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Abstract
Depth-Image Based Rendering (DIBR) techniques enable

the creation of virtual views from color and corresponding depth
images. In stereoscopic 3D film making, the ability of DIBR to
render views at arbitrary viewing positions allows adaption of
a 3D scene’s depth budget to address physical depth limitations
of the display and to optimize for visual viewing comfort. This
rendering of stereoscopic videos requires the determination of
optimal depth range adaptions, which typically depends on the
scene content, the display system and the viewers’ experience. We
show that this configuration problem can be modelled by a linear
optimization problem that aims at maximizing the overall qual-
ity of experience (QoE) based on depth range adaption. Rules
from literature are refined by data analysis and feature extraction
based on datasets from film industry and a human visual attention
model. We discuss our approach in terms of practical feasibility,
generalizability w.r.t different content, subjective image quality,
visual discomfort and depth quantity, and demonstrate its per-
formance in a user study on publicly available and self-recorded
datasets.

Introduction
The production of high quality stereoscopic videos becomes

more challenging than conventional 2D film shooting, since
multi-camera aspects such as inter-camera positioning must be
addressed. A major challenge is optimizing for the best 3D
depth impression which amounts to the problem of visual dis-
comfort [11, 13, 20, 21, 24, 28, 29, 31–33, 35]. In order to handle
visual discomfort, various approaches for automating the depth
mapping process based on image processing have been proposed
in literature [2, 4, 15, 22, 23, 27, 34]. These approaches are dis-
tinguished by the underlying mapping class of transformations,
e.g. linear [2, 4, 23] or non-linear [15, 22, 27, 34], the way how
visual discomfort is modelled, and how such models are used in
the workflow. However, from the point of view of a stereographer
an approach is preferable that is capable of taking best practice
design patterns and stereographers’ preferences into account.

We address the problem of finding an optimal trade-off be-
tween maximizing the depth quantity perceived by the user while
guaranteeing visual comfort. Our major objective is to model this
optimization problem within a sound mathematical framework
that is capable of integrating quantitative datasets of configura-
tions from the professional film industry, on the one hand, and
qualitative best practice design patterns from stereographers, on

the other hand. A further objective is to derive a computationally
efficient workflow with low tuning efforts from this approach.

A DIBR framework for stereoscopic videos that performs
disparity computation and DIBR is implemented. Generally, a
DIBR pipeline that builds upon stereoscopic input videos com-
prises several steps. After appropriate calibration and rectifica-
tion, the two input videos are subject to stereo analysis in order to
compute a disparity (or depth) map, which forms the basis for the
subsequent rendering process. Over the last decade, local stereo
matching algorithms that rely on adaptive support weight tech-
niques (e.g., [9,36]) have received considerable attention in stereo
research due to their ability to deliver high-quality depth maps at
reasonable computing effort. The incorporation of edge preserv-
ing filtering into the matching process (e.g., [5]) supports the lo-
calization and preservation of depth discontinuities in the match-
ing result, which is an important requirement for the production
of high-quality novel views from simulated camera viewpoints.
Suitable post-processing techniques can further refine the quality
of the computed depth maps in view of the subsequent render-
ing step (e.g., [19]). Furthermore, temporal filtering of the depth
video may be applied to suppress disturbing flickering effects
caused by stereo matching artefacts. After projection of the input
video content into the selected new geometry, image inpainting
techniques need to be applied in order to fill in missing informa-
tion due to disocclusions in the synthesized view (e.g., [17]). For
our experimental evaluation we use the Stereoscopic Suite [6] of
emotion3D which includes implementations of all necessary pro-
cessing steps.

