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Abstract
The aim of this study is to propose a precise disparity es-

timation process between retinal fundus stereoscopic images to
assist during eye diagnosis and view generation for visualization.
We propose a computer-vision-based solution that allows, from
stereo images, the extraction of precise disparity information that
could be used for clinical parameters estimation and/or the gen-
eration of multi-viewpoint images of retinal fundus. The proposed
solution is based on a sub-pixel disparity estimation algorithm
that takes into consideration the spherical shape of the retinal
fundus. A sub-pixel approach is adopted in order to achieve high
precision disparity estimation. Moreover, the a priori knowledge
of the fundus geometric shape provides useful information for the
regularization of the high precision disparity estimation process.
Stereo images, with known ground truth, are used to evaluate the
proposed algorithm and to demonstrate the high precision of es-
timated disparity in our methods.

Introduction
3D retinal surface visualization is becoming easy and handy

with the current advances in image visualization technologies.
Retinal image processing is a well-studied field and several stud-
ies about depth estimation of retinal fundus exists [1, 2, 3, 4].

The literature for the analysis of retinal images mainly deals
with the issue of 2D images in order to facilitate the detection of
lesions by ophthalmologists. However, accurate diagnosis often
requires a 3D image of the retina. In particular, the analysis of
the 3D shape of retinal fundus is essential for identifying lesions
and estimating the extent of the lesion, and measuring eye pres-
sure on the optic disc. Different methods are used to regenerate
a 3D model of the fundus from stereo images. In [3], the au-
thors estimate the epipolar geometry and projection matrices af-
ter a self-calibration, then they solve the correspondence problem
to reconstruct the 3D fundus surface. In [7], the authors apply
a plane+parallax algorithm to stereo images, which is followed
by a mutual information-based disparity search stage. In [8], the
authors use a multi-focusing technique to capture retinal fundus
images and reconstruct its 3D surface. None of these studies as-
sume that the retinal fundus can be approximated to a spherical
surface.

In [5, 6] the authors assume a spherical shape for the eye-
ball. They use this information to help reconstruct the 3D shape
of the fundus. One challenging step is to estimate the intermedi-
ate optical system parameters such as the contact enlarging lens
focal distance. They model the mapping of this surface through
the eye lens as a quadratic surface and perform camera calibra-
tion through matching correspondences on this quadratic surface.

Their method is based on a two-stage optimization process. They
estimate the quadratic surface using the correspondences and they
minimize the error with respect to the camera poses by keeping
the surface equation fixed. Secondly, they minimize the error
with respect to the surface equation and camera poses to estimate
the optical system parameters. This work aims to reconstruct the
3D shape of the retinal fundus, and does not use the estimated
quadratic surface to increase the robustness of the disparity esti-
mation process.

On the other hand, the authors in [10], state that the extrac-
tion of invariant geometric features is the first step not only for the
2D registration but also for the 3D reconstruction of retinal im-
ages. They proposed a robust method, using reliable landmarks,
defined by the Y-feature , where vessels and nerves intersect. They
used this method to extract robust corresponding points in order to
rectify uncalibrated stereo images and then estimate the disparity
without taking into consideration the quadratic surface constraint.
However, for establishing disparities, the image correspondence
problem must be solved throughout feature matching. Match-
ing techniques, and thus constructing the disparity map, can be
classified into two main categories. More specifically, techniques
that construct the disparity map by solving the correspondence
problem, pixel by pixel, are referred to as local, while techniques
that consider the correspondence problem as a global optimization
problem are referred to as global. Among the best-known tech-
niques belonging into the mentioned categories are the differen-
tial matching, the cross correlation, graph cuts, the global energy
optimization method and dynamic programming based methods
to name a few. All local methods typically use an appropriate
measure in order to quantify the existing similarity between the
template window and the candidate one. Widely used similarity
measures are the sum of squared differences (SSD), the sum of
absolute differences (SAD), and the normalized cross-correlation
(NCC) as well as their zero-mean counterparts. Among these
measures, only the zero-mean normalized cross correlation is in-
variant to both shift and scale photometric distortion. This prop-
erty is required in many stereo vision algorithms, especially in
ophthalmic applications where the illumination of the scene is
nonuniform. Another feature which is desired in a large number
of applications is the ability of the matching algorithm for produc-
ing a disparity map with sub-pixel accuracy. Sub-pixel accuracy
allows for a finer variation in depth levels, which otherwise are
limited to values corresponding to integer disparities. This im-
proves the precision of the depth estimation process and thus the
quality of the synthesized images for multi-viewpoint visualiza-
tion. In [9] the authors propose a new similarity measure which is
based on the correlation coefficient called Enhanced Normalized
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Cross Correlation (ENCC). More specifically, by using an appro-
priate linear interpolation scheme on the intensities of two adja-
cent candidate windows, a new similarity measure is introduced.
This measure, although based on a linear interpolation scheme,
does not demand the reconstruction of any intensity value, while
at the same time it has infinite precision in its sub-pixel estimates.

