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Abstract. Stereoscopic images and videos can lead to serious
adverse effects on human visual perception. The phenomenon
of visual discomfort depends on various influencing factors such
as the arrangement of the display system, the image quality and
the design of 3D effects. Real-time depth adaptations that reduce
the extent of visual discomfort require computationally efficient
prediction models. This article analyzes optimal combinations
of image features of state-of-the-art models in terms of prediction
accuracy and computational efficiency. In addition, a fast-to-compute
disparity contrast feature based on Haralick contrast is introduced
in this context. It turns out that the computational complexity can
be reduced by restricting the number of features without loss of
prediction accuracy. A Pareto-front analysis shows which features
are more likely to be part of optimal combinations. It is interesting
to observe that the introduced disparity contrast feature is part
of combinations that are optimal in terms of both computational
efficiency and accuracy. This means that state-of-the-art prediction
models can be improved by means of the introduced disparity
contrast feature. The analysis relies on statistical evaluations based
on publicly available assessment data. c© 2015 Society for Imaging
Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2015.59.6.060401]

INTRODUCTION
In the literature, the term visual discomfort (VD) refers to
the subjective sensation of discomfort that is associated with
watching stereoscopic images or video streams.1 This article
is about modeling of VD based on image analysis in order
to predict this effect and to improve the overall acceptance
of 3D technology. The extent of the VD experienced
has been investigated by means of clinical and subjective
assessments. Some viewers experience VD such as eye
strain, headache and nausea.2 Bad quality 3D content can
cause permanent damage to the visual system of children.3
This phenomenon depends on various influencing factors
such as the arrangement of the display system, the image
quality and the design of 3D effects such as depth grading.
Visual discomfort is a key aspect for the overall quality
of experience4,5 of watching 3D content and therefore
for the acceptance of 3D technology,6 particularly in the
context of 3D film production and 3D display systems.7–10
Consequently, minimization of the viewer’s discomfort is
a major research activity of 3D technology production,
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which must take the full extent of viewer’s experience into
account.11

The literature offers various approaches for modeling
the assessment of the extent of VD based on image data
analysis. All of these approaches are based on the extraction
of image features as input for a regression model. The
various approaches differ in the chosen image features and
how they are aggregated. Some authors prefer low level
features such as depth range or depth distribution, mainly
based on first-order statistics11–14 that are derived from
the disparity map. Recently, Sohn et al.15 and Jin et al.16
proposed the application of higher level image analysis
techniques such as segmentation and object description.
The latter approaches enable substantial improvement of
the prediction accuracy for visual discomfort in comparison
to the approaches that are driven by the extraction of
first-order-based statistics only.

However, when VD predictions are part of compu-
tational models in the 3D content post-production pro-
cess,14,17–20 the aspect of computational efficiency becomes
a major issue.

The contribution of this article is twofold: (a) we
perform a Pareto optimality analysis of feature combinations
in terms of balancing both prediction accuracy and time
complexity of VD models, and (b) we introduce a standard
feature from texture analysis, namely Haralick contrast,21
in the context of VD prediction and adapt it to obtain a
fast-to-compute disparity contrast feature (HCD) that, in
combination with other state-of-the-art features, outper-
forms state-of-the-art prediction models.

Our approach leads to the following claims with respect
to the features used in the state-of-the-art approaches of
Lambooij et al.,11 Nojiri et al.,12 Choi et al.,13 Kim et al.22
and Sohn et al.15
Claim 1 (Feature Selection): Taking all feature combinations
into account, it suffices to concentrate on combinations with
only four features without any significant loss of accuracy
(see the Feature Selection section).
Claim 2 (Pareto Front): Bottom-up approaches allow one
to construct substantially faster prediction models without
significantly lower prediction accuracy compared with the
top-down approaches under consideration (see the Pareto
Front section).
Claim 3 (Haralick Contrast): The expected prediction
accuracy that can be achieved by combinations of features
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includingHCD is significantly higher than for combinations
without HCD . Moreover, the feature combination with the
highest prediction accuracy contains the HCD feature (see
the Prediction Accuracy section).

