
Towards Perceptually Coherent Depth Maps in 2D-to-3D Con-
version
Nicole Brosch, Tanja Schausberger, Margrit Gelautz; Institute of Software Technology and Interactive Systems, Vienna University
of Technology; Vienna, Austria

Abstract
We propose a semi-automatic 2D-to-3D conversion algo-

rithm that is embedded in an efficient optimization framework,
i.e., cost volume filtering, which assigns pixels to depth values
initialized by user-given scribbles. The proposed algorithm is ca-
pable of capturing depth changes of objects that move towards or
farther away from the camera. We achieve this by determining
a rough depth order between objects in each frame, according to
the motion observed in the video, and incorporate this depth order
into the depth interpolation process. In contrast to previous pub-
lications, our algorithm focuses on avoiding conflicts between the
generated depth maps and monocular depth cues that are present
in the video, i.e., motion-caused occlusions, and thus takes a step
towards the generation of perceptually coherent depth maps. We
demonstrate the capabilities of our proposed algorithm on syn-
thetic and recorded video data and by comparison with depth
ground truth. Experimental evaluations show that we obtain tem-
porally and perceptually coherent 2D-to-3D conversions in which
temporal and spatial edges coincide with edges in the correspond-
ing input video. We achieve competitive 2D-to-3D conversion re-
sults. Our proposed depth interpolation can clearly improve the
conversion results for videos that contain objects which exhibit
motion in depth, compared to commonly performed naive depth
interpolation techniques.

Introduction
Semi-automatic 2D-to-3D conversions can cost-efficiently

convert existing monoscopic (2D) videos to stereoscopic (3D)
videos (e.g., [1, 2, 3, 4, 5, 6]). The key idea of such algorithms
is to propagate sparse user-given depth information in key frames
to the remaining pixels in a video. The resulting depth video can
provide the basis for applications such as the geometry-consistent
generation of novel views or mixed reality scenarios. Contrary to
stereo generated 3D content (e.g., [15]) or measured depth, semi-
automatic 2D-to-3D conversion does not require special hardware
(e.g., a stereo camera or a time-of-flight sensor) and the need for
3D content has not to be known before capturing a video.

This paper presents a semi-automatic 2D-to-3D conversion
algorithm that generates depth maps for videos based on com-
fortable scribble input. Ideally, the generated depth maps are
(1) spatio-temporally coherent and (2) result in a plausible 3D im-
pression. The proposed 2D-to-3D conversion algorithm is em-
bedded in an efficient optimization framework, i.e., cost volume
filtering (CVF) [7], that has shown to satisfy condition (1) in
the application of video object-segmentation [8]. Our 2D-to-3D
conversion algorithm is based on the interactive video object-
segmentation in [8]. In some similarity to [8], we use CVF to
assign pixels to depth values that were initialized by multiple

Figure 1. Temporal depth change models. 1st row: Input video with user-

provided scribbles. The small dragon is annotated with a yellow scribble in

the first and a blue scribble in the last frame to indicate a temporal depth

change. Scribble hues encode depth. 2nd-4th row: Corresponding 2D-to-3D

conversions results that were obtained by using different temporal depth in-

terpolation techniques, i.e., a naive linear depth interpolation (2nd row) and

our proposed interpolation (3rd and 4th row) that takes motion-caused occlu-

sions into account. The former is perceptually incoherent (red arrow).

user-given scribbles (see Figure 1). Scribble pairs that are lo-
cated in the first and the last frame of a video are used to in-
dicate a depth change. In this context, the main contribution
of our algorithm is the introduction of depth change models for
these scribble pairs. The goal of these models is not only to cap-
ture temporal depth changes over time, but also to generate per-
ceptually coherent depth maps. In other words, when capturing
the depth changes of objects that are moving towards or farther
away from the camera, our algorithm takes care that the depth
values assigned to these moving objects harmonize with those of
nearby objects. More precisely, the interpolation of the tempo-
rally changing depth values is performed in accordance with ob-
served occlusions that were caused by nearby objects. We first
determine a rough depth order in each frame according to motion
calculated for the given video. Subsequently, this depth order is
incorporated into the depth interpolation process to generate tem-
porally and perceptually coherent depth maps. Thus, by address-
ing the problem of perceptual coherence in the context of motion-
caused occlusions, our 2D-to-3D conversion approach takes a step
towards the generation of perceptually coherent depth maps.
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While the importance of enabling temporal depth changes
was already stressed by a few existing semi-automatic conversion
approaches (e.g., [1, 2, 3, 4, 6]), we are not aware of any semi-
automatic 2D-to-3D conversion approach that as well considers
the problem of generating perceptually coherent depth maps. Re-
latedly, Liao et al.’s [5] 2D-to-3D conversion approach combines
user-given depth information with automatically estimated depth
information. This approach ensures perceptual coherence in refer-
ence to a single, previously extracted moving foreground object,
but in principle could be extended to consider multiple moving
objects similar to our approach. Moreover, they propagate depth
values with a global optimization that incorporates inequality con-
straints between selected pairs of neighboring pixels. These con-
straints restrict the depth values of all pixels that are adjacent to
the foreground object to be lower (that is, further in the back-
ground) than the depth value of the foreground object. Their
propagation scheme further analyzes motion information to detect
expanding or shrinking objects and infers a depth change depend-
ing on the object size. Contrary to [5], we aim for depth maps that
are perceptually coherent with respect to multiple moving objects.
We achieve this by inferring a rough depth order [12, 13] between
multiple objects which is subsequently combined with the user-
given depth values.