In this paper, we propose a new algorithm for precise and ro-
bust sub-pixel disparity estimation exploiting the a priori knowl-
edge of the retinal fundus shape. This method consists of, first, ex-
tracting reliable landmarks, defined by Y-feature points in stereo
images. These points are then matched and used to generate a
quadratic model of the retinal fundus. Secondly, a global sub-
pixel disparity estimation process is developed under a geometric
constraint defined by the quadratic surface.

The rest of the paper is organized as follows: Section 2 in-
troduces the geometric model of the fundus surface and the its
parameters estimation process. Section 3 describes the matching
algorithm for sub-pixel disparity map. Section 4 discusses the al-
gorithm implementation and its results. The last section concludes
the paper and outlines future research directions.

Geometric constraint for fundus stereo im-
ages

In this paper we will consider the stereoscopic setup pre-
sented in figure 1. The two cameras are modeled as Pin-Hole in
a canonical stereoscopic system. The stereo images are consid-
ered rectified, thus any point in the space will be mapped to corre-
sponding image points through fundamental matrices Ml and Mr
at the same vertical position.

Disparity geometric model
Assuming an orthogonal frame O,−→x ,−→y ,−→z and a retinal

fundus (modeled as a sphere) with radius R, the coordinates
(X ,Y,Z) of a point M lying on the fundus surface should verify
the sphere equation:

(X−Cx)
2 +(Y −Cy)

2 +(Z−Cz)
2 = R2, (1)

where Cx, Cy and Cz are the coordinates of the sphere-shaped fun-
dus center. The figure 2 shows the spherical shape and the op-
tical path of a retinal fundus stereoscopic image capturing sys-
tem. In [5] the author demonstrates that the point M is mapped
through the optical systems into a point p which coordinates ver-
ify a quadratic equation of the form:

x2 + y2 +αzz2 +αxzxz+αyzyz+αxx+αyy+αzz+α = 0.
(2)

The projection of p to both camera plans Πl and Πr is com-
puted using the cameras fundamental matrices Ml and Mr. This
will give two image points ml(ul ,v) = Ml × pt and mr(ur,v) =
Mr× pt in the left and right image coordinate system of the left
and right cameras respectively. The disparity between ml and mr
is defined by d = ul −ur. We can demonstrate that:

ul =
f
z
(x+b/2), ur =

f
z
(x−b/2), v =

f y
z

and d =
f b
z

(3)

where f is the focal distance between the image plane and the
camera center, and b is the distance between the two camera cen-

ters along the x axis. Performing simple mathematical manipula-
tion, we can write:

x =
b
2

2ul −d
d

, y =
vb
d

and z =
f b
d

(4)

by replacing equation (4) into equation (2) and assuming d 6= 0
we can write:

G(ul ,v,d) = (5)

u2
l + v2 +a1d2 +a2uld +a3vd +a4ul +a5v+a6d +a7 = 0

where (ai, i = 1...7) are real valued parameters.

