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Abstract
The procedural generation of virtual scenes (like e.g., com-

plex cities with buildings of different sizes and heights) is widely

used in the CG movies and videogames industry.

Even if stereoscopy is often used in the visualization of these

kind of scenes, nevertheless it is not currently used as a tool in

the procedural generation, while a more comprehensive integra-

tion of stereoscopic parameters can play a relevant role in the

automatic creation and placement of virtual models.

In this paper, we investigate how to use stereoscopy to con-

trol the procedural generation of a scene in an open-source mod-

eling software. In particular, we will use the stereoscopic parame-

ters to automatically place objects inside the stereoscopic camera

frustum avoiding to reach an excessive parallax on screen, and

we will show how to procedurally detect and solve window viola-

tions, by means of the automatic placement of a dynamic floating

window in the image.

Introduction
In the last years, the production of stereoscopic contents has

seen a relevant increment. This has lead to the necessity of de-

veloping specific tools to optimize the production pipeline and to

improve the quality of the final products. Moreover, a large part

of the experts involved in the research and production of stereo-

scopic contents has urged the necessity to consider stereoscopy

as a technical and creative tool which must be included in all the

pipeline steps, rather than just an effect to add in post-processing.

These aspects have been addressed in several works addressing

the production of stereoscopic movies [1, 2, 3] and videogames

[4, 5, 6]. Only the integration of stereoscopy in the core of the

production pipeline can allow a complete achievement of its ex-

pressive and communication power in the production of movies,

videogames and Virtual Reality applications [7].

Regarding the production of stereoscopic images using Com-

puter Graphics (CG), the most part of the softwares used for mod-

eling and animation has specific tools for stereoscopy, like e.g. a

virtual stereoscopic camera, the visualization of the stereoscopic

camera frustum volume and of the convergence plane, the pos-

sibility to automatically render and composite the left and right

views.

In this paper, we address the specific case of how stereoscopy

can be used in the field of procedual modeling.

The procedural generation of virtual models and scenes is

widely used in the CG movies and videogames industry [8]. By

means of a parametric procedure (a mathematical formula, a set

of rules applied to a set of basic shapes, etc.), a complex model

or a scene filled with a large number of elements can be created

without the need of a long process of manual mesh modeling

[9, 10]. Well-known examples of procedurally generated mod-

els are plants [11], and cities with buildings of different sizes and

heights, streets, etc. [12, 13, 14]. Procedural generation is also

used in videogame development, e.g. to automatically create a

game level placing platforms and obstacles to achieve a desired

level of complexity [15].

Even if very different parameters and rules can be used in

the procedural modeling field, to our knowledge stereoscopy has

not yet be considered as an actual factor in the generation process,

while a more comprehensive integration of stereoscopic parame-

ters can improve in a relevant way the production of effective and

visually pleasant virtual scenes.

In this paper, we aim at investigating if some stereoscopic pa-

rameters and techniques can be included in a procedural modeling

process inside a CG production software. In the next section, we

will describe the tools and the test scene we have considered to

evaluate the efficacy of the integration of stereoscopy in the pro-

cedural creation of a complex CG scene, and we will describe two

applications of stereoscopic parameters in the automatic genera-

tion of models.

Application of stereoscopy in the procedural
generation of CG scenes
Tools and test scene

Even if many CG production solutions are currently avail-

able, the choice of softwares providing tools for procedural mod-

eling is currently limited. In many cases, the available soft-

wares are specialized tools focused on the procedural generation

of very specific scenes, like cities in the case of Esri CityEngine

[16], while for general-purpose modeling and animation the most

known and widely used software is Houdini [17].

After an evaluation of the available procedural-based soft-

wares, we have found that the current solutions do not provide

enough access to the stereoscopic parameters (if present) for our

purposes. Thus, we have decided to consider for this work an

open-source solution, in order to have the maximum flexibility

and access to all the internal pipeline stages of the production

tool in the development and test of the proposed integration be-

tween procedural modeling and stereoscopic parameters, at the

cost of a possible minor stability due to the current development

stage of the chosen softwares. We have decided to use the well-

known open-source Blender software [18], which has an inte-

grated stereoscopic pipeline since version 2.75 (released in July

2015), providing stereoscopic camera, stereoscopic preview in the

modeling window, and compositing presets to save in different

stereoscopic formats. Blender is a general-purpose modeling and

animation software, and it does not provide specific procedural

techniques. However, these functionalities can be included by
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Figure 1. An example of geometry generated using Sverchok. Fig. 1(a) shows a single procedural block of a city, while Fig. 1(b) shows the final result created

by the engine assembling several blocks with different characteristics.

means of the recent Sverchok add-on [19], which extends

the Blender node-based visual creation tool (used for composit-

ing and procedural shader material editing) with operations on

the meshes geometry.