Experimental results and evaluations with ground truth data
demonstrate that we obtain temporally coherent 2D-to-3D conver-
sions in which depth edges coincide with edges in the correspond-
ing input video. Concerning the depth change models, our tem-
poral depth interpolation can clearly improve the conversion re-
sults for videos that contain objects which exhibit motion in depth,
compared to commonly performed naive depth interpolations. We
further show that our proposed algorithm is competitive when be-
ing compared to related 2D-to-3D conversion approaches.

The rest of the paper is organized as follows. The next sec-
tion describes the proposed semi-automatic 2D-to-3D conversion
algorithm. Then, we perform a systematic evaluation that com-
pares different versions our algorithm, including versions that ap-
ply our depth order guided interpolation and versions that apply
a naive interpolation of depth values over time. We further eval-
uate our conversion results (with reference data) and compare it
to related 2D-to-3D conversion algorithms [1, 3, 4]. Finally, we
conclude our discussion.

Algorithm Description
Figure 2 gives an overview of the proposed semi-automatic

2D-to-3D conversion algorithm’s main components. Following,
we first discuss the basic conversion algorithm, which includes
the generation of a cost volume from user-provided scribbles, cost
volume filtering and the derivation of depth maps from the fil-
tered cost volume (i.e., MS, STC, CON, cost volume filtering and
depth assignment in Figure 2). Subsequently, we present our main
contribution, i.e., depth change models and their performed depth
order guided interpolation (i.e., DC in Figure 2). Their purpose
is not only to obtain temporally coherent, but also perceptually
coherent depth maps that smoothly capture motions in depth.

Basic 2D-to-3D conversion algorithm
In this section, we briefly review the used optimization

framework [7] in context of a related application, i.e., interac-
tive video object-segmentation [8]. We further discuss its us-

Figure 2. Overview of semi-automatic 2D-to-3D conversion algorithm. Gen-

eration of cost volume P from multiple scribbles (MS). Spatio-temporal close-

ness constraint (STC). Cost volume filtering without or with motion guided fil-

tering (+TC) to obtain P′. Depth change models (DC) that correct naive inter-

polations (-n) by guided interpolations (-g). They can alternatively be applied

with respect to time (-tM) or object size and motion (-sM). 3D connectivity

constraint (CON). Final depth assignment using a winner-takes-all (WTA) or

a depth blending (DB) scheme. Dashed components can be disabled.

age in our application of semi-automatic 2D-to-3D conversion,
which typically requires multiple scribble labels (i.e., depth val-
ues that are large in the foreground and low in the background).
The increased number of labels (compared to mere foreground-
background segmentation) might come with a larger ambiguity
between their color models, which is addressed by an additional
spatio-temporal closeness constraint and a 3D connectivity con-
straint. We investigate an extension of the CVF framework [7]
by performing motion guided filtering to improve the temporal
coherence in our conversion results. We set the 2D-to-3D con-
version algorithm further apart from video object-segmentation
algorithms by introducing spatially smooth depth changes within
objects with a simple depth blending approach.

Brief description of interactive segmentation via CVF [7, 8].
The underlying interactive video object-segmentation
algorithm [8] partitions a video into foreground F and
background B pixels. After a user has drawn scribbles in
frames to indicate that the marked pixels belong to F or
B, a fast optimization based on spatio-temporal CVF [7]
is triggered. Based on the user-provided scribble input a
foreground H f and a background color model Hb (i.e., color
histograms) are built from the marked pixels. H f and Hb are
then used in the probability computation. The CVF-based
optimization first generates a cost volume P(x,y, t), which
contains the probabilities pi ∈ [0,1] that a pixel i = (x,y, t)
belongs to F (or B, i.e., 1− pi). Subsequently, a smoothness
assumption propagates probabilities to neighboring pixels
that are similar in terms of color. This is implemented
efficiently by smoothing P spatio-temporally by using an
edge-preserving filtering technique [11]. Finally, each
pixel is assigned to either F or B using a winner-takes-all
approach (WTA), i.e., according to its maximal probability
in the filtered cost volume P′.

