

An efficient approach to playback of stereoscopic videos using a
wide field-of-view
Chris Larkee and John LaDisa; Marquette University; Milwaukee, Wisconsin/USA

Abstract
The MARquette Visualization Lab (MARVL) contains a cluster-

based large-scale immersive visualization system to display and
interact with stereoscopic content that has been filmed or computer-
generated. MARVL uses head-mounted and augmented reality
devices as portable sources for displaying this unique content.
Traditional approaches to video playback using a plane fall short
with larger immersive field-of-view (FOV) systems such as those
used by MARVL. We therefore developed an approach to playback
of stereoscopic videos in a 3D world where depth is determined by
the video content. Objects in the 3D world receive the same video
texture but computational efficiency is derived using UV texture
offsets as opposing halves of a frame-packed 3D video. Left and
right cameras are configured in Unity via culling masks so that they
only uniquely show the texture for the corresponding eye. The
camera configuration is then constructed through code at runtime
using MiddleVR for Unity 4, and natively in Unity 5. This approach
becomes more difficult with multiple cameras and maintaining
stereo alignment for the full FOV, but has been used successfully in
MARVL for applications including employee wellness initiatives,
interactivity with high-performance computing results, and
navigation within the physical world.

Introduction
The MARquette Visualization Lab (MARVL) is a shared

resource dedicated to the creation of stereoscopic wide field-of-view
(FOV) content that has been filmed or computer-generated for use
with multiple exhibition methods, from large-scale systems such as
CAVEs, to head-mounted displays. The advent of head-mounted
displays and affordability of high-resolution cameras has prompted
the need for efficient playback of stereoscopic video and
photography using a wide FOV. The large-scale immersive
environment within MARVL has several unique constraints dictated
by its system attributes (10 Christie Digital Mirage WU7K-M
projectors with Christie Twist connected to 6 HP Z820 workstations
with Xeon E5-2670 CPUs, 32GB RAM and 2 NVidia Quadro
K5000 GPUs each). Moreover, the applications of our end-users
require the ability to display and interact with forward motion video
obtained while moving at constant speed at 4K resolution and high
frame rates.

There are several approaches to integrating video based content

into VR, but the traditional approach has generally involved
mapping a video source onto a flat plane as a 2D texture. This
technique can create a sufficiently realistic effect if the video does
not dominate the screen coverage but is more problematic for
immersive FOVs. However, when the texture increases in size, up
to a maximum size of a full sphere around the viewer, a different
approach is required in order to create stereoscopic depth. Our
objective was to develop an approach to playback of stereoscopic
photos and videos in a 3D world where depth is determined by the
video content, while also retaining 4K resolution, high frame rate
and the possibility for interactions.

Methods
The general approached developed to achieve our objective

involves independently tagging two identically positioned meshes
to be used as movie screens so they appear in only one eye. During
this approach left and right cameras are configured via culling masks
so that they only uniquely show the corresponding object for each
eye. Computational efficiency is derived from the use of UV texture
offsets as opposing halves of a frame-packed 3D movie (Figure 1)
to share a single decoding component instead of having separate
decoders for each eye.

Figure 1: A sample frame from a stereoscopic, frame-packed movie with a
wide FOV. This movie uses a custom cylindrical mapping, instead of a fully
spherical equirectangular mapping.

First a mesh is created and assigned UV coordinates to match
our content, usually a full sphere, spherical section, or a cylinder.
We use Blender for this, but any 3-D modelling program that
provides control over UV coordinates and the orientation of normal
would work well. The simplest case would be a UV sphere with its
normal flipped, facing inwards. For our scene, we truncated the UV
sphere (Figure 22) in order to match the shape of the output of our
6-camera GoPro rig (Figure 1).

Once the mesh is imported into Unity, two copies of it are
made, one for each eye. Then the objects are tagged on separate
layers, labelled “Left Only” and “Right Only,” as shown in Figure
23. The hierarchy of the entire scene is straightforward: two objects
for each eye’s screen, two cameras for each eye, and a start node
that contains scripts pertaining to the user’s inputs (Figure 4-left).
For our scene, the start node contains a script to read a configuration
file containing a link to the movie file, allowing us to make a single
build of the program that would be reusable for multiple video files,
instead of having the video file embedded into the program.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.5.SDA-447

IS&T International Symposium on Electronic Imaging 2016
Stereoscopic Displays and Applications XXVII SDA-447.1

Figure 2: Example of the custom mesh used for the screen, based on a UV
sphere, made in Blender. The cyan lines show that the faces’ normals are
reversed to face inwards.