The DIBR framework enables adaption of the depth range
and to optimize visual comfort. After computing disparity maps
from the stereo input videos and selecting the desired viewpoint
for depth-image based rendering, we model the depth range adap-
tion as linear optimization problem which maximizes the QoE
such that a) the depth perception of object of interest should be
near the screen-plane, b) the overall depth range should lie in a
so-called comfort zone and c) depth jumps of objects of interest
should be limited. The objective function takes the minimiza-
tion of visual discomfort and maximization of depth quantity into
account, while keeping the subjective image quality unchanged.
The optimization can be restricted by constraints which can be in-
terpreted in terms of comfort zone limits. By this, best practices
and rules from literature for such comfort zone limits can be taken
into account in the proposed disparity mapping approach in a nat-
ural way. As outlined in Section IV, experimental studies based on
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Figure 1: Illustration of Linear Optimization Approach for the
Depth Mapping Problem by taking into account a measure for
depth quality (DQ), a measure for visual discomfort (VDC), a
measure for deterioration of image quality (DIQ), a model for a
depth comfort zone (CZ) and a model for depth continuity (DC)
on shot cuts. The optimization approach is designed in a way that
it maximizes DQ, while it minimizes VDC and DIQ, takes CZ
into account in terms of restricting the domain of admissible depth
ranges and it guarantees DC on shot cuts in terms of restricting the
depth transition of objects of attention on shot cuts.

subjective assessment results considering visual discomfort, depth
quantity and subjective image quality, underpin this approach.

The rest of the paper is organized as follows. Section Re-
lated Work briefly summarizes related works. Section Linear Op-
timization Approach gives an overview of our approach and Sec-
tion Experiments presents some experimental results, user evalu-
ations and a new S3D visual discomfort database under develop-
ment. Section Conclusion briefly concludes the work presented
in this article. Finally, Appendix Subjective Assessment gives de-
tails concerning our subjective assessment and in Appendix New
Database we propose our new S3D visual discomfort database.

Related Work
Due to [3], a model of quality of experience (QoE) can be

conceptually split into three aspects: depth quantity, visual dis-
comfort and image quality:

• The depth quality (DQ) refers to the perceived amount
of depth someone experiences when watching stereoscopic
content [3].

• Visual discomfort (VDC) refers to the subjective sensation
of discomfort someone experiences when watching stereo-
scopic images or video content [14, 29, 38].

• The deterioration of image quality (DIQ) refers to a per-
ceived loss of quality of an image or video w.r.t. charac-
teristics like resolution, color, artefacts or noise.

The challenge of finding an optimal depth mapping is there-
fore to find an acceptable tradeoff between the conflicting objec-
tives of maximizing DQ and minimizing VDC and DIQ [3].

For example, visual discomfort is smaller for smaller depth
ranges, due to a decrease of the accommodation-vergence con-
flict, where the depth quantity is positively correlated to the size of

the depth range [22]. To handle this conflict of objectives, depth
mapping algorithms have been proposed [2, 4, 15, 22, 23, 27, 34]
which try to optimally adapt the disparity range to the viewing
environment. These approaches distinguish by the underlying ar-
ticulation of preference of the three objectives (a), (b) and (c),
the underlying mapping operators, i.e. linear [2, 4, 23] or non-
linear [15, 22, 27, 34], and the way how visual discomfort is mod-
eled.

Pan et al. [23] try to minimize visual discomfort by simply
scaling the depth range in the Percival’s Zone of Comfort [25] that
is similar to a commonly used limit called depth of field (DOF).
Chamaret et al. [2] handle visual discomfort by adaptively scaling
and shifting an object of interest onto the screen plane. The object
of interest is computed by a saliency map and the disparity map.
In addition, they use the binocular fusion limit as lower disparity
limit. Choi et al. [4] scale and shift the images into a predefined
comfort zone for large cinema screens, proposed by [16], if a mea-
sured visual discomfort value exceeds a heuristic value. The vi-
sual discomfort model is trained using subjective assessment data
of 10 videos and 10 subjects. Lang et al. [15] proposed differ-
ent non-linear disparity mapping operators which can be used to
improve the overall QoE. Yan et al. [34] propose a linear depth
mapping algorithm which enables maintaining the image quality.
This is done by minimizing distortions based on preserving rela-
tionships of neighboring features and preventing line and plane
bending. They evaluate their algorithm considering visual dis-
comfort, depth quantity and image quality aspects and made some
of their results publicly available. Recently, Sohn et al. [27] used
non-linear disparity mapping operators and a model of visual dis-
comfort to iteratively compress problematic regions of S3D im-
ages in order to minimize visual discomfort, similarly did Oh et
al. [22] for S3D videos. Unfortunately the iterative computations
and compressions per frame make their algorithms less computa-
tionally efficient than linear approaches (see, e.g., [22]).