Scribble matching and CVF with multiple scribbles (MS).
Similarly to the object-segmentation algorithm [8], we use
a scribble-based user interface, which, however, supports
multiple scribble labels (i.e., multiple depth values as
opposed to only F and B in [8]). Here, each user-provided
scribble Sl indicates a single depth value Dl . Dl is large for
scribbles that are in the foreground and lower for scribbles
that are in the background. Since we aim to capture
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changes in depth, users can indicate them by performing
appropriate scribble annotations in the first and last frame
(e.g., Figure 1, annotation of small dragon). Based on
the idea that scribbles which are contained in the same
spatio-temporal segment belong to the same object, we use
a motion segmentation (i.e., from [9] without depth) and
color comparisons to group and match scribbles. First, we
group those scribbles within the same frame and segment
that indicate the same depth value. Subsequently, we match
scribbles between the first and last frame that are located in
the same spatio-temporal segment. The resulting scribble
pairs can indicate different depth values of one and the
same object at different points in time. Grouped scribbles
with the same depth value (e.g., Dl) and matched scribble
pairs that might have a different depth value in the first
(e.g., Dl, f irst ) and in the last frame (e.g., Dl,last ) are from
now on considered and processed as a single scribble Sl ,
except when explicitly mentioned otherwise.
The extension of [8] to multiple labels is straightforward.
Analogue to [7, 8], we generate a cost volume P(x,y, t, l),
which contains the probabilities pi,l for a pixel i to belong
to each scribble Sl . pi,l is computed by comparing i’s color
to each scribble’s color model and a color model that is
generated from all remaining scribbles. In Figure 2, P is
the result of MS and has to be processed further to obtain
a depth map. The smoothness assumption is incorporated
analogously to [7, 8], by smoothing [11] each cost volume
slice, i.e., each P(x,y, t, .) for a fixed l. Finally, each pixel
can be assigned to the depth of the scribble with the max-
imal probability in the filtered cost volume P′ (i.e., WTA).
The current result equals an interactive multi-label segmen-
tation R in which each segment Rl is additionally assigned
the depth Dl of its scribble Sl .

Spatio-temporal closeness constraint (STC). With scribble-
based annotations users typically want to indicate local
assignments rather than global ones. This may be com-
plicated by color ambiguities between objects at different
depth values. Thus, we further constrain a scribble’s
influence on each pixel in the video by their spatio-temporal
closeness. A confidence weight pclose,l ∈]0,1] is computed
from a distance transform [10] of each scribble Sl . It is
applied to the cost volume entries from MS before filtering
the probabilities (i.e., to pi,l). While the computation of
pclose,l is straightforward for a single frame that contains
user-provided scribbles (e.g., first frame), remaining
frames require the additional step of scribble tracking.
This is simply done by following pre-determined optical
flow (OF) vectors at the pixels that are marked by a scribble
throughout the video. The closeness weights pclose,l are
then computed based on the tracked scribbles Sl . The result
of STC is an updated P that can be smoothed and used to
obtain a different R and depth map than when only using
MS (Figure 2).

Motion guided filtering (+TC). As in [7, 8], our smoothness as-
sumption is implemented with an edge-preserving filtering
technique [11]. It smoothes the cost volume P (that was
generated in MS and updated in STC, Figure 2) to prop-
agate probabilities to neighboring pixels that are similar in
terms of color. This smoothing is performed within a spatio-

Figure 3. Motion guided filtering. The temporal box filter in [11] deviates

from its motion guided version. While the former filters straight through a

video, the latter filters along motion vectors (red arrows).

temporal filter window of fixed size (i.e., rs and rt ) and,
thus, accounts for motion between frames only implicitly.
While this local approximation of the smoothness assump-
tion is sufficient for most dynamic scenes, it is less ro-
bust for scenes that contain fast moving objects (e.g., Fig-
ure 5, b), red arrows, motion up to approximately 100 pix-
els). Specifically, if the movement of an object exceeds the
size of the filter window, the filtering of the object is per-
formed independently for each frame. We address this issue
by incorporating motion in the filtering process by allow-
ing the filter window to adjust its spatial position between
frames according to the motion in a video. To this end, we
modify the sliding box filter that is used in the applied filter-
ing technique [11]. In motion guided filtering it is applied by
following motion vectors from frame to frame [16]. Instead
of computing the temporal average across constant spatial
pixel positions in different frames, the temporal average is
built from corresponding pixels in different frames that are
connected by motion vectors (e.g., Figure 3). Motion guided
filtering can be applied instead of the original filtering oper-
ation that is used in the CVF-framework (Figure 2).

3D connectivity constraint (CON). We enforce that depth as-
signments and their corresponding scribbles are connected
in 3D to avoid unwanted changes in areas not connected to
the local user input. This connectivity constraint operates
on both P′ and its current WTA depth map. Essentially,
it reduces filtered probabilities p′i,l in P′ if they result in
a WTA depth map in which i’s depth (e.g., Dl from Sl) is
not connected to its corresponding scribble (e.g., Sl). In this
context, we consider a pixel i connected to a particular scrib-
ble (e.g., Sl), if the frame contains a connectivity-path [15]
that connects all pixels, including i, with the same depth as
this scribble (e.g., Dl from Sl) and the scribble (e.g., Sl or
tracked pixels from Sl). Such a connectivity-path consists
of pixels that either (i) are assigned the same depth (e.g., Dl
from Sl) or (ii) are assigned to a larger depth (e.g., back-
ground Dl from Sl is occluded by foreground objects with
larger Dl). We implement the 3D connectivity constraint
by consecutively applying it on each scribble Sl in descend-
ing order of scribble depth values, i.e., starting in the fore-
ground. We identify pixels that violate the constraint using
a flood fill algorithm that is initialized at pixels that are cov-
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ered by Sl (or its tracked pixels). We then reduce the prob-
ability p′i,l of the identified pixels i by a small factor. The
result of CON is an updated P′, which can be processed fur-
ther (Figure 2). When re-computing the WTA depth map
from the updated probabilities in P′, pixels are assigned to a
different depth than before.