Figure 3: The inspector’s view of the mesh for the left eye. Note the
configuration of custom layers.

Figure 4: The hierarchy required for this setup is straightforward (left). An
example of the shader configuration for both meshes (right).

The shader is set up to be as fast and simple as possible (Error!
Reference source not found.4-right.) We use the “unlit/texture”
shader for maximum performance, since we do not want any lights
or shadows to affect this mesh. With the Y tiling set to 0.5 and the
Y offset set to 0, only the top half of the texture will be stretched to
fill the entire mesh. The right object’s Y offset is set to 0.5, causing
it to map the bottom half of the texture image to the mesh. The image
input for the shader is left blank here, because when the program is
running, it will be replaced with a new frame of video at every frame
update by AVPro (Figure 9). If a texture is added here, it will be
visible only for a brief moment while the movie is loading, or if the
movie is unable to load. The X tiling and offset values here are
changed slightly in order to perform some aspect ratio correction on
the source material, which is not applicable to all movies.

The next step is to configure the camera to set up culling masks
so that each camera will not be able to see objects for the alternate
eye. Unity 5.1 and greater now features built-in VR support, making
this step far simpler. Two cameras must be created, one for each eye.
For each camera, the target eye setting must be set to left or right,
and the culling mask must be set to exclude the alternate eye. When
using the Oculus utilities, the included camera rig prefab already
contains the correct hierarchy of objects and cameras, making
finding the correct camera simpler. Figure 5 below illustrates the
sample settings for the left camera, which shows “LeftOnly”
enabled, and “RightOnly” disabled.

 To run this content in our large-scale immersive

environment, we found it was necessary to use a proprietary plugin
for Unity called MiddleVR [1]. Although Unity is strongly
supportive of VR, their support mostly covers head-mounted
displays, and there are still some very significant features that are
not yet available to run the game engine in a CAVE, namely multi-
machine clustering, nonplanar camera alignment, and infrared
tracker support. MiddleVR changes the way all cameras in the scene
operate, so the process to set up these stereoscopic textures is
slightly different. The configuration of the meshes and objects is the
same, but the camera settings must now be done with a simple C#
script that executes at runtime (Figure 6). This is because MiddleVR
creates the necessary stereoscopic camera rig when the program
starts, so our script must be configured to run after MiddleVR has
finished creating the cameras.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.5.SDA-447

IS&T International Symposium on Electronic Imaging 2016
Stereoscopic Displays and Applications XXVII SDA-447.2

Figure 5: The inspector’s settings for the left eye camera, showing the settings
on the culling mask.

foreach (Camera currentcamera in Camera.allCameras) {
 if (currentcamera.name.Contains(".Right"))
 currentcamera.cullingMask = ~(1 <<
LayerMask.NameToLayer("LeftOnly"));
 if (currentcamera.name.Contains(".Left"))
 currentcamera.cullingMask = ~(1 <<
LayerMask.NameToLayer("RightOnly"));
 if (currentcamera.name.Contains ("Overview"))
 currentcamera.cullingMask = ~(1 <<
LayerMask.NameToLayer("RightOnly"));
}

Figure 6: Code sample activating camera culling masks for all cameras.

The code itself simply performs a search for all active cameras,
and if the camera name contains “Left” or “Right,” it unchecks the
culling mask for the alternate eye. The final conditional statement
looks for the word “Overview,” which is used as the monoscopic
overview camera on the control desk. If a specific layer mask is not
selected for the overview camera, it will see both eyes’ objects on
top of each other, creating a flicker known as z-fighting. Figure 6
also demonstrates the somewhat confusing syntax to uncheck an
option from a list in C#. “Camera.allcameras” is an array containing
all cameras provided by the MiddleVR API.

Results
Initial implementation proved difficult to achieve the correct

amount of stereo separation because our method runs on top of the
pre-existing stereoscopic rendering method. If the plane with the
video texture is in a position in 3D space where parallax is not
neutral, the user will perceive the video at inconsistent depths,
because both the video texture and the pre-existing stereo camera
will be creating parallax independently of each other. To combat this
conflict, the interpupillary distance for the 3D cameras is set to zero
(Figure 7) which cancels out the separation effect that they
contribute while maintaining the quad-buffer, stereo rendering
pipeline.

Figure 7: Comparison of a monoscopic texture in 3D space, where 3D parallax
comes from the camera separation (left), and a 360-degree implementation,
where 3D parallax is determined by the texture (right).