As a main result these claims are underpinned with
statistical significance based on state-of-the-art publicly
available assessment data.23

The article is structured as follows. The second sec-
tion recapitulates some basic facts about VD. The third
section reflects related work about computational models for
predicting visual discomfort. The fourth section introduces a
fast-to-compute disparity contrast featurewhich ismotivated
by a co-occurrence matrix approach. The fifth section is
devoted to experimental results and their statistical analysis.

VISUAL DISCOMFORT
The subjective sensation of discomfort someone experiences
when watching stereoscopic images or video content is
called VD.1 This phenomenon can lead to serious adverse
effects on human visual perception, as outlined in Ref. 3.
The literature offers various factors that negatively affect
visual discomfort.2,12,24–32 The five most relevant types of
influencing factors are2 (1) accommodation–vergence con-
flict, (2) parallax distribution, (3) binocular mismatches, (4)
perceptual inconsistencies and (5) cognitive inconsistencies.

Accommodation–Vergence Conflict
The stimulus of watching a 3D object triggers two physi-
ological processes in the eye: an accommodation response
and a vergence response. While the accommodation process
refers to the adaptation of the lenses in order to focus the
object on the retina, the vergence process refers to the relative
angular constellation of the eyes’ viewing direction so that
both eyes are directed at the same object. However, when
looking at stereoscopic displays the responses created from
these processes can cause conflicts in visual perception.2
One reason for this accommodation–vergence conflict can
be excessive parallax.12,24 Tominimize the accommodation–
vergence conflict, it is generally assumed that the disparities
in a stereoscopic image should be limited by a ‘‘comfort
zone’’.2

Parallax Distribution
The distribution of parallax that is induced by the spatial
arrangement of the objects in the foreground and back-
ground in the scene is a characteristic of the scene and is
related to features such as spatial frequency and disparity
gradient.2,31 Intuitively, the more scene details there are, the
more there is competition for the visual attention by various
potential objects of interest. Such ambiguity concerning
visual attention might influence the comfort of visual
perception. It has been shown that there is a high correlation
between VD and parallax-distribution-based features.15

Binocular Mismatches and Depth Inconsistencies
Various types of binocular mismatch and their influence on
VD were studied by Kooi and Toet28 by applying distorting

transformations on stereoscopic images. In contrast to blur
and vertical offset effects, the results show little impact
caused by transformations such as rotation, magnification
and keystone distortions. It is a common technique to
represent the depth information for a stereoscopic image
in terms of the horizontal disparities of corresponding
pixels between the left-eye and right-eye images. The
resulting disparity maps are a possible source of errors
in depth information. Such errors in the disparity map
might be caused, e.g., by lossy compression or transmission.
Corresponding depth inconsistencies also might affect VD.2

Perceptual and Cognitive Inconsistencies
Perceptual and cognitive inconsistencies might result from
a mismatch between our cognition of the 3D appearance of
real world objects and the insufficient appearance induced by
the display system. For example, cognitive confusion might
occur due to the border of the display system when an object
in the scene (e.g., hand with five fingers) that is supposed to
be in front of the screen is only partially visible (e.g., part of
the hand showing three fingers).32