Depth blending (DB). Since objects might be rounded or
slanted, they can exhibit multiple depth values that blend
into each other. We support this case by (optionally) sub-
stituting the WTA scheme with a simple depth blending
scheme (Figure 2). Specifically, the final depth for a pixel i
is a weighted average that is determined from the depth val-
ues of all scribbles according to their probabilities p′i,l . In
this context, depth values of scribbles with high probabilities
can significantly influence the final depth of a pixel, while
depth values of scribbles with low probabilities hardly con-
tribute to its final depth. Their influence on the final depth
can be further restricted by considering only the depth val-
ues with the n highest probabilities for each pixel.

Depth guided interpolation algorithm
In order to capture motion in depth in the 2D-to-3D conver-

sion results, the depth change of scribble pairs that are located
in the first and the last frame (e.g., Figure 1, yellow scribble and
dark blue scribble) has to be defined. Specifically, for each scrib-
ble pair a depth change model (DC) has to specify an interpola-
tion between its depth given in the first and its depth given the last
frame of the video. Naively, such models could interpolate these
depth values linearly. While this solution might work in some
cases, it has a major drawback – the resulting depth map might
be perceptually incoherent (e.g., Figure 1, second row). We ad-
dress this issue by performing the temporal depth interpolation in
accordance with observed occlusions that were caused by nearby
moving objects. The underlying basic idea is that, if an object A
(e.g., small dragon in Figure 1) moves in front of another object B
(e.g., large dragon’s wing in Figure 1) in frame t – i.e., if A oc-
cludes B in frame t – we can conclude that in t A has a larger depth
than B. Thus, when interpolating A’s depth over time it should not
fall below B’s depth in frame t, i.e., should be restricted by B’s
depth in frame t. We implement this idea by, first, determining a
rough depth order in each frame according to the motion observed
in the given video. Subsequently, this depth order is used to de-
fine depth restrictions. Finally, we perform a depth order guided
interpolation according to these restrictions. These steps rely on
the filtered cost volume, i.e., P′, and intermediate results that can
be derived from it (Figure 2).

Rough depth order. We implement this idea for each frame by,
first, collecting pairwise depth order cues for segments that
belong to a scribble pair. In this context, we use segments
that are derived by interpreting the current 2D-to-3D conver-
sion result as an interactive multi-label segmentation, i.e., R
(e.g., Figure 4, b)). Occlusions between pixels of these seg-
ments are detected by checking the consistency of the for-
ward OF and the backward OF [14]. As suggested by [13],
in case of conflicting pairwise occlusion information for a
segment, only the more frequent depth order cue is used. For
each frame, these depth cues are recorded in a cycle-free di-
rected acyclic graph (DAG) [12, 13] (e.g., Figure 4, c)). The

Figure 4. Depth restriction example. a) Intermediate input frame from ex-

ample in Figure 1. b) Corresponding multi-label segmentation R: Segment

colors correspond to scribble colors in the first frame in Figure 1. Black ar-

rows visualize depth order cues, i.e., segment at the arrow’s shaft occludes

segment at its pointy end. c) DAG: Node colors correspond to segment col-

ors. Directed edges between nodes constitute a occlusion relation, i.e., par-

ent node is occluded by child node. The numbers in the nodes are their depth

level λ and D their user-given depths. The minimum restriction rmin = 144 of

the yellow node can be determined based on the light blue node.

nodes in this graph correspond to segments Rl ∈ R, while
direct edges between the nodes record an occlusion relation
between them. The hierarchy level (or depth level) λ of the
nodes captures the global relative depth order of the seg-
ments within a frame [12, 13]. In this graph nodes with a
large λ are in front of nodes with a low λ .

Depth restrictions. Given this DAG, its depth levels λ and the
user-provided depth annotations, we define depth restric-
tions that guide the temporal depth interpolation. These
depth restrictions are a range [rmin(Rl , t),rmax(Rl , t)] that de-
fines a minimal rmin and maximal rmax allowed depth value
that can be taken on by a specific scribble pair Sl in a spe-
cific frame t. As stated above, we assume that only scribble
pairs indicate a change in depth over time. Scribbles without
annotations in both the first and the last frame are associated
with their fixed user-assigned depth values within the entire
video. These fixed depth values can be exploited when de-
riving depth restrictions for the scribble pairs as following:

rmin(Rl , t) = max
Rk∈parent(Rl ,t)

(Dk + |λl,t −λk,t |), (1)

rmax(Rl , t) = min
Rk∈child(Rl ,t)

(Dk−|λl,t −λk,t |). (2)