This approach has subsequently been used successfully in
MARVL for applications including employee wellness initiatives,
interactivity with high-performance computing simulation results,
and navigation within virtual versions of the physical world (Figure
8).

It is worth noting that we discovered playback of high-

resolution video textures in Unity also requires use of the additional
third-party plugin AVPro Windows Media [2] made by
Renderheads, because Unity’s built-in video decoding system (the
MovieTexture class) is not sufficient for use in VR. More
specifically, Unity’s Movietexture class is not optimized enough to
provide adequate quality and frame rates when using HD and 4K
video textures, while AVPro utilizes hardware acceleration to make
the decoding process efficient enough to be satisfying. Several
additional features are also needed for our applications, such as
variable speed playback and the ability to seek within a video clip.

Despite the efficiency of the plugin, it is still important that the

video rendering pipeline is simplified as much as possible in order
to maintain high framerates. For this reason, the stereoscopic video
is frame-packed, with the left eye’s image on top, and the right eye’s
image on the bottom (Figure 1). AVPro is a modular component
based system, so the image decoding script is separated from the
script that applies the texture to the object. The sample
documentation generally places the decoding script and the texture
update script on the same object, so it may make sense to have the
two components on each screen object. However, we have found a
significant performance improvement by only having a single
decoding script and two texture update nodes that both reference the
same decoding script (Figure 9). This way, the most
computationally intensive task in the pipeline is only done once.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.5.SDA-447

IS&T International Symposium on Electronic Imaging 2016
Stereoscopic Displays and Applications XXVII SDA-447.3

Figure 8: Resulting uses of immersive, wide FOV, video rendering for wellness
initiatives such as bicycling and yoga.

Figure 9. The components of the AV Pro scripts. Note the 2 “Mesh Apply”
scripts, but only 1 movie decoding script. The bottom component, “Movie
Start,” implements the user’s controls.

In addition, despite the efficiency of this setup, we have found
that the specifications of the movie file itself play a big factor in
achieving smooth movie playback inside Unity. We have found that
playback movies of HD quality (1920x1080 or lower) consistently
plays back very smoothly when using common encoder settings and
reasonable bitrates, such as h264 at 20Mbps. However, achieving
smooth playback at 4K resolution requires a much narrow set of
specifications, due the significantly increased size of the frame, and
even though the decoding is GPU accelerated, some additional
configuration may be required in order to enable the most efficient
settings for 4K video. To encode the video, we use the open source
video processing tool ffmpeg [3]. Even when the video is made
using a program like Adobe Adobe Effects, we export to an
intermediate file and then re-encode that file with ffmpeg, because
ffmpeg has some additional parameters that make a difference for
high-performance decoding.

The two codecs that work the best for 4K in Unity are Hap and

Xvid. Hap’s performance benefits are no surprise because it is a

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.5.SDA-447

IS&T International Symposium on Electronic Imaging 2016
Stereoscopic Displays and Applications XXVII SDA-447.4

recently developed codec designed specifically for high-
performance realtime playback. It is able to decode 4K frames
extremely quickly because its compression method is nearly
identical to the texture compression method used internally on the
GPU. Its downside is that its bitrate is extremely high, even higher
than most intermediate codecs. Bitrates vary according to the
content, but our tests measured an average bitrate of 750 Mbps,
meaning that a sixty minute video would exceed 320 GB. Although
the performance was satisyfing, we still wanted an improvement in
file size, encoding times, transfer times, and we found an alternative
codec solution with Xvid. Xvid is an unusual choice, because its
generally regarded as an obsolete predecessor to the much more
advanced H264 and H265 codec family. However, like Hap, its
simplicity becomes an advantage when there is a need to decode
large frames as fast as possible. In order to achieve sufficient quality
at 4K resolution, it is necessary to use a bitrate much higher than
one would need for a more efficient codec like H264. We
standardized on 90Mbps because higher rates have caused playback
hiccups with no additional gain in quality (Table 1).

 H264 Xvid Hap

Compression type Mpeg4 Mpeg4 Interframe
Encoding performance Fast Very

Fast
Slow

Decoding performance
(4K)

Slow Fast Very Fast

Decoding performance
(1080p)

OK Fast Very Fast

Typical 4K bitrate
(Mbps)

30-60 90 ~750

Supports alpha
channel

No No Yes

Supports random
seeks

No No Yes

Variable frame rate Limited Limited Yes
AVPro decoding
method

External External Internal

Table 1: Comparison of codec performance and features for VR usage.

