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Abstract 

Direct 2D-to-3D conversion is an important task with various 
manual or automatic methods to satisfy the rapidly increasing 
requirements on stereoscopic contents. In order to construct 
stereoscopic images, defocus is adopted to estimate the depth from 
a single image and a novel layered structure is proposed in this 
paper. A simple searching and filtering-based method is proposed 
for finding the best layering result with a comparison of 
performances between our method and certain existing 
unsupervised learning methods to determine the optimum 
approach for automatic choice of the layered threshold, which can 
be used to generate a set of layered RGB images by combining 
with the depth map. Then the planar layered model is constructed 
and texture is mapped from image onto the planes. With the help of 
the proposed approach, a layered model can be created from a 
single defocused image to provide stereoscopic feelings. The 
proposed approach has also been expanded to construct layered 
stereoscopic panorama, which shows its great application 
potentials. 

I. Introduction 
With the growth of 3D hardware such as TV, mobile phone 

and video camera, more and more widespread 3D applications 
appeared in recent years and the requirements on 3D contents have 
also increased rapidly. Because there exist large amounts of 2D 
source, direct 2D-to-3D conversion methods become an important 
research issue. Many manual or automatic conversion methods 
have been proposed [1-5], in which the automatic methods are 
actually depth estimation to be used for generating a pair of right 
image and left image from a single still image. 

Although depth estimation is a classical problem in computer 
vision, inferring the depth of a scene from a single image remains 
an extremely difficult problem. Most existing works on 3D 
reconstruction require the correspondence of multiple images. 
Stereo vision based approaches [6-7] use the computed disparities 
between a pair of images of the same scene taken from two 
different viewpoints to recover the depth. Shape from motion 
(SFM) [8-9] uses the correspondences between images to obtain 
the 2D motion field to recover the 3D motion and the depth. Depth 
from focus (DFF) [10-11] captures a set of images using different 
focus settings and measures the sharpness of image for each pixel, 
in which the depth of the pixel depends on the image that the pixel 
is selected from. These methods not only rely on correspondences 
between images, but also suffer from occlusion problem. More 
importantly, they cannot work for a single image scenario. 

Humans are good at judging depth from a single image by 
combining such monocular cues as texture and defocus. For 
example, the texture of an object is different at different location. 
Among the single view depth cues, defocus is one of the strongest 
that allow humans to understand the order of the objects in a scene. 
This depth cue has been extensively investigated in depth 
estimation from a single viewpoint [12].   

Most existing depth from defocus (DFD) methods require two 
or more images of the same scene which are taken at the fixed 
viewpoint with different focus and aperture settings [13-18] and 
the disadvantage of such methods is that the scene must be 
invariant during the long capture process.  

Single-image based DFD approaches only need one image to 
compute the depth of the scene, which simplifies the capture 
procedure. Levin et al. proposed an algorithm using a coded 
aperture which is more sensitive to the depth variation [19]. The 
depth can be obtained by a set of calibrated blur kernels after a 
deconvolution process. Chen et al. represented the defocus blur 
amount by the energy spectra of the point spread function and 
detected the defocused step edge to recover depth with camera 
settings [20]. Zhuo’s approach employed edge-detection methods 
to first estimate the defocus blur of the step edge based on 
Gaussian gradient ratio, then generated the dense defocus map by 
using interpolation [21]. The single-image based DFD approaches 
can be divided into step edge detection, defocus blur amount 
estimation and defocus map interpolation, during which many 
researchers use a parameterized model to formulate the edge 
blurred by the point spread function and recover the depth by 
estimating the parameters. 

In this paper, we focus on generating visually-pleasing 
stereoscopic images based on depth obtained by using DFD from a 
single still image, during which the defocused image can be used 
to obtain depth of each pixel by computing the blur of pixels. 
Furthermore, inspired by Hoiem’s pop-up method [22], we propose 
a layered structure for the purpose of generating stereoscopic 
models rather than a conventional pair of right image and left 
image, which converts the 2D images into a pop-book like images. 
At the same time, the depth data generated by DFD methods are 
clustered according to the number of the layers that is simply 
assigned to two in this paper. 

For automatic classifying the pixels of an RGB image into 
different categories representing different layers in the stereoscopic 
image, we propose a simple searching and filtering-based 
algorithm to find the threshold of depth data. Certain unsupervised 
learning algorithms are adopted to classify the original RGB image 
into two layers according to the input depth map. A comparison of 
performances between our method and such unsupervised learning 
methods as K-means clustering and Gaussian Mixture Model is 
conducted to determine which method is the best fit for clustering 
the depth data. By performing the above-mentioned procedures, a 
set of layered RGB images can be generated and each layer 
belongs to certain part of the original RGB image. 