Here, Rl and Rk are two segments in the currently observed
frame t. The segment Rk is invoked by a scribble Sk which
has a user-assigned fixed depth Dk. Sl is a scribble pair. In
Eq. (1), the minimum restriction for Rl is determined by se-
lecting the maximum depth of all its parent nodes, i.e., seg-
ments that are behind Rl (e.g., Figure 4, d), yellow node de-
rives rmin from light blue node). Since we know that Rl has
a larger depth than Rk, Dk is additionally increased by the
difference in depth levels of the current and the found node,
i.e., |λl,t − λk,t |. The maximum restriction rmax(Rl , t) for
Rl in t is determined analogously. To support scenes that
contain scribble pairs that occlude each other, we traverse
the DAG in ascending order of depth level when determin-
ing rmin(Rl , t) and rmax(Rl , t). This means, the restrictions
of parent nodes (background) are determined before the re-

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.5.SDA-433

IS&T International Symposium on Electronic Imaging 2016
Stereoscopic Displays and Applications XXVII SDA-433.4



strictions of their child nodes (foreground). In the case of
segments Rl and Rk that correspond to scribble pairs and oc-
clude each other, rmax(Rl , t) and rmin(Rk, t) are at first cal-
culated momentarily and are updated as soon as the depth
assignment for Rl is fixed (after depth interpolation). Hence,
the proposed algorithm as well supports videos with anno-
tations that solely consist of scribble pairs.

Depth order guided interpolation. The final depth of each
scribble pair can be determined by interpolating their user-
given depth values over time while taking into account the
restrictions defined above. The starting point of our depth
order guided interpolation is a naive, linear interpolation
(e.g., Figure 1, second row, Figure 2, -n) that is performed
with respect to time (i.e., DC-tM) or with respect to seg-
ment size and motion (i.e., DC-sM). In particular, the latter
interpolation considers irregular moving objects by chang-
ing the depth in conjunction with the object size in different
frames. Furthermore, a depth change is only performed if
changes in the segment size (i.e., height in pixel) and ver-
tical movement [1] are observed. To begin, the naive in-
terpolation is performed between two fixed data points, i.e.,
the user-given depth values in the first and the last frame,
and might produce perceptual incoherencies. Then, we per-
form a recursive depth verification and adjustment step ac-
cording to the depth restrictions for each frame in order
to remove these incoherencies (e.g., Figure 1, depth order
guided interpolations, Figure 2, -g). We compare the cur-
rent depth of each scribble pair (e.g., Sl) with the upper
and lower bounds that are provided by its depth restric-
tions (e.g., [rmin(Rl , t),rmax(Rl , t)]). If the current depth vi-
olates these restrictions, it is adjusted to the closest depth
within the allowed depth range. This adjustment adds an-
other depth data point to the interpolation and triggers an
accordant update (i.e., re-computation) of the depth values
of preceding and following frames. These re-computated
depth values are again recursively verified and, if necessary,
adjusted until only valid depth values are used. Thus, af-
ter this procedure the depth change model of each scribble
pair specifies a depth that is consistent with the previously
extracted depth restrictions in each frame.

Experimental Results
We perform our experiments on video data from [18] that

was provided with ground truth (GT) depth maps and motion in-
formation. We also perform experiments using video data that
was provided with disparity maps (including [19]). These ref-
erence solutions contain (GT) disparities, which are inverse pro-
portional to depth. In order to unify these two types of depth
information and our specified format for input depth (i.e., low
values in the background, large values in the foreground), given
depth values are inverted. To enable the comparison of our 2D-
to-3D conversion result with these reference solutions, we per-
form the conversion based on depth values at user-provided scrib-
ble positions (i.e., mean depth of all pixels marked by a scrib-
ble). Each pair of conversion result and corresponding refer-
ence solution is normalized by their joint maximal depth. Sub-
sequently, our obtained conversion results are compared with the
reference solutions, where we list the mean squared error (MSE)
averaged over all frames of a video. In this manner, we per-

form a systematic evaluation that compares different versions
of our algorithm. These evaluations also include the investiga-
tion of the algorithms sensitivity to the quality of the used mo-
tion information. Furthermore, we compare our obtained results
with related 2D-to-3D conversion algorithms, including our im-
plementation of Guttmann et al.’s algorithm [1], which belongs to
the first works that explore semi-automatic 2D-to-3D conversion
from user-provided scribbles. The comparison additionally con-
siders more recent 2D-to-3D conversion algorithms, i.e., Phan et
al.’s [3] algorithm and Ivancsics et al.’s [4] implementation of [2].
The implementation of Phan et al.’s [3] algorithm was provided
by the authors and is applied volumetrically on the entire video.
In some similarity to our proposed algorithm, these algorithms in-
corporate segmentation information into the conversion process.
Our 2D-to-3D conversion algorithm is evaluated with the follow-
ing constant cost volume filter parameters to obtain depth maps
for monoscopic videos: rs = 11, rt = 2, ε = 0.0016. All shown
results that use DB are obtained with n = 2.