Figure 1: Stereoscopic canonical system

Figure 2: Stereoscopic setup for stereo retinal fundus image

The equation (5) presents a constraint between correspond-
ing points in fundus stereo images that links the disparity value
to the coordinates of the left point, considered as reference in this
study. In order to integrate this constraint into the disparity esti-
mation algorithm, the parameters of equation (5) should be esti-
mated.

Identification of disparity geometric model param-
eters

In order to estimate the parameters in equation (5) a robust
matching algorithm is used. As the model has 7 unknown param-
eters, at least 7 matching pairs of points are required to estimate
these parameters. In [7], the author proposes a robust algorithm

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.5.SDA-034

IS&T International Symposium on Electronic Imaging 2016
Stereoscopic Displays and Applications XXVII SDA-034.2



to detect special features in the retinal fundus image. This al-
gorithm is based on the detection of intersection points between
blood vessels called Y-feature points. The position of a Y-feature
has at most 3 strong responses from different directional Lapla-
cian of Gaussian filter outputs. Basically, the algorithm generates
a list of potential points using 6 directional Laplacian filters. The
obtained filtered outputs are analyzed using the Principal Com-
ponents Analysis (PCA) method for every pixel. Image locations
having at least three large component values are considered as
seed points in order to guarantee that at least three gradient direc-
tions are present in the vicinity of the Y-feature .

The Y-feature model has 8 degrees of freedom (DOF),
Y = (u,v,θ1,θ2,θ3,w1,w2,w3) which includes the center posi-
tion (u,v), the orientation angles of the three branches attached
to the center position θ1,θ2,θ3, and three widths for each branch
w1,w2,w3. The length of each branch, L, is fixed. Using the ge-
ometric properties of the Y-feature in retinal images, the arms are
constrained not to be too close or far away from each other. The
width is also limited to be between the minimum and maximum
size of the vessels to be detected. Given the initial position of
the Y-feature provided by the estimated seed points, we fit the ar-
ticulated model using a gradient descent method, minimizing the
following energy:

F(Y) =
1
2

3

∑
i=1

∫ wi

−wi

∫ L

0
[(−1)mĨ (ui,vi)

2 + G̃ (ui,vi)
2]dwdl

(6)

where ui,vi are the coordinates of a point in the articulated
Y-feature model, ui = u + wsin(θi) + l cos(θi) and vi = v +
wcos(θi) + l sin(θi) where (u,v) is the center position of the
model and i is the index of the considered arm. Ĩ (ui,vi) is the
interpolated value of intensity image I at the point ui,vi and
G̃ (ui,vi) is the gradient value of the interpolated intensity image
Ĩ at the point ui,vi. The parameter m = 0 to find dark vessel, and
m = 1 to detect bright vessels. Additionally, the author constrains
the angles θ(θ1,θ2,θ3) and widths w(w1,w2,w3) of the branch
to be within a specified range of values θmin and θmax for angles
and wmin and wmax for widths. Enforcing these constraints could
be achieved using Lagrange multiplier for solving the constrained
optimization problem. The author uses a penalization approach
based on the use of a barrier function B for enforcing the inequal-
ity constraints:

B(θ ,w) =
3

∑
j=1

(
1

(θi−θmin)(θmax−θi)
+

1
(w j−wmin)(wmax−w j)

)
The extraction of Y-feature in the image consists of initializing
the model using feature point location and orientations and fitting
the articulated Y-feature to the image features by minimizing the
function:

E(Y) = F(Y)+(1−β )B(θ ,w) (7)

where β is the trade-off between the goodness of fit to image
features and the constraints on the orientation of the arms and
their thickness. The function E is minimized iteratively using
a gradient-based approach. For more detailed information refer
to [11].