Once the layered images are determined, the construction of 
the stereoscopic image of a scene is a simple matter of specifying 
plane positions and texture mapping from the images onto the 
planes. The proposed approach has also been expanded to 
construct layered stereoscopic panorama, which can be easily 
implemented by changing the conventional 2D image to panorama 
and using layered cylindrical model instead of the planes. The 
proposed approach can generate qualitatively correct stereoscopic 
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images and provide more stereoscopic feeling to a user when 
exploring the captured 2D images. 

The rest of this paper is organized as follows. Section II 
presents the principle of DFD. Section III describes the layering 
process using the proposed method and unsupervised learning 
methods. Section IV shows the pop-up book like image and 
layered stereoscopic panorama to which the proposed methods are 
expanded. Finally the discussion and conclusion are presented in 
this section. 

II. The principle of DFD 
DFD utilizes the blur amount of each pixel in the image to 

compute the depth of a corresponding point. Assuming that the 
optical system of a camera obeys the thin lens model [23], the 
relationship between a point and its image can be formulated as: 

1 1 1

u v f
   (1) 

where u  is the distance from a point in the scene to the lens, v  is 
the distance between the lens and the plane that the point is exactly 
focused and f  is the focal length of the lens. 

The principle of DFD can be explained as shown in Figure 1. 
Due to the depth of field of lens, only the objects at one particular 
distance along the optical axis (O.A.) from the lens to the scene are 
exactly focused. If the objects are away from this location, their 
images will be blurred. 

 

 
Figure 1. The geometrical optics principle of DFD. 

Figure 1 shows a simplified structure of a conventional 
camera whose distance between lens and sensor plane is invariant. 

For this kind of lens system, such points as point O  at the location 

whose distance to the lens is OLD  can be perfectly focused on the 

sensor plane. Such points as point 1O  and point 2O  that are away 

from the plane at which the point O  located cannot exactly be 
focused on the sensor, which means that they are imaged at place 
either closer or further to the sensor on which a blur circle is 
formed. 

The amount of defocus blur denoted by the radius of blur 
circle is related with the distance between a point and the lens as 
shown in Figure 1. Therefore, if the radius of blur circle can be 

measured, the distance to the lens can be recovered with the system 
parameters of the camera.  

According to the Eq. (1), we can see that 

' '

'

1 1 1

OL LS
D D F

   (2) 

where 'OL
D  is the distance between point 1O  and the lens, 'LS

D  is 

the distance between the lens and the plane where 1O  is exactly 

focused and 'F  is the focal length of the lens system. 
As shown in Figure 1, let D  be the diameter of the lens and 

'R  the radius of the blur circle that the point 1O  forms on the 

sensor plane. According to the theorem of similar triangles, we 
have 

'

'

'
2 LS

LS LS

D D

R D D



 (3) 

After combining Eq. (2) and Eq. (3) we can obtain 

'

'

' '2
LS

OL
LS

D F
D

D F FR


 
 (4) 

where 'F F D  is the F-number of the camera and LSD  is the 

invariant distance between the lens and the sensor plane. 

For the other point 2O  which is closer to the lens than the 

point 1O , similarly we have 

''

'

' ''2
LS

OL
LS

D F
D

D F FR


 
 (5) 

Eq. (4) and Eq. (5) describe the relationship between the 
radius of blur circle and the depth of the corresponding point in the 
scene under different circumstances.  

The above-mentioned equations include such parameters of 
camera lens system as the diameter and the focal length of the lens 
which have an impact on the amount of the blur circle as shown in 
Figure 2 and Figure 3.  

Figure 2 illustrates the variation of blur circle with the 
diameter of the lens. When the location of a point in the scene is 
fixed, its blur circle on the sensor is smaller when the diameter of 
the lens is smaller.  

Figure 3 shows how the blur circle changes with the focal 
length of the lens. If the focal length is smaller than the right focal 
length that can exactly focus the point on the sensor plane, the 
radius of blur circle becomes smaller with the longer focal length. 
Once the focal length is larger than the right focal length, the 
radius of the blur circle will be larger when the focal length of the 
lens is longer. Thus, the radius of blur circle is a non-linear 
function of the focal length of lens. 