Comparison of different algorithm versions. Table 1 provides
quantitative evaluation results for our 2D-to-3D conversion
algorithm, in which different components are en- or dis-
abled. More precisely, we compare following versions of
our algorithm: MS is only based on color and does not cap-
ture temporal depth changes. STC additionally applies the
spatio-temporal closeness constraint. CON builds upon STC
and also applies the 3D connectivity constraint. DC-tM
and -sM further capture depth changes performing the in-
terpolation with respect to time and with respect to segment
size and motion, respectively. The depth change is captured
with a naive (-n) and our depth order guided (-g) interpola-
tion. Finally, we investigate versions of our algorithm that
apply motion guided filtering (+TC), as opposed to com-
mon filtering with [11]. Since the evaluation results when
using WTA behave analogously to those when using DB,
Table 1 only lists the former. The evaluation is performed
on videos from [18] that were provided with GT depth maps.
Table 1 shows that both, the spatial closeness constraint and
the 3D connectivity constraint have a positive impact on the
obtained 2D-to-3D conversion results. Specifically, when
comparing the errors of MS with those of STC and the er-
rors of STC with those of CON, the additional constraint
decreases the errors for nearly all tested videos. As shown
in Figure 5, d), these components reduce unwanted depth as-
signments that are located spatially far away from their cor-
responding scribble input. When comparing the evaluation
results of versions that are using common filtering and +TC,
the latter on average reduces the measured errors by ap-
proximately 16 percent. Large improvements are observed
for videos with fast motion, e.g. Ambush2 in Figure 5, a)
and b) (up to approximately 100 pixels between frames).
This indicates that our motion guided filtering is important
for videos with fast moving objects, while for videos with
small motion common filtering is sufficient. Table 1 fur-
ther demonstrates that our depth interpolation can signifi-
cantly improve the conversion results for videos that con-
tain objects which exhibit motion in depth (e.g., Shaman3
and Sleeping1 contain a camera-zoom), compared to ver-
sions that do not capture temporal depth changes.
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Table 1. Comparison of different versions of the proposed 2D-to-3D conversion algorithm (WTA). The table lists the MSE×100 of
the depth values averaged over all frames when applying our algorithm with GT OF (top) and estimated OF [17] (bottom).

MSE×100 GT OF
WTA Alley1 Ambush2 Ambush5 Ambush7 Shaman2 Shaman3 Sleeping1 Temple3
MS 0.06 1.19 1.45 0.99 0.79 1.91 3.65 0.28

MS +TC 0.06 0.27 1.44 0.99 0.79 1.91 3.66 0.15
STC 0.05 1.16 0.65 0.53 0.57 1.90 3.62 0.27

STC +TC 0.05 0.24 0.65 0.53 0.56 1.90 3.62 0.21
CON 0.04 1.16 0.63 0.54 0.42 1.96 3.61 0.27

CON +TC 0.04 0.24 0.65 0.54 0.41 1.96 3.61 0.21
DC-tM -n 0.04 1.16 0.64 0.49 0.39 0.18 0.57 0.27

DC-tM -n +TC 0.04 0.23 0.63 0.49 0.39 0.18 0.58 0.21
DC-sM -n 0.04 1.16 0.64 0.55 0.42 0.23 0.64 0.27

DC-sM -n +TC 0.04 0.23 0.63 0.55 0.42 0.23 0.65 0.21
DC-tM -g 0.04 1.16 0.64 0.47 0.41 0.41 0.48 0.27

DC-tM -g +TC 0.04 0.23 0.64 0.48 0.41 0.40 0.48 0.21
DC-sM -g 0.04 1.16 0.64 0.47 0.42 0.51 0.56 0.27

DC-sM -g +TC 0.04 0.23 0.64 0.48 0.42 0.49 0.57 0.21
MSE×100 estimated OF [17]

WTA Alley1 Ambush2 Ambush5 Ambush7 Shaman2 Shaman3 Sleeping1 Temple3
MS 0.07 1.22 1.46 0.96 0.78 1.91 3.65 0.28

MS +TC 0.07 0.31 1.47 0.96 0.79 1.91 3.66 0.15
STC 0.05 1.30 0.69 0.50 0.55 1.90 3.61 0.27

STC +TC 0.03 0.29 0.68 0.50 0.55 1.90 3.61 0.14
CON 0.04 1.30 0.69 0.46 0.40 1.92 3.61 0.28

CON +TC 0.04 0.29 0.68 0.46 0.39 1.92 3.61 0.15
DC-tM -n 0.05 1.23 1.43 0.49 0.40 0.30 0.57 0.27

DC-tM -n +TC 0.05 0.27 1.44 0.51 0.40 0.30 0.58 0.18
DC-sM -n 0.04 1.23 1.43 0.49 0.40 0.41 0.65 0.26

DC-sM -n +TC 0.04 0.27 1.44 0.51 0.40 0.41 0.67 0.18
DC-tM -g 0.05 1.23 0.67 0.47 0.39 0.30 0.56 0.28

DC-tM -g +TC 0.05 0.28 0.66 0.47 0.38 0.34 0.56 0.15
DC-sM -g 0.05 1.23 0.66 0.47 0.40 0.40 0.60 0.28