STATE OF THE ART FOR VISUAL DISCOMFORT
PREDICTION
In general, computational models for predicting VD consist
of two major parts: (a) choosing a subset of image features,
and (b)modeling theVDas amapping from the feature space
onto a range of scales. For the mapping part, mostly linear11
or piecewise linear15 models are used to score the level of VD
of a stereoscopic image. These supervised learning models
are trained with data coming from subjective assessments.
While we strive to keep the regression model as simple as
possible, ourmajor emphasis lies on the choice of appropriate
features. Typical candidates for such features are statistical
features that are derived from the stereoscopic input images
and the rendered depthmaps, or disparitymaps, which result
from applying stereo matching algorithms (see Table I for
an overview). In particular, Choi et al.13 rely on standard
mean and variance of the disparity distribution for predicting
VD. Lambooij et al.11 suggest using the mean and range
of the disparity map in order to characterize the disparity
distribution; the range feature is determined by the difference
of themaximumand theminimumof disparitieswith respect
to 10% quantiles. Nojiri et al.12 propose a weighted mean
with varying weight coefficients according to different parts
in the image and disparity map. Kim et al.22 aim at modeling
spatial frequency by introducing a weighted disparity map
that is induced by image enhancement operations applied
on the disparity map. They propose to model the effect of
excessive screen disparity based on the sum of an upper
percent quantile of disparities, see also Jung et al.14 Sohn
et al.15 introduce a concept of disparity gradient as the
relative disparity difference between the locations of objects.
In addition, they aim at modeling the stimulus width of an
object by proposing a disparity-based feature that takes the
width of nearby objects into account; the objects result from
applying a mean-shift segmentation on the disparity map.
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Table I. Survey of disparity-based features.

Feature notation Description Literature

Mean, Var Standard mean and variance of disparity map Ref. 13
Range10 Difference of maximum and minimum with respect to 10% quantile Ref. 11
Max5 Sum of 5% maximal disparity values Ref. 22
Max5Sobel, Range10Sobel Range10 and Max5 based on weighted disparity map induced by Sobel operator Ref. 22
RD, OT Mean relative disparity and width of nearby objects Ref. 15

Note that Mean, Var, Range10 and Max5 are first-order driven image statistics, whereas RD and OT are higher level image features based on segmentation and grouping operations
(i.e., based on pixel neighborhood structures).

While the outlined research mainly concentrates on
prediction accuracy, in this articlewe also take computational
efficiency into account, which becomes a critical issue
from the point of view of integrating such models in
workflows and processes for depth-image-based rendering
of 3D video content; see, e.g., Refs. 14, 17–20. In particular,
real-time-capable VD prediction models are required for
real-time 2D-to-3D conversion; see, e.g., Refs. 33–36.

APPROACH BASED ONDISPARITY CONTRAST
Our approach to come up with a fast-to-compute VD
prediction model with high prediction accuracy consists
of analyzing the performance of single features and their
combinationswith respect to Pareto optimality, as outlined in
the Pareto Front section. As a first step, we introduce a novel
feature in this context by taking up the standard contrast
feature due to Haralick,37 which is commonly used in texture
analysis. In the Fast-to-Compute Disparity Contrast Feature
section, we outline how this co-occurrence-matrix-based
approach due to Haralick can be adapted to obtain a
fast-to-compute disparity contrast feature. This approach,
which aims at modeling disparity contrast, is motivated
from perception literature, as outlined in the Motivation for
Disparity Contrast Feature from Psychophysics section.

Motivation for Disparity Contrast Feature from
Psychophysics
In spite of intensive research effort, the nature of the
neural mechanisms underlying human visual fixation be-
havior still remains vague.38 One major reason is the
difficulty in isolating pure physical, sensorial bottom-up
mechanisms39,40 from higher level goal-oriented top-down
mechanisms that involve contextual knowledge.41 However,
a crucial bottom-up aspect refers to the conspicuity area,
which, with single eye fixation, captures the spatial region
around the center of gaze where the target can be resolved
from its background.42 The human visual target conspicuity
is measured by a psychophysical procedure43 and has been
analyzed for a range of static targets in static scenes.42,44
The investigations show that the conspicuity area is small if
the target (object of interest) is surrounded by high spatial
variability. This is no surprise, as in a complex scene many
details compete for the observer’s attention. On the other

hand, targets that stand out clearly from the background
induce a large conspicuity area. Therefore, distinctness of
image details strongly influences human visual attention
and fixation behavior. As a consequence, according to
our working hypothesis, distinctness of image details is of
high relevance for VD of 3D content. For rendered 3D
scenes, distinctness of image details is influenced not only
by natural characteristics such as the parallax distribution
(scene complexity) but also by artifacts that result from
excessive parallax configuration in the depth grading, errors
in the disparity map, and border effects of the display system,
as pointed out in second section.

