmoid func-
tion going from −1 when x→ −∞ to +1 when x→ +∞

and taking the value 0 at 0, and d() is a distance function
whose value decreases as the distance between p and j in-
creases. The value M is a normalization constant ensuring
that the maximum of R is 1, therefore R is always in the
range [−1,1]. This stage considers the basic principles men-
tioned above of chromatic independence, lateral inhibition,
and spatial influence.

• In the second stage, the final output image O is computed as

O(p) = 255× (
1
2
+

R(p)
2

). (2)

This operation performs a simultaneous white patch and
grey world scaling: white patch because a pixel p with max-
imum value R(p) = 1 will have an output O(p) = 255, and
gray world because an average gray pixel p should have a
value R(p) = 0 and therefore an output O(p) = 127.5.

The authors perform experiments that show how ACE has
several excellent properties: it allows to obtain very good color
constancy, it increases the dynamic range of the input and, unlike
Retinex, it can deal both with under- and over-exposed pictures,
it can perform de-quantization (eliminating quantization artifacts
produced by encoding an image with an unsufficient number of
bits per channel), and it can reproduce some visual perception ilu-
sions. Its main limitation is its computational complexity, O(N2)
where N is the number of pixels.

It also raises several interesting questions: what, if any, is
its relationship with Retinex? If iterated, does it produce different
results? And if this is the case, do they converge? We shall answer
these questions in the following sections.

Image processing for contrast enhancement:
histogram equalization

Histogram equalization is a classical, very basic image pro-
cessing technique dating at least to the early 1970s (see [30] and
references therein), aiming at enhancing the contrast and improv-
ing the appearance of images by way of re-distributing their lev-
els uniformly accross the available range. In this sense, an image
would be optimal if its histogram were flat or “equalized”, mean-
ing that all the range is used and all levels are represented by the
same amount of pixels. Therefore, when an image has a flat his-
togram its cumulative histogram is simply a ramp, and this allows
for a very straightforward computation for the histogram equal-
ization procedure: assuming we are working on a graylevel image
in the range [0,1], we have to substitute each level g in the original
image by the value of its normalized cumulative histogram, H(g).
The solution is computed very fast using a look-up table (LUT).

While histogram equalization may improve the visual ap-
pearance of an image, in many situations the end result may look
worse than the original, often when the image is overexposed [30].
This is aggravated by the fact that the equalization procedure is
a one-shot technique, that only produces a final result, without
any “in-between”, so if the resulting image shows any type of un-
pleasant artifact there is nothing to do about it. This issue was
addressed by Sapiro and Caselles [34], who proved that the mini-
mization of the energy functional

E(I) = 2∑
x
(I(x)− 1

2
)2− 1

AB ∑
x

∑
y
|I(x)− I(y)| (3)

produces an image I with a flat histogram. The range of I is [0,1],
x,y are pixels and A,B are the image dimensions. While the result
of histogram equalization is very often unsatisfactory and can’t
be altered, [34] proposes to start with an input image I0 and apply
to it step after step of the minimization of Equation 3, letting the
user decide when to stop. If the user lets the minimization run to
convergence, she’ll get the same result as with a LUT, but other-
wise a better result can be obtained if the iterative procedure stops
before the appearance of severe artifacts. The squared differences
in the first term of Equation 3 and the absolute differences in the
second one are required to ensure that the minimization yields an
image with equalized histogram, see [34] for details. The energy
in Equation 3 can be interpreted as the difference between two
positive and competing terms,

E(I) = D(I)−C(I). (4)

The first term measures the dispersion around the average value of
1
2 , as in the gray world hypothesis for color constancy, stating that
our visual system estimates the illuminant as one half the average
of the colors of the scene, an observation made by [12, 13] and
formalized by [9]. The second term measures the contrast as the
sum of the absolute value of the pixel differences.

