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Abstract 
The MARquette Visualization Lab (MARVL) contains a cluster-

based large-scale immersive visualization system to display and 
interact with stereoscopic content that has been filmed or computer-
generated. MARVL uses head-mounted and augmented reality 
devices as portable sources for displaying this unique content. 
Traditional approaches to video playback using a plane fall short 
with larger immersive field-of-view (FOV) systems such as those 
used by MARVL. We therefore developed an approach to playback 
of stereoscopic videos in a 3D world where depth is determined by 
the video content. Objects in the 3D world receive the same video 
texture but computational efficiency is derived using UV texture 
offsets as opposing halves of a frame-packed 3D video. Left and 
right cameras are configured in Unity via culling masks so that they 
only uniquely show the texture for the corresponding eye. The 
camera configuration is then constructed through code at runtime 
using MiddleVR for Unity 4, and natively in Unity 5. This approach 
becomes more difficult with multiple cameras and maintaining 
stereo alignment for the full FOV, but has been used successfully in 
MARVL for applications including employee wellness initiatives, 
interactivity with high-performance computing results, and 
navigation within the physical world. 

Introduction  
The MARquette Visualization Lab (MARVL) is a shared 

resource dedicated to the creation of stereoscopic wide field-of-view 
(FOV) content that has been filmed or computer-generated for use 
with multiple exhibition methods, from large-scale systems such as 
CAVEs, to head-mounted displays. The advent of head-mounted 
displays and affordability of high-resolution cameras has prompted 
the need for efficient playback of stereoscopic video and 
photography using a wide FOV. The large-scale immersive 
environment within MARVL has several unique constraints dictated 
by its system attributes (10 Christie Digital Mirage WU7K-M 
projectors with Christie Twist connected to 6 HP Z820 workstations 
with Xeon E5-2670 CPUs, 32GB RAM and 2 NVidia Quadro 
K5000 GPUs each). Moreover, the applications of our end-users 
require the ability to display and interact with forward motion video 
obtained while moving at constant speed at 4K resolution and high 
frame rates.  

 
There are several approaches to integrating video based content 

into VR, but the traditional approach has generally involved 
mapping a video source onto a flat plane as a 2D texture. This 
technique can create a sufficiently realistic effect if the video does 
not dominate the screen coverage but is more problematic for 
immersive FOVs. However, when the texture increases in size, up 
to a maximum size of a full sphere around the viewer, a different 
approach is required in order to create stereoscopic depth. Our 
objective was to develop an approach to playback of stereoscopic 
photos and videos in a 3D world where depth is determined by the 
video content, while also retaining 4K resolution, high frame rate 
and the possibility for interactions. 

Methods 
The general approached developed to achieve our objective 

involves independently tagging two identically positioned meshes 
to be used as movie screens so they appear in only one eye. During 
this approach left and right cameras are configured via culling masks 
so that they only uniquely show the corresponding object for each 
eye. Computational efficiency is derived from the use of UV texture 
offsets as opposing halves of a frame-packed 3D movie (Figure 1) 
to share a single decoding component instead of having separate 
decoders for each eye.  
 

 
Figure 1: A sample frame from a stereoscopic, frame-packed movie with a 
wide FOV. This movie uses a custom cylindrical mapping, instead of a fully 
spherical equirectangular mapping. 

First a mesh is created and assigned UV coordinates to match 
our content, usually a full sphere, spherical section, or a cylinder. 
We use Blender for this, but any 3-D modelling program that 
provides control over UV coordinates and the orientation of normal 
would work well. The simplest case would be a UV sphere with its 
normal flipped, facing inwards. For our scene, we truncated the UV 
sphere (Figure 22) in order to match the shape of the output of our 
6-camera GoPro rig (Figure 1). 
  

Once the mesh is imported into Unity, two copies of it are 
made, one for each eye. Then the objects are tagged on separate 
layers, labelled “Left Only” and “Right Only,” as shown in Figure 
23. The hierarchy of the entire scene is straightforward: two objects 
for each eye’s screen, two cameras for each eye, and a start node 
that contains scripts pertaining to the user’s inputs (Figure 4-left). 
For our scene, the start node contains a script to read a configuration 
file containing a link to the movie file, allowing us to make a single 
build of the program that would be reusable for multiple video files, 
instead of having the video file embedded into the program. 
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Figure 2: Example of the custom mesh used for the screen, based on a UV 
sphere, made in Blender. The cyan lines show that the faces’ normals are 
reversed to face inwards. 