It should be noted that disparity contrast features a
model for the distinctness of image details by exploiting
the histogram of depth gradients. Next, we look for a
computationally efficient variant.

Fast-to-Compute Disparity Contrast Feature
The literature proposes various concepts for contrast based
on image gray values.37,38,45–48 These concepts rely on the
co-occurrence matrix which involves quadratic computa-
tional complexity with respect to the number of gray values.

In the following we propose a disparity contrast feature
that operates on the disparity map D. We may assume that
the disparity map is generated under normalized conditions,
i.e., the disparities between corresponding points in the
left and right images only appear horizontally. Then, the
disparity map value D(x, y) = 1 at pixel position (x, y)
encodes the distance 1 by which the pixel (x, y) in the
left image must be shifted horizontally in order to match
the corresponding pixel in the right image. By summing
up all squared differences (D(x, y) − D(x + δ, y))2 for
some horizontal offset δ we come up with a measure that
models distinctness of disparity map details. As shown in
the Appendix, this measure can be obtained by applying the
Haralick approach37 to the disparity mapD, i.e.,

HCD(δ)=
1

NM
∑
x,y
(D(x, y)−D(x + δ, y))2, (1)

whereM , N denote the numbers of pixel rows and columns
of the images. See Figure 1 for an illustration.

J. Imaging Sci. Technol. 060401-3 Nov.-Dec. 2015

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.5.SDA-444

IS&T International Symposium on Electronic Imaging 2016
Stereoscopic Displays and Applications XXVII

SDA-444.3



Zellinger and Moser: Improving visual discomfort prediction for stereoscopic images via disparity-based contrast

(a) (b)

Figure 1. Illustration of the construction of the Haralick contrast
feature Eq. (1) based on the disparity map D, where xi and x̃i denote
corresponding points in the left and right images, respectively.

Figure 2. The graph shows the correlation between HCD and VD scores
for the database KaistDB as described in the fifth section. Remarkably,
there is a distinct maximum around 10% of the image width.

A standard approach to also take other distances δ into
account is to sum up the δ-induced disparity contrast values,
i.e., HCD =

∑N
d=−N HCD(d)αd , with weights αd , where∑

d αd = 1.
The question relates to what a reasonable choice for

the weights αd is. To this end, let us perform a sensitivity
analysis based on linear regression analysis between HCD
and VD scores coming from ground truth data based on the
database23 (see the fifth section for details). A distance value
δ in the range around 10% shows approximately maximal
accuracy. Figure 2 shows the resulting correlation coefficients
(CCs) for various distance values δ. For the definition of the
CCs see the Experimental Setup section. This empirical study
motivates us to restrict to only those distance values with
high correlation, yielding a sparse disparity contrast feature.
We choose for the parameter δ the value with the maximal
correlation, that is approximately 10% of the image widthN .

Typically, images with complex spatial arrangements of
objects in the foreground and background yield higherHCD
values than images with less image details, since the gradients
show higher values. For an illustrating example see Figure 3.