According to the geometrical optics, the intensity distribution 
of blur circle is approximately uninform. When considering the 
diffraction effect, the blur circle is not a single circle but a centric 
circle with a set of alternately dark and bright rings. Moreover, 
most light energy concentrates on the centric circle and only little 
energy distributes on the set of dark and bright rings, which is 
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related to the wavelengths of light. Other factors such as chromatic 
aberration and distortion can also influence the energy distribution. 
Although the accurate description of this phenomenon is very 
complex, it can be best approximated to a two dimensional 
Gaussian function called point spread function (PSF) after 
considering all the elements. The two dimensional Gaussian 
function has the following form: 

 
2 2

2 2

1
, exp

2 2

x y
g x y

 

 
  

 
 (6) 

where   is the standard deviation called spread parameter that is 
proportional to the radius of blur circle. 

 

 

Figure 2. The relationship between the diameter of lens and the radius of blur 
circle. 

 
Figure 3. The changes of blur circle with the different focal length of lens. 

The radius of blur circle R  can be formulated as: 

R k  (7) 

where the proportionality constant k  depends on the particular 
optical system. 

In order to recover the absolute depth, k  needs to be included 
in Eq. (4) as: 

'

'

' 2
LS

OL
LS

D F
D

D F Fk


 
 (8) 

The defocus blur process can be modeled as a convolution 
operation of a focused image and the PSF. A blurred image is then 
given by: 

     , , ,i x y f x y g x y   (9) 

where  ,i x y  is the blurred image,  ,f x y  is the full-focused 

image which does not exist reality.  ,g x y  is the same as the 

previous definition. 

Ⅲ. Methods  
This paper proposes an approach to generate the stereoscopic 

images by using defocus, which includes depth estimation and 
pixel classification. We use Zhuo’s approach [21] to obtain a dense 
defocus map which is actually a relative depth map. In order to 
classify each pixel, the following methods are employed to 
partition each pixel into two layers.  

A. Depth estimation 
The DFD approach can obtain the defocus map of a single 

image captured by a conventional camera without calibration. The 
value of each pixel in the defocus map represents the degree of 
blur of the corresponding point in the scene, which actually 
represents the depth of the point in the scene. Although the 
absolute depth cannot be recovered with this algorithm, the relative 
relationship between the points can be determined with fairly good 
accuracy. The algorithm is applied in a simple way in which the 
captured image can be directly input to the program. The 
conventional camera without any particular processing is good 
enough for the algorithm and the computing efficiency depends on 
the size of the input image. 

The proposed algorithm includes edge detection, edge defocus 
estimation and defocus propagation. The algorithm first re-blurs 
the step edge detected by canny operator [24] in the image. A 
Gaussian kernel is employed to re-blur the step edge and its 
standard deviation is determined manually. Then the gradient of 
the step edge and the re-blurred step edge is calculated respectively. 
Since the ratio between the gradient magnitude of the step edge 
and its blurred version is a non-linear function of location that 
achieves its maximum at the step edge, the defocus at the edge that 
is related to the ratio can be calculated.  

The maximum value of the ratio function depends on both the 
standard deviation of the re-blur Gaussian kernel and the unknown 
spread parameter of the PSF. If the standard deviation of the re-
blur Gaussian kernel is explicit, the maximum of the ratio function 
is only decided by the spread parameter of the PSF. The spread 
parameter evaluating the amount of blur can be calculated given 
the maximum value that is obtained by using the step edge map 
and the re-blurred one. 

After computing the spread parameter, a sparse inaccurate 
defocus map is obtained due to the noise and weak edges. In order 
to improve the quality of the sparse defocus map, the joint bilateral 
filter [25] is used to modify the sparse defocus map on the edge 
location. 

The last step is the defocus map interpolation which 
propagates the defocus from the step edge locations to the entire 
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map. This process can generate a dense defocus map instead of a 
sparse defocus map. The first issue to be solved is that the dense 
defocus map should be close to the sparse defocus map and the 
second issue is that the defocus blur discontinuities should be 
aligned to the edge. In this algorithm, the matting Laplace [26] is 
used to perform the defocus map interpolation formulated as the 
minimization of a cost function in reality. 

After the above-mentioned procedure, a dense defocus map 
that shows the relative depth can be obtained. As shown in Figure 
4, the proposed method is tested using the images downloaded 
from the Internet. The input images in the left column are 
conventional RGB images and those in the right column are the 
full defocus map. The darker part in the defocus map means the 
smaller depth. 

 

 
Figure 4. The test results of the depth estimation algorithm. The left column is 
the input images, the middle column is the sparse defocus map and the right 
column is the full defocus map. 

This algorithm can work well on most images and generate an 
acceptable depth map. However, the depth map may be incorrect at 
certain locations. For example, the region marked by a red 
rectangular in Figure 5 seems to be farther than the fruit with 
greater magnitude of blur, but the depth map shows a nearly equal 
value to the foreground fruit, which incorrectly shows that the wall 
is closer than the fruits to the camera. This may be caused by the 
textureless wall, which is the common problem of this kind of 
approach.  