Perceptually-based contrast enhancement
The abovementioned measure of contrast is global, not lo-

cal, i.e. the differences are computed regardless of the spatial
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locations of the pixels. This is not consistent with how we per-
ceive contrast, which is in a localized manner, at each point hav-
ing neighbors exert a higher influence than far-away points. Using
the concepts introduced by the popular perceptually-based color
correction method ACE of [32], the authors of [4] propose an
adapted version of the functional of Equation 3 that complies with
some very basic visual perception principles, namely those of lo-
cality, color constancy and white patch (the latter stating that the
brightest spot in the image is perceived as white, an observation
which has a long history that dates back at least to the works of
Helmholtz, as explained by [14, 15]):

E(I) =
α

2 ∑
x
(I(x)− 1

2
)2− γ ∑

x
∑
y

w(x,y)|I(x)− I(y)|

+
β

2 ∑
x
(I(x)− I0(x))2, (5)

where w is a distance function such that its value decreases as
the distance between x and y increases, I0 is the original image
and α,β and γ are positive weights (which can be chosen so as
to guarantee the white patch property, see [4] for details). The
gradient descent equation for the functional in Equation 5 is the
following:

It(x) =−α(I(x)− 1
2
)+ γ ∑

y
w(x,y)sgn(I(x)− I(y))

−β (I(x)− I0(x)). (6)

Starting from I = I0, we iterate Equation 6 until we reach a steady
state, which will be the result of this algorithm.

By minimizing the energy in Equation 5 we are locally en-
hancing contrast (second term) and promoting color constancy by
discounting the illuminant (first term), while preventing the image
from departing too much from its original values (third term). We
could also say that the minimization of Equation 5 approximates
local histogram equalization.

In [4] it is shown that Eq. 5 has a single minumum and that
the image I minimizing Eq. 5 is a fixed point of ACE. In other
words, we can say that ACE is a numerical implementation of the
gradient descent of Eq. 5, and this answers one of the questions
raised in the previous section, namely, that iterating ACE we do
obtain different results. Also, this iterative procedure converges
(because there is a unique minimum), but for this we need β > 0.

The minimization of Eq. 5 yields very good color constancy
results and this method shares all the good properties and possible
applications of ACE, plus the numerical implementation in [4]
has a reduced complexity of O(NlogN), where N is the number
of pixels.

Apart from the color constancy application, this method can
be used for contrast enhancement as well, since it produces good
results without halos, spurious colors or any other kind of visual
artifact.

There is a very close connection between this formulation
and Retinex, which we will present in the following section.

Connections between Retinex, ACE and vari-
ational models

In their kernel-based Retinex (KBR) formulation, Bertalmı́o
et al. [3] take all the essential elements of the Retinex theory as

presented in [21] (channel independence, the ratio reset mecha-
nism, local averages, non-linear correction) and propose an im-
plementation that is intrinsically 2D, and therefore free of the is-
sues associated with the 1D paths used in the original Retinex
algorithm. The results obtained with this algorithm comply with
all the expected properties of Retinex (such as performing color
constancy while being unable to deal with overexposed images)
but don’t suffer from the usual shortcomings such as sensitivity to
noise, appearance of halos, etc. In [3] it is proven that there isn’t
any energy that is minimized by the iterative application of the
KBR algorithm, and this fact is linked to its limitations regarding
overxposed pictures. Using the analysis of contrast performed by
Palma-Amestoy et al. [28], in [3] it is determined how to mod-
ify the basic KBR equation so that it can also handle overexposed
images, and the resulting, modified KBR equation turns out to be
essentially the gradient descent of the energy given by Equation
5. In other words, the method of [4] can be seen as an iterative
application of Retinex, although in a modified version that allows
to produce good results also in the case of overexposed images.

In this way, the connection between Retinex, ACE, and the
variational method of [4] becomes explicit.

Connections with neuroscience
Efficient coding

As pointed out in [6], the human visual system works in
many ways in order to efficiently encode the visual information
coming from natural environments, reducing its inherent redun-
dancy, as proposed in the seminal work of [2] (see [27] for a re-
view). For instance, while natural scenes have luminance distri-
butions which are very lopsided, with a high peak and a very rapid
fall-off, photoreceptors encode this information with signals that
have a much more even distribution: indeed, photoreceptors per-
form histogram equalization, as demonstrated by [22]. And the
receptive fields of visual neurons, both retinal and post-retinal,
compensate the 1/ f 2 decay of the power spectrum of natural im-
ages, whitening the spectrum of the resulting signal and thus min-
imizing interpixel redundancies and increasing coding efficiency
(see [1], and [10] where the existence of whitening at the local
geniculate nucleus is demonstrated for natural images).

Apart from efficiency in coding, another very important as-
pect is that of biological efficiency in terms of wiring. The resolu-
tion of retinal mosaics is limited by the number of axons that can
pass through the optic nerve, which acts as a bottleneck ([26]).
But the visual system is able to achieve a visual acuity beyond
the limit imposed by the number of photoreceptors at the retina:
in their classical paper on contrast constancy, [11] suggest that
there are cortical mechanisms for contrast enhancement that com-
pensate for the blurring produced in early stages of the visual
process. Very recently [25] it has been confirmed that contrast
enhancement takes place at the lateral geniculate nucleus (LGN)
and, remarkably, the authors point out that this contrast enhance-
ment procedure is very much alike the common techniques used
in image processing.