Linear Optimization Approach
Our approach based on linear optimization is outlined in

Fig. 1. First of all, we take up the notion of overall quality of
experience (QoE) as tradeoff between DQ, VDC and DIQ and
model it by a weighted sum

µQoE = ωDQµDQ−ωVDCµVDC−ωDIQµDIQ (1)

of measures µDQ, µVDC and µDIQ for the corresponding aspects
DQ, VDC and DIQ, respectively. In our first simplified approach
we assume that these weights are independent from characteristics
of individual frames and parameter settings for the depth map-
ping. This simplification seems to be justified at least for similar
scenes and contents. For the purpose of this paper it is introduced
as a heuristic which needs further analysis in future research.

While assuming the weights to be insensitive w.r.t. to con-
tent characteristics and depth mapping operators, we consider the
measures µDQ, µVDC and µDIQ to be sensitive w.r.t content char-
acteristics of similar frames. A natural partition of such frames
is given by the shots of video. Summarizing, this simplification
means that the measures in (1) only depend on shot-based depth
mappings, i.e., µA = µA(φp1,...,pn(s)), where A denotes one of the
aspects DQ, VDC or DIQ and φp1,...,pn denotes the depth mapping
of the shot s with parameters p1, . . . , pn.
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The mathematical optimization problem is as follows. Sum-
marizing, we obtain the objective function

max
p1,...,pn

1
N

N

∑
i=1

µQoE(φp1,...,pn(si)). (2)

Now, we refine the model (2) by taking knowledge in terms of
best practices for comfort zone limits into account,

dδ ( f ),d1−δ ( f ) ∈ [dm(s),dM(s)], (3)

where dm(s) and dM(s) give the lower and upper limit, i.e. the
comfort zone boundaries, for the mean of the δ -percent quantile
of disparity values of frame f ∈ s, denoted by dδ ( f ). Note that,
in contrast to standard approaches as outlined in Section Related
Work, we allow more flexibility of the model by taking into ac-
count that the comfort zone for disparity values might depend on
the characteristics of shot s. In order to bound visual discomfort
that results from depth jumps at the border of shots, we track the
most attractive object of interest by means of a visual attention
model and postulate that the corresponding depth profiles of this
objects in last frame of shot si and the first frame of the subsequent
shot si+1 are similar. This means that

|dooi(φ( f+i ))−dooi(φ( f−i+1))| ≤ λ (4)

for all shots si, where dooi(φ( f+i )) denotes the disparity map value
of the object of interest in the last frame f+i of shot si after apply-
ing φ ; dooi(φ( f−i )) denotes the corresponding value on the other
side at the shot border.

The approach outlined so far consists of posing the objec-
tive function (2) while restricting the search for an optimal depth
configuration (p1, . . . , pn) by a comfort zone (3) and a bound for
discontinuity at shot borders (4).

In this paper, we propose to model the measures µDQ, µV DC
and µDIQ by linear functions. In addition, we use linear depth
mapping operators in order to linearise the optimization problem.
An optimal solution can then be computed efficiently by the well-
known Simplex algorithm [18].