STATISTICAL EVALUATION
Our evaluation analysis aims to provide evidence regarding
the following aspects: the Feature Selection section on feature
selection, the Pareto Front section on time complexity

versus prediction accuracy, and the Prediction Accuracy
section on the improvement of the prediction accuracy by
means of Eq. (1). The statistical analysis of the Feature
Selection section is tackled by means of a sensitivity analysis
of the expected accuracy of VD prediction depending
on combinations of features in order to determine the
optimal choice of the number of features, underpinning
claim 1. In the Pareto Front section we examine the Pareto
front of feature combinations when taking into account
prediction accuracy on the one hand and computational time
complexity on the other hand, resulting in claim 2. Finally, in
the Prediction Accuracy section we check the potential for
improving the overall prediction accuracy of state-of-the-art
prediction models by taking various feature combinations
into account. This statistical analysis underpins claim 3 that
the HCD can be used to improve state-of-the-art prediction
models in terms of both prediction accuracy and time
complexity.

First, in the Experimental Setup section we outline the
experimental setup based on publicly available assessment
data.

Experimental Setup
Our experimental analysis relies on the publicly available
database KaistDB.23 This database shows the results of a
subjective evaluation following the guidelines given in the
recommendations by the International Telecommunication
Union.49 KaistDB encompasses VD assessments based on
a five-point grading scale of 120 images provided by 20
subjects in terms of mean opinion scores (MOSs). For
details concerning the analysis based on this database see
Sohn et al.15

The disparity maps are computed by means of the
OpenCV implementation50 of the semi-global block match-
ing algorithm.51

For a survey of the implemented features see Table I. To
model the relation between features andVD, we employM5P
regression trees.52,53 M5P combines a conventional decision
tree with the possibility of linear regression functions at the
nodes and therefore generates models that are compact and
relatively comprehensible.

To quantify the prediction accuracy, we rely on the
Pearson product-moment correlation coefficient (CC) be-
tween predicted scores and MOSs of VD.

Finally, to assess how well the model generalizes with
respect to unknown data, we perform leave-one-out cross-
validation.54

To check the statistical significance of our results, we
rely on two different statistical tests: the non-parametric
Mann–Whitney U test55 for testing the mean values of
sets for being different with significance level of 10−3 and
a one-tailed Fisher-transformation test56 for testing one
sample having larger correlation coefficient than the other.

To measure the time complexity, we rely on OpenCV
implementations50 in Python and compute the mean eval-
uation time for all images. For the object-based approach
of Sohn et al.,15 we consider only the most time consuming
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(a) (b)

Figure 3. Examples of disparity maps of stereoscopic images from Ref. 23: (a), a detail of a railing, shows low HCD, while (b), a crown of a tree, shows
high HCD.

part, which is the pyramid-based mean-shift segmentation
algorithm.57 The evaluations were repeated 20 times on the
120 images of the database KaistDB on a Dell OptiPlex 990
(the images were resized to width 960 and height 540).

Feature Selection
This section analyzes the impact of the number of features
on the prediction accuracy of state-of-the-art VD prediction
models. In this analysis we focus on the eight features as
outlined in Table I and analyze combinations together with
the HCD feature introduced in the third section. These
nine features lead to a total number of

∑9
k=1 B(9, k)= 511

possible feature combinations, where B(n, k) denotes the
binomial coefficient. For this purpose, for each possible
feature combination, the prediction function is trained and
tested using leave-one-out cross-validation. Thus, we obtain
a correlation coefficient for each prediction function.

Figure 4 shows the correlation coefficients obtained
by the best combination for each number of features. The
CC of the best combination increases with the number of
features, and then decreases. This over-fitting phenomenon
generally occurs when a model is excessively complex, such
as having too many parameters relative to the number
of observations. Restriction of the number of features is
therefore a regularization measure that helps to improve the
generalization behavior of the machine learning model (see,
e.g., Ref. 58).

This analysis shows that, taking the nine features of
Table I into account, a maximal number of four features is
sufficient to predict VD, which underpins claim 1.

It is interesting to observe that the best combination
(highest CC) with four features includes the HCD feature.