 

 
Figure 3: The inspector’s view of the mesh for the left eye. Note the 
configuration of custom layers. 

  
Figure 4: The hierarchy required for this setup is straightforward (left). An 
example of the shader configuration for both meshes (right). 

The shader is set up to be as fast and simple as possible (Error! 
Reference source not found.4-right.) We use the “unlit/texture” 
shader for maximum performance, since we do not want any lights 
or shadows to affect this mesh. With the Y tiling set to 0.5 and the 
Y offset set to 0, only the top half of the texture will be stretched to 
fill the entire mesh. The right object’s Y offset is set to 0.5, causing 
it to map the bottom half of the texture image to the mesh. The image 
input for the shader is left blank here, because when the program is 
running, it will be replaced with a new frame of video at every frame 
update by AVPro (Figure 9). If a texture is added here, it will be 
visible only for a brief moment while the movie is loading, or if the 
movie is unable to load. The X tiling and offset values here are 
changed slightly in order to perform some aspect ratio correction on 
the source material, which is not applicable to all movies. 
 

The next step is to configure the camera to set up culling masks 
so that each camera will not be able to see objects for the alternate 
eye. Unity 5.1 and greater now features built-in VR support, making 
this step far simpler. Two cameras must be created, one for each eye. 
For each camera, the target eye setting must be set to left or right, 
and the culling mask must be set to exclude the alternate eye. When 
using the Oculus utilities, the included camera rig prefab already 
contains the correct hierarchy of objects and cameras, making 
finding the correct camera simpler. Figure 5 below illustrates the 
sample settings for the left camera, which shows “LeftOnly” 
enabled, and “RightOnly” disabled. 

 
 To run this content in our large-scale immersive 

environment, we found it was necessary to use a proprietary plugin 
for Unity called MiddleVR [1]. Although Unity is strongly 
supportive of VR, their support mostly covers head-mounted 
displays, and there are still some very significant features that are 
not yet available to run the game engine in a CAVE, namely multi-
machine clustering, nonplanar camera alignment, and infrared 
tracker support. MiddleVR changes the way all cameras in the scene 
operate, so the process to set up these stereoscopic textures is 
slightly different. The configuration of the meshes and objects is the 
same, but the camera settings must now be done with a simple C# 
script that executes at runtime (Figure 6). This is because MiddleVR 
creates the necessary stereoscopic camera rig when the program 
starts, so our script must be configured to run after MiddleVR has 
finished creating the cameras.  
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Figure 5: The inspector’s settings for the left eye camera, showing the settings 
on the culling mask. 

 
 

foreach (Camera currentcamera in Camera.allCameras) { 
 if (currentcamera.name.Contains(".Right")) 
  currentcamera.cullingMask = ~(1 << 
LayerMask.NameToLayer("LeftOnly")); 
 if (currentcamera.name.Contains(".Left")) 
  currentcamera.cullingMask = ~(1 << 
LayerMask.NameToLayer("RightOnly")); 
 if (currentcamera.name.Contains ("Overview")) 
  currentcamera.cullingMask = ~(1 << 
LayerMask.NameToLayer("RightOnly")); 
} 
 

Figure 6: Code sample activating camera culling masks for all cameras. 

The code itself simply performs a search for all active cameras, 
and if the camera name contains “Left” or “Right,” it unchecks the 
culling mask for the alternate eye. The final conditional statement 
looks for the word “Overview,” which is used as the monoscopic 
overview camera on the control desk. If a specific layer mask is not 
selected for the overview camera, it will see both eyes’ objects on 
top of each other, creating a flicker known as z-fighting. Figure 6 
also demonstrates the somewhat confusing syntax to uncheck an 
option from a list in C#. “Camera.allcameras” is an array containing 
all cameras provided by the MiddleVR API. 