Sverchok development is still in beta stage, but its function-

alities allow to generate several kind of procedural scenes of dif-

ferent complexity. To test our approach, we have decided to con-

sider a simple city scene. The city is composed assembling sev-

eral blocks created procedurally with different parameters. For

each block, a quadrangular patch is procedurally subdivided in

streets and building lots, and the geometry of each new building

is then generated on the basis of different parameters regarding

heights and size, set by the user. The heights of the building are

controlled both locally inside a block, by randomly creating adja-

cent buildings with different characteristics, than globally in the

assembled city, by selecting a “downtown” area characterized by

higher buildings, and tuning the other heights on the basis of the

distance from the “downtown” blocks. Once created the geome-

try, facade textures are automatically applied. Fig. 1 shows exam-

ples of the geometry procedurally generated using Sverchok.

The procedure, whose exhaustive description goes out of the

scope of this paper, does not include advanced parameters like

e.g., density of population or geographical constraints, consid-

ered in other works [12, 13, 14, 16], but it allows the genera-

tion of an adequately complex scenario for our purposes. The

test scene considered in this paper is composed by approximately

2750 buildings (more than 109000 vertices and 171000 triangles

considering also the streets). The goal of the paper, i.e. investi-

gating the efficacy of the integration of stereoscopy as one of the

possible parameter to consider in the procedural generation, is not

dependent on the nature and the complexity level of the generated

scene. For this reason, and to achieve a reasonable rendering time

with an average lab workstation during the development and test

stages, we have decided also to limit the quality of the final ren-

dering of the test scene (see Fig. 2 and 5 for some examples).

Procedural control of parallax

Starting from the generation of the test scene described in

the previous subsection, we began to consider the introduction of

stereoscopic parameters in the procedural process. The first exam-

ple of application is conceptually quite straightforward: to control

and limit the position of the generated geometry on the basis of

the stereoscopic camera frustum volume and of the resulting par-

allax on screen.

The amount of parallax on screen depends on the interax-

ial distance of the stereoscopic camera setup, on the distance of

the convergence plane from the camera, and on the magnifica-

tion and size of the screen used for the visualization of the final

image [20]. Regarding a particular object, its parallax on screen

increases depending on its distance from the camera. It is well

known [1, 2] that the parallax on screen is one of the most im-

portant parameter to control, because if it exceeds the maximum

positive parallax value MPP (2.56 in/6.5 cm), than the resulting

image will be painful to view.

In the proposed approach, we suggest to calculate the posi-

tion of the new procedurally generated vertices in camera space

(i.e., using the camera position and its local coordinate system as a

reference), in order to limit their z coordinates (i.e., their distance

from the camera) to the distance corresponding to the maximum

positive parallax MPP. Thus, this approach automatically pre-

vents configurations with possible visual discomfort, but it gives

also the possibility to the user to tune the amount of geometry cre-

ated in the scene and, as a consequence, the final depth range of

the scene.

Most of the modeling softwares providing stereoscopic sup-

port allow the visualization of the stereoscopic camera frustum

volume, of the convergence plane, and of the maximum parallax

plane, on the basis of the parameters chosen by the user regarding

the stereoscopic camera and the target visualization setup. How-

ever, these visual aids are usually given just to help the user during

the manual positioning of the objects in the scene, and not all of

them are accessible as parameters from the software GUI and/or

the development API. As a consequence, it is not possible to eas-

ily use these values in a procedural generation approach. In our

tests, we had to develop a specific Python script in Blender in or-

der to calculate the position of the maximum parallax plane of

our stereoscopic setup: with this value available, we could add a

procedure in the procedural city generation in Sverchok in
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(a) s f f = 0.5

(b) s f f = 0.8

(c) s f f = 0.95

Figure 2. The procedural engine fills the stereoscopic camera frustum with geometry according to the value of s f f (see on the left a top view of the generated

scene). With s f f = 1.0, the parallax on screen of the models on the far background will be approximately equal to the maximum parallax on screen achievable

before divergence occurs. Images on the right can be viewed with anaglyph red-cyan glasses. Original anaglyphs have been created for a large screen FullHD

projection. No correction for window violations has been applied.

order to calculate the positions using camera space, and to

limit the positions inside the stereoscopic camera frustum.

In particular, we have introduced a new parameter called s f f

(for stereoscopic frustum filling), and a new procedural rule for

the generation of z coordinates of the new geometry, by limiting

the range of coordinates to the set Zs f f defined as :

Zs f f = {z | z ∈ [zmin, sff · zMPP]} (1)

where s f f ∈ [0.0,1.0], and zMPP is the distance from the

stereoscopic camera to the maximum parallax plane. Fig. 2 shows

some examples of the effect of the changes of s f f parameter.