In order to use this approach on stereo images to select
matching points, a matching strategy should be adopted. As we
use rectified images, the corresponding matched points have the
same vertical position. This will limit the search to only one di-
rection. The search begins from a minimum disparity value. Us-
ing traditional matching algorithms (cross-correlation), a first es-
timate will be detected. Then, this point will be considered as
a seed point in the right image and a new energy optimization
process (equation (6)) will be executed to find a more precise po-
sition of the matched points. This energy optimization will be
constrained with a fixed vertical position (vi = constant).

A first estimate of fundus model parameters is computed us-
ing at least 7 Y-feature matched points. If more than 7 points were
found, the best estimate is computed using the least-square mini-
mization approach with the form

P̃ = argmin
P

(‖B+A×P‖2
2) (8)

where

P =
[
a1 a2 a3 a4 a5 a6 a7

]t (9)

A is the matrix and B the vector with kth row respectively equal
to:

Ak =
[
d2

k ul,kdk vkdk ul,k vk dk 1
]

(10)

Bk =
[
u2

l,k + v2
k

]
(11)

and k goes from 1 to S being S the number of Y-feature matched
points.

Geometrically constrained sub-pixel dispar-
ity estimation

The most commonly used sub-pixel approach in stereo
matching is based on polynomial interpolation, including corre-
lation interpolation methods and intensity interpolation methods.
In [9] the author proposes a similarity measure based on the corre-
lation coefficient that is called Enhanced Normalized Cross Cor-
relation (ENCC). This measure is based on a linear interpolation
scheme. It does not require the reconstruction of any intensity
value, while at the same time it has infinite precision in its sub-
pixel estimates. This algorithm is adopted in this paper.

Let us consider a rectified stereo image, with Il(i, j) and
Ir(i, j) denoting their intensity functions. The width and height
of both images are the same and noted Lw and Lh respectively. The
stereo correspondence problem aims to find a non-negative dis-
parity map D(i, j) such that the following relation approximately
holds

Il(i, j)u Ir(i−D(i, j), j) (12)

In order to solve the image correspondence problem in a lo-
cal window-based method, let us consider that W (u,v) denotes an
image window of size N1×N2 with its center located at the point
with coordinates u,v, and let

w(u,v) =
[
w1 w2 . . . wN−1 wN

]t (13)

be the vector resulting by stacking up the columns of the window
W (u,v), where N = N1N2 is its length. Let us also define the zero
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mean normalized version of vector w(u,v) as

w̄◦(u,v) =
w(u,v)− w̄(u,v)
‖w(u,v)− w̄(u,v)‖2

(14)

where w̄(u,v) and ‖w(u,v)‖2 denote its mean value and Euclidean
norm respectively. By selecting a template window Wl(u,v) in
the reference image, and a window Wr(u− d,v) in the matching
image, we can define, using the above notation, their correlation
coefficient as the inner product of the vectors

ρu,v,d = w̄◦tl (ul ,v)w̄
◦
r (ur−d,v) (15)

and use it as a similarity measure for the centers of the above
defined windows.

The correlation coefficient of equation (15) can be gen-
eralized to become a function of the continuous spatial vari-
able, τ , ρu,v,d(τ). Let us therefore introduce the following
N−dimensional vector function:

w(u+ τ,v) = w(u,v)+(1− τ)(w(u−1,v)−w(u,v)) (16)

which is a continuous linear function of the spatial variable τ ∈
[0,1]. Notice that if τ = 0, w(u,v,τ) = w(u− 1,v) and if τ = 1,
w(u,v,τ) = w(u,v).