Results  
Initial implementation proved difficult to achieve the correct 

amount of stereo separation because our method runs on top of the 
pre-existing stereoscopic rendering method. If the plane with the 
video texture is in a position in 3D space where parallax is not 
neutral, the user will perceive the video at inconsistent depths, 
because both the video texture and the pre-existing stereo camera 
will be creating parallax independently of each other. To combat this 
conflict, the interpupillary distance for the 3D cameras is set to zero 
(Figure 7) which cancels out the separation effect that they 
contribute while maintaining the quad-buffer, stereo rendering 
pipeline.  

 
 

 
Figure 7: Comparison of a monoscopic texture in 3D space, where 3D parallax 
comes from the camera separation (left), and a 360-degree implementation, 
where 3D parallax is determined by the texture (right). 

This approach has subsequently been used successfully in 
MARVL for applications including employee wellness initiatives, 
interactivity with high-performance computing simulation results, 
and navigation within virtual versions of the physical world (Figure 
8). 

 
It is worth noting that we discovered playback of high-

resolution video textures in Unity also requires use of the additional 
third-party plugin AVPro Windows Media [2] made by 
Renderheads, because Unity’s built-in video decoding system (the 
MovieTexture class) is not sufficient for use in VR. More 
specifically, Unity’s Movietexture class is not optimized enough to 
provide adequate quality and frame rates when using HD and 4K 
video textures, while AVPro utilizes hardware acceleration to make 
the decoding process efficient enough to be satisfying. Several 
additional features are also needed for our applications, such as 
variable speed playback and the ability to seek within a video clip.  

 
Despite the efficiency of the plugin, it is still important that the 

video rendering pipeline is simplified as much as possible in order 
to maintain high framerates. For this reason, the stereoscopic video 
is frame-packed, with the left eye’s image on top, and the right eye’s 
image on the bottom (Figure 1). AVPro is a modular component 
based system, so the image decoding script is separated from the 
script that applies the texture to the object. The sample 
documentation generally places the decoding script and the texture 
update script on the same object, so it may make sense to have the 
two components on each screen object. However, we have found a 
significant performance improvement by only having a single 
decoding script and two texture update nodes that both reference the 
same decoding script (Figure 9). This way, the most 
computationally intensive task in the pipeline is only done once. 
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Figure 8: Resulting uses of immersive, wide FOV, video rendering for wellness 
initiatives such as bicycling and yoga. 

 

 
Figure 9. The components of the AV Pro scripts. Note the 2 “Mesh Apply” 
scripts, but only 1 movie decoding script. The bottom component, “Movie 
Start,” implements the user’s controls. 

In addition, despite the efficiency of this setup, we have found 
that the specifications of the movie file itself play a big factor in 
achieving smooth movie playback inside Unity. We have found that 
playback movies of HD quality (1920x1080 or lower) consistently 
plays back very smoothly when using common encoder settings and 
reasonable bitrates, such as h264 at 20Mbps. However, achieving 
smooth playback at 4K resolution requires a much narrow set of 
specifications, due the significantly increased size of the frame, and 
even though the decoding is GPU accelerated, some additional 
configuration may be required in order to enable the most efficient 
settings for 4K video. To encode the video, we use the open source 
video processing tool ffmpeg [3]. Even when the video is made 
using a program like Adobe Adobe Effects, we export to an 
intermediate file and then re-encode that file with ffmpeg, because 
ffmpeg has some additional parameters that make a difference for 
high-performance decoding. 

 
The two codecs that work the best for 4K in Unity are Hap and 

Xvid. Hap’s performance benefits are no surprise because it is a 
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recently developed codec designed specifically for high-
performance realtime playback. It is able to decode 4K frames 
extremely quickly because its compression method is nearly 
identical to the texture compression method used internally on the 
GPU. Its downside is that its bitrate is extremely high, even higher 
than most intermediate codecs. Bitrates vary according to the 
content, but our tests measured an average bitrate of 750 Mbps, 
meaning that a sixty minute video would exceed 320 GB. Although 
the performance was satisyfing, we still wanted an improvement in 
file size, encoding times, transfer times, and we found an alternative 
codec solution with Xvid. Xvid is an unusual choice, because its 
generally regarded as an obsolete predecessor to the much more 
advanced H264 and H265 codec family. However, like Hap, its 
simplicity becomes an advantage when there is a need to decode 
large frames as fast as possible. In order to achieve sufficient quality 
at 4K resolution, it is necessary to use a bitrate much higher than 
one would need for a more efficient codec like H264. We 
standardized on 90Mbps because higher rates have caused playback 
hiccups with no additional gain in quality (Table 1). 