The formulations stated above on energy minimization, his-
togram equalization and efficient coding let us make an impor-
tant connection between the variational model of [4] and neuro-
science. The activity of a population of neurons in the region
V 1 of the visual cortex evolves in time according to the Wilson-
Cowan equations [8, 38, 39]. Treating V 1 as a planar sheet of ner-
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vous tissue, the state a(r,φ , t) of a population of cells with cortical
space coordenates r∈R2 and orientation preference φ ∈ [0,π) can
be modeled with the following PDE [8]:

∂a(r,φ , t)
∂ t

=−αa(r,φ , t)+

+µ

∫
π

0

∫
R2

ω(r,φ‖r′,φ ′)σ(a(r′,φ ′, t))dr′dφ
′+h(r,φ , t),

(7)

where α,µ are coupling coefficients, h(r,φ , t) is the external in-
put (visual stimuli), ω(r,φ‖r′,φ ′) is a kernel that decays with the
differences |r− r′|, |φ − φ ′| and σ is a sigmoid function. If we
ignore the orientation φ and assume that the input h is constant
in time, it can be shown that Equation 7 is closely related to the
gradient descent of Eq. 5, where neural activity a plays the role
of image value I, sigmoid function σ behaves as the derivative of
the absolute value function, and the visual input h is the initial
image I0. Therefore the variational model of [4], based on the ef-
ficient coding principle of (local) histogram equalization, shows
close similarities with the classical neural model of Wilson and
Cowan. As Bertalmı́o and Cowan [5] point out, this suggests that
the Wilson-Cowan equations are the gradient descent of a certain
energy, and also that there would appear to be a physical substrate
at the cortex for the Retinex model.

Lightness induction
Alongside mechanisms for coding and wiring efficiency,

there is neural activity in region V 1 of the human visual cortex that
correlates with the perceptual phenomenon of lightness induction,
as proven by [29]. The term lightness induction or achromatic in-
duction designates the visual phenomenon by which the perceived
reflectance of an object depends on its surround. It can take the
form of lightness contrast, when the object’s lightness shifts away
from that of its surroundings: a dark object on a light background
appears even darker, or a light object in a dark surround becomes
even lighter. The reverse is called lightness assimilation, in which
case the appearance of the object shifts in the direction of the
lightness of its surround. Shevell [35] mentions that lightness
assimilation occurs in situations of high spatial frequency while
lightness contrast is associated with relatively lower spatial fre-
quencies. Looking closely at Equation 6, we can see that the spa-
tial arrangement of the image data plays no role in it. Therefore,
we can expect that the local contrast enhancement procedure of
[4] will always produce lightness contrast, not assimilation.

Rudd [33] studies lightness induction using a display with
two disk-and-ring (DAR) stimuli over a uniform background for
matching experiments. The intensity of the background B, of the
left ring RM , and of the disk on the right DT is kept constant;
the intensity of the right ring RT is modified, and the observer
has to adjust the intensity of the left disk DM so as to match the
appearance of the right disk DT . While the data from the percep-
tual experiments in [33] shows a cuadratic relationship (inverted
parabolas) between RT and DM , the model of [4] predicts a linear
relationship instead (straight lines with negative slope).

In order to overcome these intrinsic limitations of the method
in [4] with respect to lightness induction, apparently some no-
tion of spatial frequency should appear in the energy functional.
Bertalmı́o [6] proposes a new model consisting in the following

PDE, a modification of the gradient descent equation (6):

It(x) =−α(I(x)−µ(x))+

+ γ(1+(σ(x))c)∑
y

w(x,y)sgn(I(x)− I(y))

−β (I(x)− I0(x)), (8)

where µ(x) is the mean average of the original image data com-
puted over a neighborhood of x, σ(x) is the standard deviation of
the image data computed over a small neighborhood of x, and the
exponent c is a positive constant. The differences with respect to
Equation 6 are that now the average in the first term is no longer
global (the 1/2 value of Equation 6) but local, and that the weight
for the second term is no longer a constant, but it changes both
spatially and with each iteration, according to the local standard
deviation σ : if the neighborhood over which it is computed is suf-
ficiently small, standard deviation can provide a simple estimate
of spatial frequency. Also, the standard deviation is commonly
used in the vision literature as an estimate of local contrast. This
contrast σ(x) is raised to a power c, which is also the case with
other neural models such as [24] and [16] where a power law is
applied to the contrast. This new model is able to predict per-
ceptual phenomena like the lightness induction results of Rudd
[33]: the predicted match luminance plots are no longer linear but
quadratic, with an initial lightness assimilation regime for low val-
ues of RT followed by a lightness contrast part, and the curvature
of these parabolas decreases with increasing ring width.