The goal now is to incorporate the intensity vector function
of τ into the similarity measure defined in equation (15). To this
end, let us define the following correlation function:

ρul ,v,d(τ) = w◦tr (ul −d− τ,v)w◦l (ul ,v) (17)

Using the definitions of the inner product and zero mean normal-
ized vector of equation (15), and after some mathematical manip-
ulations, equation (17) can be rewritten as :

ρd(τ) =
ρd + τ(ρd −λρd−1)√

(1+λ 2−2λ r)τ2 +2(1−λ r)τ +1
(18)

where

λ =
‖wr(ul −d−1,v)− w̄(ul −d−1,v)‖2

‖wr(ul −d,v)− w̄(ur−d,v)‖2
(19)

is the ratio of norms of the adjacent windows and

r = w̄◦tr (ul −d,v)w̄◦r (ur−d−1,v) (20)

their correlation coefficient.

Geometric constraint disparity estimation
After introducing the geometric model of the fundus surface

and a sub-pixel accuracy similarity measurement operator, this
section will discuss how the depth map is estimated under a geo-
metric constraint. The proposed algorithm is based on an energy
maximization function. This energy will evaluate the current dis-
parity estimation with respect to two different criteria. The energy
function is:

E(D,P) = (1−α)EData(D)+αEGeo(D,P) (21)

where D is the estimated disparity map, P is the parame-
ters vector of the quadratic surface defined in equation (9) and α

is a weighting parameter. The goal is to find D̃ that maximizes
E(D,P):

D̃ = argmax
D
{E(D,P)} (22)

Data energy
The data energy EData is the energy that measures the sim-

ilarity between all windows wl(ul ,v) and wr(ul − d,v) where d
is the estimated sub-pixel disparity D(ul ,v). The data energy can
then be computed by summing all the correlation values ρ(ul ,v,d)
at all pixels. Thus:

EData(D) =
Lw

∑
ul=1

Lh

∑
v=1

ρ(ul ,v,D(ul ,v)) (23)

where D(ul ,v) is the disparity value at the point (ul ,v). The max-
imum value of the correlation function at a given pixel, is equal to
unity. Thus, the maximum data energy value is equal to LhLw.

Geometric energy
EGeo(D,P) is the energy that measures how much the sub-

pixel disparity verifies the geometric constraint. This energy is
computed using the geometric model presented in equation (5).
The function G(u,v,d) from equation (5) is a quadratic surface
that represents a relation between a point (u,v) and its correspond-
ing (u−d,v). More the point (u,v,d) is close to the surface more
G(u,v,d) is close to zero. Thus, the geometric energy can be de-
fined as follows:

eGeo(ul ,v,D,P) =
1√

1+G(ul ,v,D(ul ,v))2
(24)

where P is the model parameter defined in equation (9) and used
in the function G(ul,v,D(ul ,v)). It is obvious that the value of
eGeo ∈ [0,1]. It is equal to 1 when G(ul ,v,D(ul ,v)) is zero which
means the point (ul ,v,D(ul ,v)) is on the surface. It decreases
when G(ul ,v,D(ul ,v)) increases. By doing so, the two energies
are compatible and can be added together.

The total geometric energy can be computed as follows:

EGeo(D,P) =
Lw

∑
ul=1

Lh

∑
v=1

eGeo(ul ,v,D,P). (25)

Gradient descent solver
The final disparity map is the one that maximizes the energy

function (21). One way to solve the optimization problem is to use
the gradient-descent method. This method requires the computa-
tion of the energy gradient with respect to the disparity values. By
slightly varying the disparity value d at each pixel (ul ,v) in D a
gradient vector is computed:

∂E(D,P)
∂D

u
E(D+∆,P)−E(D−∆,P)

2∆
(26)

If the energy is to be maximized then:

Dnew = Dold + γ∆E(D,P) (27)

where ∆ and γ are internal parameters that affect the convergence
speed and stability of the algorithm.

Algorithm
The criteria optimization process is essentially based on the

gradient descent method. The geometric constrained sub-pixel
disparity estimation algorithm is described as following.
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• Step 1 find list of corresponding points using Y-feature
matching algorithm,

• Step 2 estimate Fundus geometric model parameters P using
the Y-feature matched list,

• Step 3 compute the total energy according to, (21), (23) and
(25)

• Step 4 apply the gradient descent algorithm to compute the
next disparity map D and

• repeat step 3 and 4 until convergence.