Pareto Front
The statistical analysis of this section is devoted to the
question of the best combinations considering prediction
accuracy and time complexity. We are interested in feature
combinations that are characterized by the property that it is

Figure 4. Analysis of prediction accuracy values of best combinations of
possible features with size n ∈ {1, . . . ,9}. The accuracy is determined by
means of the CC based on the ground truth data of Ref. 23.

impossible to improve time complexity without deteriorating
prediction accuracy, and vice versa. Such combinations are
called Pareto optimal solutions, lying on the Pareto front.59
See Figure 5 for a graphical illustration of this analysis.

The Pareto optimal solutions, with at most four fea-
tures, are summarized in Table II. These combinations
indicate that bottom-up approaches allow the construction
of substantially faster predictionmodelswithout significantly
lower prediction accuracy compared with the top-down
approaches under consideration.

For example, consider the combination consisting of
Var,Max5Sobel,HCD andMean. Evaluation of this combina-
tion is more than 58 times faster than for combinations with
the object-dependent features of Ref. 15. Moreover, there
is no combination (out of 511) without HCD that shows
statistically significant improvement of prediction accuracy.
This hypothesis is statistically accepted by the one-tailed
Fisher-transformation tests. In particular, theZ-values of this
test lie in the range of [0.0005; 0.6328] and the p-values
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Table II. Pareto optimal solutions of combinations with at most four features of
experiment on KaistDB.23 Note that the HCD feature is part of over 50% of the
combinations, including the one with the highest CC.

Combination on Pareto front Evaluation time (s) CC

Mean 0.0004 0.300
Var 0.002 0.745
HCD 0.006 0.759
HCD , Mean 0.007 0.760
Var, HCD 0.008 0.770
Max5 0.016 0.771
Range10 0.016 0.781
Max5, Mean 0.017 0.796
Var, Max5, Mean 0.018 0.803
Max5, HCD 0.022 0.805
Max5, HCD , Mean 0.023 0.814
Var, Max5, HCD , Mean 0.024 0.816
Max5Sobel, HCD , Mean 0.057 0.817
Var, Max5Sobel, HCD , Mean 0.059 0.817
Var, OT, HCD , Mean 3.425 0.824
Max5, OT 3.432 0.838
Max5, OT, Mean 3.433 0.839
Var, Max5, OT 3.434 0.842
Var, OT, Max5, HCD 3.440 0.846
OT, Range10, Max5, HCD 3.455 0.846

lie in the range of [0.2634; 0.4998]. This statistical analysis
underpins claim 1, stating that bottom-up approaches allow
the construction of substantially faster prediction models
without significantly lower prediction accuracy compared
with the top-down approaches under consideration.

Table II and Fig. 5 also indicate that HCD offers a
reasonable trade-off between prediction accuracy and time
complexity.

Prediction Accuracy
This section is devoted to the question of whether the HCD
feature can be used to improve the prediction accuracy of VD
models using different combinations of features described in
the third section.

Table III shows that feature combinations of two
features including theHCD feature substantially improve the
prediction accuracy compared with the accuracy achieved
by the single features only (improvement in CC of between
0.0092 and 0.5994).

For the analysis of all 511 possible combinations we
separated the set of these combinations into two sets: one
of combinations including HCD and one of combinations
without HCD . The results show that the mean CC (0.81)
of the set of combinations with HCD is higher than the
mean CC (0.79) of the combinations without HCD . The
Mann–Whitney U test shows that this result is significant
(U = 25823.0, p-value = 4.419 × 10−5). Together with
the combination with the highest prediction accuracy (see

Table III. Prediction performance of single features and the corresponding combination
with HCD , based on the ground truth data given by the database KaistDB.23 The italic
numbers in the first two columns mark the best prediction accuracy of features listed
in Table I for the database KaistDB.23 The accuracy is measured based on the Pearson
product-moment correlation coefficient (CC). Column 2 shows the accuracy results for
combinations with the HCD feature. The performance gain is shown in column 3.