Some similar circumstances may also happen on the textured 
regions. As shown in the region marked by a blue rectangular in 
Figure 5, the blurred flower in the original RGB image is in front 
of the green hill, however, the gray level of the hill is lower than 
the one of flower according to the defocus map, which shows a 
wrong relative depth relationship.  

B. Pixel classification 
In this part, we propose a layered structure for the purpose of 

generating pop-up book like images, which requires the 
classification of each pixel in the RGB image into two layers 
according to depth data. Figure 6 shows the processing pipeline. 
First a conventional RGB image is used to recover the depth of the 
scene. The DFD method can then be employed to calculate the blur 
of each pixel to obtain the full depth map. The depth map shows 
the relative location relationship between the objects, which 

contributes to cut the image into some layers. At the top row of 
Figure 6 are the two new images that belong to certain parts of the 
original RGB image respectively. This step can be implemented by 
setting a depth threshold to distinguish the foreground and the 
background in the image such as the focused green orange and the 
farther blurred oranges in Figure 6. 

In order to automatically classify the conventional RGB 
image into different layers according to the depth data, the depth 
threshold should be determined. A searching and filtering-based 
method to find the depth threshold is proposed that includes 
frequency domain filtering and depth threshold searching. In the 
proposed method, the data of the depth histogram is taken as the 
input of the algorithm and the output is the depth threshold. When 
the pixel value in the depth map is less than the threshold, the 
corresponding pixel in the RGB image is considered as belonging 
to the foreground. Otherwise, the pixel in the RGB image is 
assigned to the background. 
 

 
Figure 5. Error locations in the depth map. The left column is the conventional 
images and the right column is the depth map. 

 
Figure 6. Pipelines of cutting image into two layers. From bottom to top: RGB 
image, depth map, layered images including foreground and background. 

Specifically, the depth histogram that is not smooth enough to 
search the depth threshold is first obtained on the basis of depth 
data. In the viewpoint of digital signal processing [27], the depth 
histogram can be regarded as a signal with high frequency noises 
as shown in Figure 7. In order to exactly search the depth threshold, 
we first filter the “Histogram signal” in the frequency domain to 
remove the high frequency noise, then generate a smooth curve 
used for searching the depth threshold.  
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The depth threshold always appears as the minimal value of 
the curve, but not every minimal value can be a threshold. Based 
on the properties of the images, the most appropriate depth 
threshold must be at the middle of the two main high peaks which   
are found by filtering the depth histogram. Besides, during the 
searching process, we consider the difference between the peak-
peak and the minimal value as a constraints to achieve optimal 

filter. After each filtering, let  1 2, ,..., Nd d dd  denote the values 

of the depth map from small to large, then the problem can be 
formulated as: 

 arg minoptd F x



d

 (10) 

where optd  is the depth threshold,  F x  represents the curve 

function and the value area of x  is d , 

          1 2 1 2
min , ,...,max ,p p p pd d d d



d is the values of depth map and  

 1

pd ,  2

pd  denote the values of depth map corresponding to the 

peak-peak and the second peak. 
 This constraint can avoid finding other undesirable minimal 

value. Let  1

pF  be the peak-peak and set k  empirically from the 

integral 5 to 100, then the constraint can be presented as: 

   1
0p optF kF d   (11) 

By checking the constraint, the filtering result can be decided 
to be adopted or not. If the result cannot satisfy the constraint, the 
algorithm will start a new filtering and repeat the above-mentioned 
searching process. The filtering works according to an assigned 
parameter. 

For the purpose of comparison, two classical unsupervised 
learning algorithms are introduced to cluster the depth map into 
two categories. The first one is K-means clustering and the other 
one is Gaussian Mixture Model (GMM). K-means clustering is a 
popular unsupervised machine learning method that partitions n  

observations to  k  clusters. GMM is a probabilistic model that is 
composed of the weighted sum of a set of Gaussian distributions, 
whose training process aims to determine the distributions 
representing the categories. Then the data is mapped to the 
distributions to calculate their probabilities used to classify the data. 