Simulation and Experimental results
Stereo images and ground truth generation

For simplicity, we will consider that the stereo images are the
projection of a spherical surface rather than a quadratic surface. In
fact by neglecting the optical system, the retinal fundus, consid-
ered as a spherical surface, is directly projected onto the cameras
image planes Πl and Πr. This supposition will only affect the
estimated values of the geometric model parameters (5). A 3D
modeling software is used to create a 3D spherical model. In this
study the software Blender is used. Under Blender, an unwrap-
ping function will allow to project a 2D image onto a 3D spherical
surface (see fig. 3a). Note that this process may seem to be unrea-
sonable, but the main objective here is to test the proposed method
and not to reconstruct a real 3D surface. Once the 3D spherical
model is created, we define two different positions of the cam-
era centers, noted Cl = [Clx,Cly,Clz] and Cr = [Crx,Cry,Crz]. Cl
and Cr are slightly displaced along the x axis with known dis-
tance b (see fig. 1). The displacement is computed in a way that
will generate stereo images with a large interval of disparity val-
ues. All parameters, including the sphere radius, its center po-
sition, the camera centers position and its focal distance are ad-
justed and well-defined. The intrinsic parameters of the camera
are the same at both positions and they are presented in the in-
trinsic matrix M int . The extrinsic parameters include the coordi-
nate of the camera centers in the world frame and they are pre-
sented in M ext

l and M ext
r . A point M(x,y,z) in the world frame

is mapped into pl(x,y,z) and pr(x,y,z)in the left and right cam-
era frame through the matrices M ext

l and M ext
r respectively. The

projection of points pl and pr onto the image plane is computed
through the matrix M int . Thus, the image of pr(x,y,z) is mr(ur,v)
on the right camera and the image of pl(x,y,z) is ml(ul ,v) on the
left camera plane (see figs. 4a and 4b).

ml =

 ul
v
1

=
1

zc,l
M int ×M ext

l ×


x
y
z
1

 (28)

mr =

 ur
v
1

=
1

zc,r
M int ×M ext

r ×


x
y
z
1

 (29)

where

M int =


f

hx
0 Ox

0 f
hy

Oy

0 0 1

 , zc,l = z−Clz, zc,r = z−Crz (30)

and Ox, Oy are the image center coordinates in pixels, hx and hy
are pixel dimension in meter and f is the focal distance of the

camera (see fig. 1) and

M ext
l =

[
I3 Ct

l
0 1

]
,M ext

r =

[
I3 Ct

r
0 1

]
(31)

where I3 is 3×3 identity matrix.
A point m(u,v) can be mapped back to M(x,y,z) by com-

puting the line of sight using M−1
int and the intersection with the

fundus surface defined in equation (1).
The ground truth image is computed using M ext

l , M ext
r and

M int . The ground truth image is the disparity value at each pixel
presented in a gray-scale image (see fig. 3b). The disparity d is
equal to:

d = ul −ur. (32)

ul and ur are the x-coordinate of points ml and mr respectively.

(a) The retinal fundus reference image (b) The ground truth of the retinal
spherical model

Figure 3: This image was originally published in the ASRS Retina
Image Bank. Author: James B. Soque. Photographer: James B.
Soque. Title: Stereo View of Retinal Angiomatous Proliferation
in Age-Related Macular Degeneration. Retina Image Bank. 2012;
Image Number: 852. c©The American Society of Retina Special-
ists