Single feature CC of single
feature

CC of single
feature+ HCD

Improvement
in CC

RD 0.2465 0.7478 0.5013
OT 0.3807 0.7627 0.3820
Mean 0.2995 0.7603 0.4608
Var 0.7449 0.7698 0.0249
Range10 0.7806 0.7939 0.0133
Max5 0.7707 0.8047 0.0340
Max5Sobel 0.7761 0.8036 0.0275
Range10Sobel 0.7841 0.7933 0.0092
HCD 0.7593 0.7593 0.0000

the Feature Selection section), this statistical analysis, of
all possible combinations, underpins claim 3, stating that
the expected prediction accuracy that can be achieved by
combinations of features including HCD is significantly
higher than for combinations without HCD . Moreover, the
feature combination with the highest prediction accuracy
contains the HCD feature.

CONCLUSION ANDOUTLOOK
This article addresses state-of-the-art computational models
for predicting VD. Starting with the standard second-order
statistical approach based on co-occurrence matrices, as
commonly used in texture analysis, we evolved the approach
with a computationally efficient contrast feature based
on the disparity map, the Haralick disparity contrast.
Finally, experiment analysis shows that this feature improves
prediction accuracy in combination with other features and,
above all, offers a reasonable trade-off between prediction
accuracy and time complexity. It remains for future research
to apply the proposed method to real-time VD prediction
for stereoscopic videos by also taking motion features into
account.

APPENDIX. DISPARITY CONTRAST AS HARALICK
FEATURE
Let us start with the co-occurrencematrix hδ,θ : {1, . . . , n}×
{1, . . . , n} → [0, 1], where n denotes the number of gray
levels. An entry hδ,θ (i, j) in the co-occurrence matrix
represents the joint probability that a pair of pixels at
distance δ and angle θ show the gray values i and j. The
contrast feature proposed by Haralick37 is defined by the
four values HCθ =

∑n−1
i,j=0 |i − j|2h1,θ (i, j) for the angles

θ = 0, π/4, π/2, π and the pixel distance δ = 1.
Instead of gray values let us consider disparity values

that induce the co-occurrence matrix hδ,θ . For horizontal
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(a)

(b) (c)

Figure 5. Pareto front of combinations with at most four features considering prediction accuracy and time complexity with evaluations based on KaistDB:23
(b) and (c) scale up the details indicated by the encircled regions of graph (a). The solid lines represent the Pareto front, which includes the best solutions
considering time complexity and prediction accuracy. The combinations marked by ‘X’ include the HCD feature. Note that all the combinations in (b) are
without object-dependent features OT and RD, while detail (c) shows only combinations including object-dependent features. Comparing the performance
of feature combinations of (b) with (c), we observe a drastic reduction of time complexity by a speed up of about 100, while the prediction accuracy does
not differ significantly.

shifts, i.e., θ = 0, we obtain HCD(δ) =
∑N
11,12=−N (11 −

12)
2hδ,0(11,12), where 11 and 12 encode the disparity

values of the δ-neighboring pixels (x1, y) and (x2, y),
i.e., |x2 − x1| = δ. The notation HCD emphasizes that
the underlying co-occurrence matrix relies on disparity
values. The entry in the co-occurrence matrix hδ,0(11,12)

is given by the probability that the disparities of two
randomly chosen δ-neighboring pixels assume the values11

and 12, respectively, i.e., hδ,0(11,12) =
#δ[11,12]∑

11,12
#δ[11,12]

,
where #δ[11,12] = # {((x1, y), (x2, y)) ∈ ({1, . . . ,N } ×
{1, . . . ,M})2 | D(x1, y) = 11,D(x2, y) = 12, |x2 − x1| =

δ } andM , N denote the numbers of pixel rows and columns
of the images and # the cardinality. Putting all together,
we obtain HCD(δ)=

1
NM

∑
11,12

(11−12)
2#δ[11,12] =

1
NM

∑
x,y (D(x, y)−D(x + δ, y))2, which can be inter-

preted as the expected squared disparity gradient with basis
length δ.
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