Table 1 also shows how Hap still has some unique qualities that
are useful in special cases. For example, because every frame is
encoded independently, seeking within the video is instantaneous,
while Xvid and H264 require seeking to a keyframe. Also, the alpha
channel support is very useful for creating animated overlays and
additional effects. The final row, decoding method, refers to the
detail that AVPro requires a separate codec installation and
configuration to decode H264 and Xvid [3]. For fixed installations
such as ours, this is not an issue, but it does create some difficulty
when deploying commerical products. The decoder we use is LAV
Filters, a version of ffmpeg’s open source decoders packaged for
Microsoft’s DirectShow framework.

On mobile VR devices such as the Samsung Gear VR, neither

MovieTexture nor AVPro are available for animating textures, but
the same mask and layer setup has been used with static textures to
achieve stereoscopic 360 degree still images on mobile devices very
efficiently, even with 4K x 4K textures. An example related to
archetectureal pre-visualization from MARVL is shown in Figure
10.

Figure 10: Example showing how the methods described here were applied
for an architectural previsualization application in head-mounted displays such
as the Samsung GearVR and Oculus Rift. The stereoscopic spherical version
of the content for the L and R eyes is shown in the top two images while a
cropped version simulating view from a head-mounted display is shown in the
bottom image.

Discussion
MARVL contains a cluster-based large-scale immersive

visualization system that focuses on displaying and interacting with
stereoscopic content that has been filmed or computer-generated.
To achieve the goals of the lab and meet the needs of our end-users,
we found it was necessary for our projects to utilize Unity instead of
any other spherical movie player software in order to bring a degree
of interactivity to our video content. By displaying our content in
this way, we gain a lot of new possibilities, such as allowing the user
to trigger scene changes at their own pace, adding in overlay
elements that take advantage of the direction the user is looking,
modulating playback speed according to external controls, data
gathering on user attention, and more.

When most 3D engines render active stereo for CAVEs, they

use a quad-buffered rendering pipeline, which is effectively separate
pipelines for each eye. Most users of the rendering engine always

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.5.SDA-447

IS&T International Symposium on Electronic Imaging 2016
Stereoscopic Displays and Applications XXVII SDA-447.5

want their world to appear spatially consistent, so there is usually
very little need to target each eye individually. Initial attempts at
stereoscopic textures did not access the quad-buffer pipeline, but
instead involved toggling the textures' state at a rate synchronized
with v-sync. This was reliable for simple scenes, but
synchronization and phase failed during complex scenes and stress
tests. This method implements a system of displaying stereoscopic
textures in a way that is reliable enough for use with active stereo,
without having to modify low-level code manipulating the quad-
buffer rendering pipeline.

Conclusions
In summary, the methods described above utilize layers and

masks to create unusual objects that appear in one eye and not the
other, allowing us to use differing textures for each eye. The steps
to create these objects are not obvious or readily documented,
because in most use cases, the rendering system always wants to
draw a world that is consistent for each eye. The details above
related to the current approach are provided for use and iteration by
other visualization facilities with similar constraints and user
applications.

Author Biography
Chris Larkee is the visualization technology specialist for Marquette
University. His work combines a background in video production, motion
graphics, broadcast engineering, and graphics programming. Currently, he
maintains and develops content for the Marquette University Visualization
Lab, whose centerpiece is a 6 node, 10 projector VR Cave. Chris has led
the production of over 30 VR projects since it opened in 2014, in topics
ranging from healthcare, fitness, engineering, and architecture.

John LaDisa was a postdoctoral scholar at Stanford University for 2.5
years after earning his Ph.D. in Biomedical Engineering. He now directs
MARVL and the Laboratory for Translational, Experimental and
Computational Cardiovascular Research. These labs are supported by
grants to study cardiovascular disease, engineer treatments, and uniquely
visualize results, while training the next generation of scientists. Together
with colleagues, Dr. LaDisa has published >40 peer-reviewed articles and
raised ~$2M in extramural funding.

References
[1] MiddleVR, "MiddleVR For Unity," [Online]. Available:
http://www.middlevr.com/middlevr-for-unity/.

[2] Renderheads, "AVPro Windows Media," [Online]. Available:
http://renderheads.com/product/av-pro-windows-media/.

[3] FFmpeg, "FFmpeg," [Online]. Available: http://ffmpeg.org/about.html.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.5.SDA-447

IS&T International Symposium on Electronic Imaging 2016
Stereoscopic Displays and Applications XXVII SDA-447.6