(a) Left image (b) Right Image
Figure 4: Stereo images of retinal fundus

Algorithm implementation
Step 1 Y-Feature extraction

By applying the Y-feature extraction algorithm described
previously, a list of Y-feature centers is generated and presented
in the figure 5a. The parameters of the Y-feature algorithm are
adapted to the vessels size inside the image. On the other hand,
the matching process of Y-feature points is performed in two steps.
First a local matching algorithm is used. The resulting matched
point is then used as initial position in the Y-feature optimization
in the right image. In this case, the optimization of criteria (6) is
constrained to be only along the x-axis, thus the y− coordinate
value is considered fix. At least 7 matched pairs are required to
estimate the surface parameters equation (5). The figure 5a and 5b
show 10 matched points, in the left and right images, generated by
the Y-feature algorithm, referred by the cross and square symbols
respectively.
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Step 2 Model parameters estimation
Using the least-square solver, the parameters of equation (5)

are estimated. First we construct the matrix described in (10)
and (11). In this example, a list of 10 points are matched as pre-
sented in 5a. These points are used to create the 10 by 7 matrix
A. Solving the least-square minimization problem B+A×P = 0
where P gives the model parameters {ai}i=1...7.

Step 3 Energy computation
In this step, we calculate the energy of the current dispar-

ity map. This energy is formed by adding two different energy
functions (equation (21)). The first one consists of a data energy
which measures the similarity with respect to the disparity D and
the second one consists of a geometric energy which measures
how close the disparity D is to the geometric model defined by
parameters vector P. A first estimate of the disparity map is re-
quired to compute this energy. Thus, we choose to start by the
disparity map computed from the geometric model directly:

D0(u,v) = (33)

min
d
(u2 + v2 +a1d2 +a2ud +a3vd +a4u+a5v+a6d +a7)

The energy at the iteration i is computed with respect to equa-
tion (21).

Ei(Di,P) = (1−α)EData,i(Di)−αEGeo,i(Di,P) (34)

where

EData,i(Di) =
Lh

∑
v=1

Lw

∑
u=1

ρ(u,v,Di(u,v)) (35)

and

EGeo,i(Di,P) =
Lh

∑
v=1

Lw

∑
u=1

e(u,v,Di(u,v),P) (36)

Step 4 Optimal disparity Estimation
After computing the energy of the initial estimate of the dis-

parity map, we use the gradient descent method described previ-
ously in equation (26) to converge towards the optimal solution.
From Ei(Di) we compute the new estimate Di+1 of Di:

∂Ei(Di,P)
∂Di

=
Ei(Di +∆,P)−Ei(Di−∆,P)

2∆
(37)

Di+1 = Di + γ
∂Ei(Di,P)

∂Di
(38)

(a) Y-feature detected points in the
left image

(b) Y-feature matched points in the
right image

Figure 5: Y-feature matched points in the left and right images.

Steps 3 and 4 are repeated until the algorithm converges. The
convergence state is defined when the energy difference between
two consecutive iterations is smaller than 1%:

Erren,i =

∣∣∣∣Ei+1−Ei

Ei

∣∣∣∣ (39)

The figure 6a shows the estimated disparity map for α = 0.3, ∆ =
0.004 and γ = 0.5.

(a) The resulting estimated dis-
parity map for α = 0.3

(b) The estimated disparity map
without geometric constraints
(α = 0)

Figure 6: (a) Estimated disparity map for α = 0.3. (b) Disparity
map without geometric constraints (α = 0)

A general approach to evaluate the performance of the algo-
rithm is to compute the root-mean squared error with respect to
the ground truth [12]:

R =

(
∑

Lw
u=1 ∑

Lh
v=1 |D(u,v)−DGT (u,v)|2

) 1
2

∑
Lw
u=1 ∑

Lh
v=1 |DGT (u,v)|

(40)

where D(u,v) is the estimated disparity and DGT (u,v) is the
ground truth data. In this example, where α = 0.3 the R value
is equal to 0.4%, while without the geometric constraint, the R
value is equal to 0.8%.