As shown in Figure 8, the performance of the proposed 
method, K-means clustering and GMM on test images are 
evaluated. The depth map is firstly calculated and considered as 
the input image to partition the RGB image into two layers. In the 
bird image and orange image, our method can find the depth 
threshold precisely. The layered result is better than GMM and K-
means clustering. In the layered image of the other two methods, 
there are some “noisy pixels” partitioned by mistake. Especially, 
GMM fails to classify the pixel of the orange image into two layers, 
probably because the depth value in the depth map doesn’t satisfy 
the Gaussian distribution. Similar circumstance also happens in 
girl image and bridge image. For the girl image, K-means 
clustering achieves the best result compared with the proposed 
method that lost certain part of the face. In the bridge image, there 
are some blurred bright light spots whose depth is wrong, which 
leads to further rough clustering. All the three approaches can 

achieve good results in the flower image. GMM can obtain the 
white flower with clear outline, however there are still little “noisy 
pixels” in the center of the flower. Our method and K-means 
clustering can extract the flower perfectly, while our method has 
less pixels of green leaf in comparison with K-means clustering. 
Besides, expectation maximization (EM) algorithm is used to 
determine the parameters of each Gaussian distribution in GMM 
when employing GMM to classify the RGB image. The EM 
algorithm needs to run iteratively to achieve convergence, which 
means that it takes more time for GMM than the other two 
methods. Our method and K-means clustering are more 
appropriate for this application because K-means is more robust 
and our method is more accurate to certain extent. During the 
following steps, we mainly use our method and K-means clustering 
to layer the RGB images. 

Ⅳ. Discussion and Conclusion 
In order to apply layered models to generate stereoscopic 

feelings, we construct two planar models for two layered RGB 
images and use them as the texture of the plane. As shown in 
Figure 9, the 2D images are converted to stereoscopic images with 
two layers. The relative position of two layers will lead to the 
occlusion between foreground and background and show which 
part is closer in a direct way. Besides, the blank generated by 
removing the closer part from the image makes the foreground 
pop-up forward, which gives its observer stereoscopic feeling. 
Actually, the key is recovering the relative position relationship 
between the object and background. Once the relative relationship 
is obtained, the stereoscopic impression emerged naturally when 
setting the objects according to their relative position. 

Because the DFD method we employ has no requirements 
about the scale of the input image, we can also test the complete 
process on the panorama image. As shown in Figure 11, we 
capture a cylindrical panorama of Dashuifa in Yuanmingyuan 
Garden (the former Summer Palace). 16 images are captured by a 
conventional camera with a tripod and stitched into a large 
panorama. Actually the layered result is not satisfactory and the 
main reason is there is little blur in the panorama image. Large 
scale outdoor scenes need short focal length to be captured, which 
leads to the long depth of field. When capturing images under this 
condition, the blur effects will not be obvious. Thus, the DFD 
methods cannot work in this scenario. It can be seen from Figure 
10 that the depth histogram of our panorama only shows a single 
peak, which improperly indicates that all the objects in the image 
have the same depth. Therefore, all the three clustering methods 
cannot partition the pixels exactly. 

In this paper, we propose a novel approach of generating 
stereoscopic images using defocus. Specifically, the DFD method 
is used for recovering the depth of RGB image by computing the 
blur of each pixel and some clustering algorithms are employed to 
classify the pixels into two images automatically by comparing the 
performance among K-means clustering, GMM and the proposed 
method to determine the optimum approach. Then a layered 
structure whose texture is mapped from images onto the planes are 
constructed for the purpose of generating stereoscopic images. 
With the help of the proposed approach, a layered stereoscopic 
model can be created from a single defocused image to provide 
stereoscopic feeling. The proposed approach has also been 
expanded to construct layered stereoscopic panorama, which 
shows its great application potentials. 
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Figure 7. Filter processing. From left to right: depth histogram, histogram curve and smooth curve after filtering. We find the depth threshold by searching the local 
minimal value based on the filtering result under the constraint of difference between the first peak value and the minimal value. 

 

Figure 8. Comparison of experiment result. From left to right: input image, depth map estimated by Zhuo’s approach [16], pixel clustered by our method, by GMM, 
by K-means cluster. The layered results clustered by our method and by K-means are more accuracy. 

 

Figure 9. Stereoscopic images generated by layered structure. The occlusion 
and blank can provide the stereoscopic feelings. 

 

Figure 10. Depth histogram of our panorama image. The depth of the pixels 
appear in an interval, leading to the incorrect cluster. 
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The real layered model can give people the stereoscopic 
impression based on the relative location relationship between 
objects in the image. The proposed method converts a 2D image to 
a pop-up book like structure that is different from the conventional 
stereoscopic process. The key of our approach is the depth 
estimation algorithm. Thus, the accurate and stable depth 
estimation method will be the research emphasis in the future. 
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Figure 11. Layered panoramas and stereoscopic panorama model. From top to bottom: panorama image, foreground, background and cylindrical stereoscopic 
panorama. The layered structure still can give people stereo impression in a certain extent in spite of some mistakes in the layered panorama images. 
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