Let us characterize the class of linear depth mappings φc,t of
shot s with shift t and constant scale c by the property D(φc,t(s))=
c ·D(s)+ t for the disparity map D of s. Furthermore, as a linear
measure of the depth quantity µDQ, we propose to use the mean
size of the depth range of all frames in a shot. As measure for
the deterioration of the image quality µDIQ, we use the scaling
amount of the used depth mapping parameter. As linear measure
of visual discomfort µV DC, we use the mean depth deviation of
the object of interest from the screen, which is motivated by the
accommodation-vergence conflict [29]. Though some linear mea-
sures for visual discomfort have been proposed [38], these mea-
sures depend on subjective assessment results, which are not al-
ways available for shots having special characteristics, e.g. high-
motion.

The object of interest is computed by means of a 2D human
visual attention model [10] combined with a motion map [7], the
disparity map and a center bias (see Fig. 3).

Finally, we implemented a motion-based comfort zone. It
consists of a lower dm(s) and upper dM(s) depth limit of shot s,
and is calculated by means of optical flow motion vectors [7] and

Figure 4: Subjective assessment result. Vertical axis: mean opin-
ion scores for visual comfort, image quality and depth quantity,
top bars: Yan et al’s results, bottom bars: our results.

the computation of a machine learning function that is based on
various shots from well-known S3D movies.

For example output of an optimization task, consider Fig. 2.
It shows the original depth transition (dashed) and optimal depth
transition (solid) of the minimum depth (lower), maximum depth
(upper) and the mean depth of the object of interest (middle) in
all frames of two shots. For example extraction of the objects
of interests depth of frame 5 see Fig. 3. The vertical line spec-
ifies a shot cut, the dotted and dashed horizontal lines show the
minimum depth of the motion-based comfort zone and the screen
respectively. The high-motion shot from frame 0 to frame 59 has
a smaller comfort zone that the second shot. Thus, the optimiza-
tion algorithm computes a smaller scaling parameter than for the
second shot. The depth difference of the objects of interest on the
shot cut were limited by λ = 0.5% of image width, see equation 4.

The original video causes a high amount of visual discomfort
since it is in conflict with the well-known depth of field rule [29].
The algorithms output is optimized using our motion-based com-
fort zone, that includes rules as the depth of field. Thus, the opti-
mized video causes a lower amount of visual discomfort including
a more comfortable depth continuity of the objects of interest on
the shot cuts.

Experiments
Yan et al. proposed a linear depth mapping algorithm for

stereoscopic videos and placed some results for reference at [34].
Some of their results (Ex1, Ex10, Ex11) are computed from a free
and well-known S3D video clip Oldtimers [30]. For the other
videos we could not find any freely available source data.

In order to compare our algorithm to their results, we opti-
mized the Oldtimer video clip by our algorithm and compare the
results pair-wise to Yan et al.’s results. Since, they provide their
results only in red-cyan anaglyph format, we converted our results
with these color settings. Example frames of output can be seen
in figure 5. One can observe that our algorithm produces results
with the most attracting image parts (front of train, person in the
middle) closer to the screen. Due to a smaller depth range, our al-
gorithm produces results which are closer in the background and
therefore farer away from the binocular vision limit. This results
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Figure 2: Linear depth mapping result of a short two-shot S3D video. Black dashed lines: screen (0.00) and minimum of comfort zone
(−1.4 first shot, −3.3 second shot), thin dashed lines: minimum depth of frame (lower line), mean depth of object of interest (middle
line), see e.g. figure 3), and maximum depth of frame (top line), solid lines: data of mapped video (order equal to dashed lines), vertical
line: shot-cut.

Figure 3: Saliency map computation of proposed S3D human visual attention model for multi-shot stereoscopic video analysed by
figure 2. From left to right: left view of stereoscopic image, motion saliency map, disparity map, spectral residual saliency map and
combined map based on maximum pooling and linear combination with center-bias.

in less sensitivity for perceiving visual discomfort when looking
at the background. It is also interesting to observe that there are
some errors at the floor at the bottom right image produced by our
algorithm, coming from inappropriate disparity production.