This approach gives to the user an active control on the final

effect generated by the procedural engine. This control can be

extremely useful in case the stereoscopic material has to be re-

edited, re-rendered, or adjusted for a different visualization setup,

because it allows to adjust the amount of parallax on screen of the

background objects with a single parameter. In future works, a

possible extension of this technique can be the automatic setup of

a multirigging stereo camera setup for s f f > 1.0.

In equation 1, zmin is the closest distance where a vertex can

be created by the procedural engine. Different choices can be

made to set its value: for example, it can be set to the position
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of the convergence plane, to avoid the automatic positioning in

the negative parallax area and, as a consequence, problems with

window violations [1, 3], or it can be just set to the value of the

camera near plane. The next subsection will address the detection

of window violations, and the automatic application of a floating

window [3] by the procedural scene generator.

Procedural Floating Window
Window violation is a well-known problem in the stereo-

scopic production field [1]. However, an appropriate use of the

dynamic floating window technique [3] can avoid visual discom-

fort in the final visualization. The method is based on the ap-

plication of black masks at the borders of the frame to cover the

visual information leading to retinal rivalry. These masks are dy-

namic (i.e., their characteristics can be adapted frame by frame),

and different interesting creative solutions have been proposed to

visually engage the viewer, like the application of the masks also

to the top and bottom borders, or the tilting of the floating window

to obtain asymmetrical masks [3].

The application of the dynamic floating window is already

included as a standard tool in many softwares for stereoscopic

production: in most of the cases, the black masks are applied

to the stereoscopic frame in post-processing. In this paper, we

have also investigated how window violations can be detected

and managed in the procedural generation of a complex stereo-

scopic scene. As suggested in the previous subsection, a possible

straightforward solution can be to avoid the procedural position-

ing of geometry in the negative retinal rivalry areas, in order to

avoid any possible window violation. However, in many cases

this approach can be too restrictive, limiting the stereoscopic ef-

fect and quality of the final images.

To this aim, we propose a method to procedurally detect and

solve window violations, by means of the automatic application

of the dynamic floating window technique in the scene. The ap-

proach is based on considering the black masks as actual 3D mod-

els in the scene, and to appropriately set their positions and size

in each frame in order to make them occlude the scene geom-

etry in window violation condition in the final rendering of the

stereoscopic frame. The proposed method, which considers only

lateral not-tilted masks, integrates stereoscopic parameters with

the modeling tools already available in most CG production soft-

wares, and it is based on four steps, described in the next sections.

Stereoscopic camera frustum as a 3D model

The proposed method is based on the application of boolean

operators between the stereoscopic camera frustum and the ge-

ometry of the scene. The use of boolean operators is common

in CG since Constructive Solid Geometry (CSG) [21]; in cur-

rent modeling tools, it is possible to apply them also to complex

meshes, or to use them for advanced selection of vertices.

In particular, we want to consider the left and right negative

retinal rivalry frustums as actual 3D models in our procedurally

generated city. Because of the limitations in the access and man-

agement of the parameters of the stereoscopic setup, described in

the previous subsection, we again had to develop a specific Python

script in Blender in order to create the meshes corresponding to

the frustums. To this aim, we use some basic trigonometry in

camera space using the camera FOV, the known z coordinate of

the convergence plane, and the previously calculated z coordinate

Figure 3. The meshes corresponding to the retinal rivalry frustums of the

stereoscopic camera. The negative rivalry areas, used for the automatic

placement of the black masks, are shown using a lighter color.

of the maximum parallax plane, in order to determine the

three-dimensional coordinates in camera space of the vertices of

the frustums. The implemented script uses these vertices to cre-

ate inside the scene 3D models corresponding to the stereoscopic

camera frustum. These models are not considered during the ren-

dering stage, but they are just used in the boolean operations with

the geometry of the scene. Fig. 3 shows the generated meshes cor-

responding to the positive and negative retinal rivalry frustums. In

the proposed technique, we have considered the negative retinal

rivalry areas, shown with a lighter color in Fig. 3.

Determining window violations
Once created the frustums meshes, we can determine the

occurrence of window violations by finding the presence of ge-

ometry (models, or part of models) inside the negative retinal ri-

valry frustums. This control can be achieved using an intersection

boolean operation between the procedurally generated geometry

of the scene, and the left and right negative rivalry meshes.