But while the results of [6] now show both assimilation and
contrast, the modification in the model may appear as ad-hoc
changes, not easy to reconcile with the basic postulates of Wil-
son and Cowan’s theory. In a later work [7], a Wilson-Cowan
type of equation is proposed that slightly modifies the model in
[4] and is capable to predict visual induction results:

It(x) =−α(I(x)−µ(x))+

+ γ ∑
y

w(x,y)sgn(I(x)− I(y))−β (I(x)− I0(x)), (9)

where the target global mean average 1/2 that appeared in [4] is
replaced by µ(x), which is a local average of the image value I
computed by convolution with a kernel obtained as a weighted
sum of two Gaussians of different standard deviation.

Retinal models
Regarding induction, Kim and Bertalmı́o note in [19, 20] that

while contrast induction is attributed to a local-range lateral inhi-
bition in the retina, there is little consensus on a neural structure
underlying assimilation. Some studies postulated that assimila-
tion occurs by an unknown post-retinal mechanism that performs
long-range surface interaction. However, in [19] it is proposed
that such long-range mechanism exists in the retina based on re-
cent neurophysiological evidence that the main retinal inhibitory
feedback interneurons manifest wide receptive-fields (RFs). The
work cross- examined the effect of these wide RFs in two differ-
ent biophysical retinal model platforms [36, 37, 40] and confirmed
that the cell responses in both of the models match to behavioral
data of the brightness contrast and assimilation as a function of
surrounding surface size, if and only if the wide RFs are consid-
ered. This would appear to be the first evidence in the literature
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that the wide RFs of inhibitory interneurons serve for long-range
surface interaction, that local contrast and long-range surface in-
teraction share the same neural locus, and that brightness assimi-
lation is inaugurated at the retinal level.

The properties of human contrast perception show a close
correlation to the responses of retinal ganglion cells [17, 23],
whose spatial processing properties (the isotropic center-surround
processing) are shaped by the local feedback from interneurons
(horizontal / amacrine cells) to the feed- forward cells (photore-
ceptor, and bipolar / ganglion cells). In [18] the authors study
the computational structure of this retinal feedback system. They
start identifying a simple form of a system of differential equa-
tions that realizes the retinal feedback architecture and analyzed
its steady-state behaviour to a static stimulus input (i.e. model cell
voltage responses equilibrated to the input). Three main conclu-
sions may be derived from the results of the analysis. Firstly, the
system of equations preserves the ability to predict some human
contrast perception properties such as spatial-frequency depen-
dent contrast sensitivity and brightness induction, and provides
further support to the possibility that brightness assimilation starts
at the retina. Secondly, the steady-state response of the system
can be obtained in a single pass by convolving the original input
with a single kernel (a combined product of different extents of
receptive-fields of the retinal cells) and therefore [18] proposes a
computationally efficient way of modeling retinal cell responses
and the resulting human contrast perception. Finally, finding the
steady state solution is mathematically equivalent to solving an
optimization problem of maximizing the spatial contrast in the en-
coded signals while being faithful to the local light intensity of the
input stimulus, which is remarkably similar to the minimization
of the energy functional of Eq. 5 proposed in [4]. This provides
interesting connections with efficient coding theories and com-
putational neuroscience models like the ones discussed above, as
well as suggesting a biologically plausible realization, at retinal
level, of the “ratio-reset” mechanism of the Retinex algorithm.

Conclusion
In this work we have made an overview of recent works from

the image processing and visual sciences literature that allow to
connect Retinex with variational models, histogram equalization
and efficient coding, perceptual color correction algorithms, and
computational neuroscience models of cortical and retinal activ-
ity. Many key questions remain unanswered, including the exact
nature of a possible biological correlate for the Retinex mecha-
nism, but the author believes that the existence of these similar-
ities and points in common on this subject among very different
disciplines can only be beneficial for gaining understanding in all
of them.
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