DC-sM -g +TC 0.05 0.28 0.66 0.47 0.39 0.42 0.61 0.15

Comparison of interpolation approaches. In Table 1, we also
compare equivalent versions of our algorithm that perform
the temporal interpolation with (-g) and without (-n) taking
depth order cues into account. When applying our algorithm
with estimated OF [17] our depth order guided interpolation
quantitatively improves the results on average by 19 percent.
In Table 1 the major quantitative improvement can be ob-
served for Ambush5, which contained perceptual conflicts
between large foreground objects (i.e., large depth differ-
ences). For test videos in which such conflicts occurred for
smaller objects (e.g., Temple3) or between background ob-
jects, the observed qualitative improvements are smaller. In
case of GT OF the obtained error rates of the naive interpo-
lation are practically not affected by our guided interpola-
tion. Figure 6 further shows corresponding examples of our
2D-to-3D conversion results in case of a naive and motion
guided interpolation. The shown examples demonstrate that
our depth guided interpolation visually improves the results
concerning their perceptual coherence. The error rates of
DC-tM and the error rates of DC-sM in Table 1 are similar.
In this context, it is worth noting that the tested videos do
not contain objects with irregularly movements, e.g., objects
that stop for a few frames, which are the focus of DC-sM.

Evaluation of sensitivity to motion information. The errors of
our algorithm in Table 1 were computed when using
GT OF from [18] (Table 1, top) and by using estimated OF

from [17] (Table 1, bottom). When comparing these errors,
on average the quality of our results is hardly affected by
the change of used motion information. When examining
the results in detail, we already observe that the error rates
for MS differ slightly. This is caused by the scribble match-
ing and grouping results, which differ when considering es-
timated OF from those when considering GT OF. Conse-
quently, the 2D-to-3D conversions are performed based on
different color models which also affect subsequent versions
of the proposed algorithm. Erroneously matched scribble
pairs can also lead to additional perceptual conflicts in the
conversion results that were generated using a naive interpo-
lation technique. In fact, in this evaluation of our algorithm’s
sensitivity to the quality of the used motion information, the
different matching and grouping emerged as a main reason
for the observed de- and increases of error rates in Table 1
(i.e., Table 1, bottom versus top). Nonetheless, analogously
to the conversion results that were obtained with GT OF,
we observe improvements when additionally enabling TC,
STC, CON and DC-sM or -tM.

Comparison to related work. In Table 2, we compare our pro-
posed algorithm to related 2D-to-3D conversion algo-
rithms [1, 3, 4] using the same user input. This evaluation
is performed on a dataset that contains five recorded videos
with stereo generated reference solutions [2, 4] (i.e., City,
Parade, Palace, Stairs and Football), long videos with up to
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Table 2. Comparison to related semi-automatic 2D-to-3D con-
version algorithms [1, 3, 4] and reference solutions. For our
algorithm with guided interpolation, we list the versions with
the best results for each video.

MSE×100 Ours, WTA Ours, DB WTA DB [4] [1] [3]
City DC -tM+TC DC -sM 1.08 1.06 0.47 1.24 1.08

Parade STC STC 0.74 0.63 0.28 0.99 0.85
Palace DC -tM+TC CON+TC 1.16 1.31 1.20 1.56 1.14
Stairs DC -tM+TC DC -tM+TC 0.86 0.96 0.51 0.72 0.60

Football STC STC 0.51 0.52 0.40 0.57 0.64
Child CON+TC CON+TC 0.57 0.55 0.58 1.09 1.13
Head DC -tM+TC DC -tM+TC 0.49 0.44 0.65 4.68 1.45

Interview CON+TC CON+TC 0.80 1.10 0.56 12.76 15.57
Tsuk50 DC -tM+TC DC -tM+TC 0.15 0.17 0.15 2.61 1.92

Tsuk380 DC -tM+TC CON+TC 0.44 0.54 0.21 2.22 0.69
Tsuk1 DC -tM+TC DC -tM+TC 0.10 0.09 0.15 2.22 0.79