If M is the set of the models procedurally generated in the

scene (in our test scenes, the buildings and the streets of the city),

then we can describe the operation as:

mwv = m ∩ RF−
, ∀m ∈ M (2)

where RF− is one of the negative rivalry frustums (the op-

eration must be applied separately for both the left and right ri-

valry areas). It must be noticed that mwv can be a different model

than the input one, with a different geometry and topology. The

boolean operator gives as result only the part of the model which

is inside the frustum; if the input model is only partially inside,

then new vertices and edges are created, splitting the model in or-

der to discard the part of geometry which is outside the volume.

This is an important aspect, because it can affect the positioning of

the lateral mask, which must be placed just in front of the closest

vertex to the camera inside the negative retinal rivalry frustum.

This operation can be computationally expensive, if thou-

sand of models have been procedurally generated in the scene.

However some optimizations can be implemented, like applying

frustum culling to discard models outside the whole stereoscopic
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camera frustum, and not considering models placed behind the

convergence plane, as they are surely not involved in window vio-

lations. Moreover, if a model produces a window violation on the

left of the frame, it cannot be in the same situation on the right,

and viceversa. Therefore, if equation 2 is applied considering the

left RF−, and it does not return an empty set, then the operation

with the right RF− can be ignored.

Determining the position of the lateral masks
Having determined the geometry producing window viola-

tions, the following step is to calculate the z coordinates in camera

space of the two lateral masks to be created in the scene. For each

negative rivalry frustum, the corresponding mask must be placed

in front of the closest vertex to the camera, in order to occlude all

the geometry causing the violation.

The closest distance can be found applying a sorting algo-

rithm on the z coordinates of the set of vertices passed by the

boolean operation described in the previous subsection, or a more

efficient method can be applied, by running a preliminar depth

rendering pass, an operation which saves in a z-buffer the depth

information for the objects based on the distance from the cam-

era. With this approach, it is sufficient to search in the z-buffer the

point with minimum depth from the camera.

Determining the size of the lateral masks
In the final step, the two lateral masks are created at the po-

sitions determined in the previous operation, and they are oppor-

tunately sized in order to occlude only the geometry causing the

window violation. The same operation must be applied separately

for the left and right mask.

First of all, a quadrangular patch, parallel to the convergence

plane, is created at the previously found minimum distance from

the camera. The initial dimensions of the patch are set in order to

cover the whole height of the final render in any situation, while

the width is initially set to cover the whole convergence plane.

A basic shader material is assigned to the patch, which returns a

full black color, not applying any illumination model. As a con-

sequence, this will lead to a full black color in the final rendering

of the scene.

Once created the patch, we have applied another intersec-

tion boolean operation between the patch and the negative rivalry

frustum mesh. If ptchzmin
is the patch generated at the minimum

distance from the camera for the left or right frustum, then we can

describe the operation to create the final lateral mask f w as:

fw = ptchzmin
∩ RF− (3)

The output of this operation is a smaller patch, having the

correct width to cover only the geometry of the scene involved

in the window violation, and giving as result in the rendered im-

age a lateral black mask as in the post-processing floating window

technique. Fig. 4 shows the left and right masks generated as 3D

models in the scene, while Fig. 5 shows a rendering of the proce-

dural city test scene before and after the automatic application of

the floating window technique in Sverchok.

Conclusion
In this paper, we have investigated some possible uses of

stereoscopic parameters as active parameters in the procedural

Figure 4. The resulting 3D lateral black masks placed in the negative retinal

rivalry frustums, occluding the geometry causing the window violation. The

patches size and positions in depth are calculated separately for the left and

right frustums. No frustum culling has been applied in the picture.

generation of virtual scenes. From the preliminary results,

the proposed methods seem effective and scalable enough to man-

age the automatic generation of CG scenes with different com-

plexity, while keeping under control the final stereoscopic effect.

We have decided to try to integrate these methods inside a

CG production software, in order to analyze also the current limits

in the stereoscopic pipeline provided by the most diffused produc-

tion softwares. It seems quite evident that even if several stereo-

scopic tools and visual aids have been included in CG softwares,

there are still some limits in the access to all the parameters in-

volved in the stereo setup, limiting in some aspects the possible

use of stereoscopy as a creative tool since the preliminar stage of

construction of a virtual scene. For example, many parameters,

like the distance from the camera to the maximum parallax plane,

are calculated but they are not visible to the user through the GUI,

and they are also not included in the software development APIs:

in the development of the techniques presented in this paper, we

had to develop scripts to re-calculate some of these parameters,

in order to use them for our procedural tools. To exploit all the

potentialities of stereoscopy as a tool in the procedural model-

ing field, a better integration and extension of the stereoscopic

pipeline in the CG production softwares is surely needed.
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