Experimentation on real stereo images
An original way to evaluate this method is to apply it

on real stereo images of the retinal fundus. Fundus images,
at high resolution, can be found in the retinal image bank
(http://imagebank.asrs.org/). In order to evaluate the estimated
disparity using our method, some ground truth data is required.
One way to generate ground truth data is to manually extract cor-
responding points at full image resolution. This procedure pro-
vides sub-pixel ground truth data after reducing the image reso-
lution. In this example, we use the stereo images presented in
figures 7a and 7b. Each image has a full resolution of 800×900
pixels and the scaling factor is considered to be 0.5. The figures 7a
and 7b also show the manually extracted matching points.

In the following, a reduced version of the images in 7a and 7b
are used as well as the extracted and scaled ground truth data.

First, we start by applying the Y-feature extraction algorithm.
The purpose of this algorithm is to extract robust corresponding
points that will be used in the quadratic surface estimation. The
figures 8a and 8b show 10 extracted Y-feature points in both im-
ages.

Next, the model parameters, described by the vector P, are
estimated using the least-square solver applied to the matrix A
(equation (10)) and vector B (equation (11))

Finally, the optimal estimated disparity map is computed by
optimizing the energy function (see equation (22)).

Figure 9 shows the RMS error between the ground truth
matched points and their estimated disparity for 1-unconstrained
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disparity estimation (α = 0), 2- fully constraint disparity estima-
tion (α = 1) and 3- an intermediate value (α = 0.3). The ground
truth matched points are sorted and divided into 3 categories. The
first category consists of points with textured neighborhood (e.g.
vessels intersection) and close to Y-feature generated points. The
second category consists of other points having textured neigh-
borhood. The last category consists of points with low textured
neighborhood. The figure 9 shows that the points of the first cate-
gory have low RMS error (< 4%) in the two extreme cases, α = 0
and α = 1. On the other hand, the points lying in the second cate-
gory have low RMS error for α = 0, and bigger RMS error (7%)
when α = 1. Finally, the points lying in the third category have
RMS error (13%) at α = 0 bigger than RMS error 5% at α = 1.

This experimental result explains the fact that the data en-
ergy has a bigger contribution in the total energy at points with
textured neighborhood, while the geometric energy contributes
significantly more in low textured regions. Thus, by choosing an
appropriate value for the parameter α , or by varying its value with
respect to the texture of the region, we expect better results. In the
figure 9, we can see that for α = 0.3, we obtain smaller RMS er-
rors compared to α = 0 in the region with low texture (category
3). With this value of α , a small increase of the RMS error is
observed in points of the second category which is expected and
not considered critical as its value is less than 4%. In real fundus
stereo images, the quadratic surface assumption is only an ap-
proximation, and the geometric model should only be considered
for regularization of the estimated disparity. Thus, it is advised to
consider small values of the parameter α (e.g. α < 0.5).

(a) The left image with manually
selected points

(b) The right image with manually
selected points

Figure 7: This image was originally published in the ASRS Retina
Image Bank. Author: James B. Soque. Photographer: James B.
Soque. Title: Diabetic Retinopathy Optic Nerve Edema, Fluo-
rescein Angiogram, Stereo. Retina Image Bank. 2015; Image
Number: 24867. c©The American Society of Retina Specialists

(a) Y-feature detected points in the
left image

(b) Y-feature matched points in the
right image

Figure 8: Y-feature matched points in the left and right images.

Conclusion
In this paper we proposed a sub-pixel disparity estimation

algorithms that takes into consideration the geometric shape of
the retinal fundus. First, we detect the Y-feature points with their
correspondences in stereo images. Then we generate a quadratic
surface that models the retinal fundus using Y-feature matched
pair points. The quadratic model is used to enhance the accuracy
of the sub-pixel disparity estimation process. The simulated re-
sults have shown an improved precision of the geometrically con-
strained disparity map by comparing it to the unconstrained sub-
pixel disparity estimation process. We are currently exploring the
interaction between image characteristics and the regularization
factor in order to find the optimal value.
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was with the Nokia Research Center, Dallas, TX, as a Senior Engineer and
as a Program Manager in the Audiovisual Systems Laboratory. He joined
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