The mean opinion scores of the users in our subjective as-
sessment (see Appendix ), visualized in Fig. 4, do not show any
decrease in image quality when compared with Yan et al.’s results.
The mean scores of all six videos and user ratings show a statis-
tically significant improvement with significance level 0.99 in vi-
sual comfort (t = 3.606, p = 0.0004), image quality (t = 4.6, p =
2 · 10−5) and depth quantity (t = 3.786, p = 0.0002). The im-
provement of the depth quantity could have the reason for the
adjustment of the S3D scenes closer to the viewer. Statement 1
summarizes these results. We made all subjective assessment data
and the rendered videos publicly available in a small database, see
Appendix .

Statement 1 (Performance). The mean level of visual comfort,
image quality and depth quantity observed by the subjects in our
assessment is significantly higher for our results than for the Old-
timer examples of Yan et al. [34] (one-tailed paired T-test, signif-
icance level 0.99).

Conclusion
From the point of view of a stereographer a disparity map-

ping approach is preferable that is capable of taking best practice
design patterns and stereographers’ preferences into account [26].
Thus, we address the overall objective by a linear optimization

Figure 5: Comparison of Yan et al.’s result (left) with our result
(right). Results of our disparity mapped videos show the attracting
image parts closer to the screen (front of train, person in the mid-
dle). In addition it can be observed that our algorithm produces
slightly nearer results for far image parts (smaller shift between
views).
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problem optimizing a weighted sum of three models for (a),(b)
and (c). In particular, we address (a) by adapting the well-known
Depth of Field limit based on motion features. (b) is modelled
by analysing the depth difference of the most salient regions and
the screen plane, similarly to [2]. The saliency regions are de-
tected by means of a computationally efficient human visual at-
tention model with depth information. (c) is modelled based on
scaling amounts of the DIBR method, with similar image quality
results as the one of [34] (see Section Experiments). Constraints
for depth differences of saliency regions on shot-cuts are added
to solve the overall linear optimization problem computationally
efficient by using the well-known Simplex algorithm [18].

In the future, we plan to analyse also long-term effects of
depth-range adaptions on visual discomfort.

Appendices

Subjective Assessment
17 subjects, from twenty five to fifty years old, participated

in our psychological assessment. After testing them for stereo-
blindness, color blindness and low vision according to [12], we
had to break the experiment for three users because of low vision.
The videos were shown on a 55-inch stereoscopic display with the
eyes of the viewers horizontal centred and 3.1 times the images
height [29] away from the display.

Since, the subjective assessment aims at providing evidence
regarding subjective image quality, depth quantity and visual dis-
comfort, we designed four questions, similarly to [34], as follows:

Q1 What is the level of image quality of the video (Bad-Poor-
Fair-Good-Excellent)?

Q2 What is the level of the depth quantity of the video (Bad-
Poor-Fair-Good-Excellent)?

Q3 What is the level of visual comfort associated with
the video (Extremely uncomfortable-Uncomfortable-Mildly
uncomfortable-Comfortable-Very Comfortable)?

During the assessment, all the subjects were allowed to stop
and rerun the videos as often as desired and small breaks where
added between every video in order to relax their visual system.
The stopping of the video is required to answer especially the
image quality question Q1.

New Database
We have developed a stereoscopic three-dimensional video

database with scenes of different content and characteristics used
also for the experiments reported in this article. For all the videos,
we provide subjective assessment data considering visual com-
fort, depth quantity and image quality. The resulting scores can
be used to evaluate performance of quality metrics, visual discom-
fort prediction models and disparity mapping algorithms.

A first version of the database has been made publicly avail-
able along with this paper. Currently this database contains sub-
jective assessment results for the following data:

• Ten low-resolution (640x480), non-expert, high-motion,
outdoor videos, captured by means of a Bumblebee 2 cam-
era from Point Grey and re-rendered using two different
depth comfort zones;

• Eight high-resolution (1920x1080), expert, low-motion, in-
door videos with four original videos from [8] and four re-
rendered videos using our disparity mapping algorithm for
quality optimization;

• Anaglyph videos showing results of [34] side by side with
our optimized results.

For details regarding the data and subjective assessment setup we
refer to [1].
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