 

 H264 Xvid Hap 

Compression type Mpeg4 Mpeg4 Interframe 
Encoding performance Fast Very 

Fast 
Slow 

Decoding performance 
(4K) 

Slow Fast Very Fast 

Decoding performance 
(1080p) 

OK Fast Very Fast 

Typical 4K bitrate 
(Mbps) 

30-60 90 ~750 

Supports alpha 
channel 

No No Yes 

Supports random 
seeks 

No No Yes 

Variable frame rate Limited Limited Yes 
AVPro decoding 
method 

External External Internal 

Table 1: Comparison of codec performance and features for VR usage. 

Table 1 also shows how Hap still has some unique qualities that 
are useful in special cases. For example, because every frame is 
encoded independently, seeking within the video is instantaneous, 
while Xvid and H264 require seeking to a keyframe. Also, the alpha 
channel support is very useful for creating animated overlays and 
additional effects. The final row, decoding method, refers to the 
detail that AVPro requires a separate codec installation and 
configuration to decode H264 and Xvid [3]. For fixed installations 
such as ours, this is not an issue, but it does create some difficulty 
when deploying commerical products. The decoder we use is LAV 
Filters, a version of ffmpeg’s open source decoders packaged for 
Microsoft’s DirectShow framework.  

 
On mobile VR devices such as the Samsung Gear VR, neither 

MovieTexture nor AVPro are available for animating textures, but 
the same mask and layer setup has been used with static textures to 
achieve stereoscopic 360 degree still images on mobile devices very 
efficiently, even with 4K x 4K textures. An example related to 
archetectureal pre-visualization from MARVL is shown in Figure 
10. 

  
 

 
Figure 10: Example showing how the methods described here were applied 
for an architectural previsualization application in head-mounted displays such 
as the Samsung GearVR and Oculus Rift. The stereoscopic spherical version 
of the content for the L and R eyes is shown in the top two images while a 
cropped version simulating view from a head-mounted display is shown in the 
bottom image.  

Discussion 
MARVL contains a cluster-based large-scale immersive 

visualization system that focuses on displaying and interacting with 
stereoscopic content that has been filmed or computer-generated.  
To achieve the goals of the lab and meet the needs of our end-users, 
we found it was necessary for our projects to utilize Unity instead of 
any other spherical movie player software in order to bring a degree 
of interactivity to our video content. By displaying our content in 
this way, we gain a lot of new possibilities, such as allowing the user 
to trigger scene changes at their own pace, adding in overlay 
elements that take advantage of the direction the user is looking, 
modulating playback speed according to external controls, data 
gathering on user attention, and more.  

 
When most 3D engines render active stereo for CAVEs, they 

use a quad-buffered rendering pipeline, which is effectively separate 
pipelines for each eye. Most users of the rendering engine always 
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want their world to appear spatially consistent, so there is usually 
very little need to target each eye individually. Initial attempts at 
stereoscopic textures did not access the quad-buffer pipeline, but 
instead involved toggling the textures' state at a rate synchronized 
with v-sync. This was reliable for simple scenes, but 
synchronization and phase failed during complex scenes and stress 
tests. This method implements a system of displaying stereoscopic 
textures in a way that is reliable enough for use with active stereo, 
without having to modify low-level code manipulating the quad-
buffer rendering pipeline. 

Conclusions  
In summary, the methods described above utilize layers and 

masks to create unusual objects that appear in one eye and not the 
other, allowing us to use differing textures for each eye. The steps 
to create these objects are not obvious or readily documented, 
because in most use cases, the rendering system always wants to 
draw a world that is consistent for each eye. The details above 
related to the current approach are provided for use and iteration by 
other visualization facilities with similar constraints and user 
applications.  
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