101 frames that are provided with disparity and depth GT
(i.e., Child Head, Interview) and three computer-generated
videos with GT disparity maps from the new Tsukuba
dataset [19] (i.e., Tsuk1, Tsuk50, Tsuk380). Table 2 lists the
measured errors for each tested algorithm on this dataset.
For our proposed algorithm we list the best version for each
label-assignment scheme, i.e., WTA and DB. The shown
evaluation results indicate that our algorithm achieves com-
petitive 2D-to-3D conversion results. It outperforms the pre-
vious work of Guttmann et al. [1] on ten test videos and
work of Phan et al. [3] on nine videos. For five of the
test videos, we also achieve better results than Ivancsics et
al. [4]. These five videos, i.e., Head, Palace, Child, Tsuk1
and Tsuk50, contain motion in depth (e.g., due to cam-
era movements). Figure 8 exemplary shows the results for
Tsuk1 and Figure 7 for Palace. It can be seen (e.g., Fig-
ure 7, e) and f), Figure 8, f) and Table 2) that our algorithm
produces plausible conversions that also capture the change
in depth in a video. This is not the case for all tested al-
gorithms, e.g., Phan et al.’s [3] algorithm (Figure 8, c)) that
does not address the problem of temporal depth changes due
to object motion or of perceptual coherence. However, it is
fair noting that further developments of Phan et al.’s [3] al-
gorithm in [6] address temporal depth changes when con-
verting 2D videos to 3D. Ivancsics et al. [4] (Figure 8, d))
capture temporal depth changes, however, in the shown ex-
ample the results contain artifacts (Figure 8, d), blue ar-
rows). These artifacts are caused by a temporal disparity
interpolation that is performed within multiple small seg-
ments with different temporal extent. Our 2D-to-3D con-
versions contain hard disparity edges near object boundaries
(e.g., Figure 7, e) and f)), which is challenging for related al-
gorithms (e.g., Figure 7, d), yellow arrow). We observe lim-
itations of our algorithm for videos that contain (close-by)
objects with similar colors or scribble annotations that result
in overlapping color models (e.g., Figure 7, e) and f), red
arrows). Concerning these limitations, SPC and CON im-
proved our results. In fact, in Table 2 MS is not listed, i.e., it
was never the version that exhibited the smallest MSE.

Conclusion
The semi-automatic 2D-to-3D conversion algorithm that was

presented in this paper has taken a step towards the genera-
tion of perceptually coherent depth maps. With a video object-
segmentation algorithm as foundation we were able to use spatio-
temporal segmentation information to capture hard edges in depth
maps and perform smooth depth interpolations over time. These
depth interpolations were performed in accordance with motion-
caused occlusions. Evaluations with reference solutions demon-
strated that our proposed algorithm generates plausible depth
maps that capture the depth change of dynamic objects in a video.
Enabling different components of our algorithm, e.g., additionally
using a motion guided filtering instead of a common filtering, de-
creased the error rates of our results by approximately 16 percent.
Further evaluations of our algorithm’s sensitivity to motion infor-
mation revealed that our scribble matching and grouping is often
influenced by the motion information used. This suggests that it
would be beneficial to support manual adjustments of the scrib-
ble matching and grouping results during processing. In presence
of perceptual conflicts in conversion results that were generated
with a naive depth interpolation technique, our proposed depth in-
terpolation has demonstrated its ability to improve the conversion
results. In comparison to related semi-automatic 2D-to-3D con-
version approaches, our algorithm generates competitive results
on a set of recorded and computer-generated videos.
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Figure 5. Visual comparison of different versions of the proposed 2D-to-3D conversion algorithm (WTA) for Ambush2 (a) and b)) and Alley1 (c) and d)). a) and

c) Input video with scribbles in the first and the last frame, including corresponding depth GT. Blue arrows point to scribbles that cannot be tracked through the

entire video: a) head is occluded by axe, c) arm leaves the scene. For these scribbles the spatio-temporal closeness constraint and the 3D connectivity constraint

cannot be applied. b) and d) Our 2D-to-3D conversion results that were obtained with GT OF and with estimated (est.). OF.: Foreground bright, background

dark. For better visualization the contrast of the depth maps was enhanced. For est. OF and GT OF: b) Red arrows highlight areas that are improved (green

arrows) by motion guided filtering (+TC). d) Red arrows highlight areas that are improved (green arrows) by STC or CON. Original video from [18].
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Figure 6. Visual comparison of naive and depth order guided interpolation. Input video and depth GT with scribbles in the first and last frame (top). Obtained

2D-to-3D conversions for the shown example frames (bottom): Foreground bright, background dark. We show the results that were obtained when using a naive

interpolation and our depth order guided interpolation for a) Shaman2 (with GT OF) and b) Temple3 (with estimated OF [17]). Perceptual incoherencies (red

arrows) are corrected (green arrows) by our depth guided interpolation. Original video from [18].
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Figure 7. Visual comparison to [1, 3]. a) Input frames and scribbles from

Palace. b) Corresponding reference solution (estimated disparity maps):

Foreground bright, background dark. Result obtained with c) Phan et al.’s [3]

and d) our implementation of Guttmann et al.’s [1] algorithm: Over-smoothed

disparity edges at object border (yellow arrows). e) and f) Results from our

algorithm. Compared to c) and d), e) and f) provide hard disparity edges at

object borders. Red arrows indicate errors in our results that are caused by

overlapping color models (e.g., grey facade versus grey clothing).

Figure 8. Visual comparison to [3, 4]. a) Input frames and scribbles from

Tsuk1. b) Corresponding GT disparity maps: Foreground bright, background

dark. c) Result obtained with Phan et al.’s [3] algorithm and d) with Ivancics et

al.’s [4] implementation of [2]. e) Our results. Contrary to c) and d), in e) the

disparity change due to a camera zoom is captured smoothly. In c) temporal

depth changes are not addressed, i.e., disparities from the first and last frame

are propagated independently (red arrows). Result in d) contains artifacts

due to a temporal disparity interpolation within multiple small segments with

different temporal extent (blue arrows). Original video from [19].
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