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Abstract
Predicting scene depth (or geometric information) from sin-

gle monocular images is a challenging task. This paper addresses
such challenging and essentially ill-posed problem by regression
on samples for which the depth is known. In this regard, we first
retrieve semantically similar RGB and depth pairs from datasets
using a deep convolutional activation feature. We show that our
framework provides a richer foundation for depth estimation than
existing hand-craft representations. Subsequently, an initial es-
timation is then integrated by block-matching and robust patch
regression. It assigns perceptually appropriate depth values to an
input query in accordance with a data-driven depth prior. A final
post processor aligns depth maps with RGB discontinuities, re-
sulting in visually plausible results. Experiments on the Make 3D
and NYU RGB-D datasets show competitive results compared to
recent state-of-the-art methods.

1. Introduction
Over the last decades, we have observed a massive advance

in 3D-capable hardware, such as 3D TV, smartphone, and virtual
reality devices. However, 3D content production still remains
challenging task. They are usually produced by labor-intensive
processes, which is time-consuming and expensive tasks. To
make an abundant 3D contents, it is essential to convert exist-
ing 2D scene (or 2D content) into 3D. In this context, many re-
searchers have concentrated on inferring 3D structure from a sin-
gle monocular scene. However, estimating depth map from a sin-
gle image is highly ill-posed, since there exist no reliable cues,
e.g., stereo correspondence for the depth estimation.

In recent years, much progress has been made towards rec-
ognizing 3D scene structures from a single image. At a high level,
they can be classified into two groups: semi-automatic and auto-
matic methods. Semi-automatic methods expect a sparse depth
scribble as a user interaction. The sparse scribble is propagated
into the entire image in order to fill the remaining unknown pix-
els by modeling global interpolation. Contrary to semi-automatic
methods, automatic methods extract depth information from a sin-
gle monocular image without any user interaction. For example,
traditional methods rely on monocular depth cues, such as shape
from shading [1], and structure from motion [2]. These are at-
tractive alternatives for estimating 3D structure, but they are un-
reliable due to strong modeling assumptions. Nowadays, super-
vised learning approaches are introduced to estimate depth map
automatically. They build up a parametric model to describe the
relationship between a scene and corresponding depth. It is avail-

able to provide realistic depth estimation in general environment.
However, they are sensitive to varieties of training data.

After the emergence of large scale RGB-D databases, power-
ful nonparametric sampling methods are proposed for 2D-to-3D
conversion. It is built-upon an assumption that visually similar
scenes also have similar 3D structures. Instead of defining explicit
parametric model, depth estimates are directly learned from visu-
ally similar scenes. The matching candidates are selected from
the dataset using a high level features, such as GIST [10] and
HOG [11]. Although the retrieved images have semantically sim-
ilar geometric structures, they are not aligned locally with the in-
put image. As a result, regression process is performed to obtain
depth estimation from retrieved samples.

In this paper, we propose nonparametric data-driven ap-
proach for 2D-to-3D conversion. We retrieve visually similar
scenes with input image using a deep convolution activation fea-
ture, which outperforms previous hand-craft representations. To
transfer depth patches consisting of similar 3D structures, block-
matching is executed considering nonlocal neighborhoods be-
tween input and candidate samples. And then, the matched
patches are regressed in a robust manner. Finally, we adapt ex-
plicit texture removing technique to address structural inconsis-
tency between RGB and depth. Experimental results demonstrate
that our method is more superior than previous methods in the
entire processes. This paper is organized as follows. Section 2
present related works. The proposed method is explained in Sec-
tion 3. In Section 4, we demonstrate the effectiveness of the pro-
posed method on MAKE 3D and NYU V2 datasets. Finally, we
conclude the paper with some limitations and future works in Sec-
tion 5.

2. Related Works
To date, semi-automatic methods have been regarded as

more successful approach to 2D-to-3D conversion [3, 4]. Con-
ventional methods require highly labor intensive steps, such as
separating objects in individual frame, specifying proper depths,
and correcting errors after final rendering. Many 2D films have
been converted into 3D with this approach. However, those inter-
actions are highly time-consuming and expensive processes. To
reduce the burden of annotation process, depth scribble has been
adapted as a user interaction [3,4]. Scribble-based input is simple
and is generally good for smooth depth regions. In [3, 4], depth
estimation is obtained from sparse scribble through optimization-
based propagation [28, 30]. Usually, nonlocal neighborhoods is
advocated for optimization to reduce the number of user scrib-
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Figure 1. The overall framework of proposed method

bles. Although scribble-based 2D-to-3D conversion methods can
obtain convincing depth map, they are not suitable for automatic
vision-related works.

For automatic 2D-to-3D conversion, traditional methods for-
mulated the problem of depth estimation from a single image in
a various ways, such as shape-from-shading [1], and structure-
from-motion [2]. Shape-from-shading method [1] estimates depth
map from restricted assumption that surfaces of an image consist
of uniform color and texture. However, most natural scenes do not
satisfy the assumption. Structure-from motion method [2] expects
an object motion for estimating a scene depth by motion parallax
measured from a video/multiple images taken at a different view
points. It also can not estimate depth map when no object mo-
tion exists in the scene. Recently, supervised-learning based ap-
proaches are proposed for automatic depth estimation [5,6]. Sax-
ena et al. [5] proposed Markov Random Field (MRF) model to
estimate depth map from a single image. The MRF model trains
a set of plane parameters to capture a relationship between RGB
and depth using large scale of RGB-D dataset. Similarly, Wang et
al. [6] train a nonlinear kernel function for the link of the image
and depth. However, supervised learning methods are applicable
to the pre-trained, category specific environment only.

To tackle the limitation of previous approaches, nonpara-
metric sampling techniques are received lots of attention for esti-
mating a plausible depth map from a monocular image [7–9, 21].
Those methods retrieve visually similar candidates with input im-
age from RGB-D database using a high-level image feature, such
as GIST [7, 9] or HOG [8]. Karsch et al. [7] proposed a depth es-
timation method using the candidates. By SIFT flow [12], warped
depth maps is obtained from the matching candidates to align the
structure of the input image. A global optimization problem is
modeled to regress the warped depth candidates with a robust po-
tential function. Although it can be applicable to arbitrary scenes,
it is very time-consuming in both scene alignment and interpola-
tion process. To efficiently compute warping functions, Choi et
al. [9] adapt Patch-Match (PM) [29]. Furthermore, they design
a transfer model in the depth gradient domain considering statis-
tical invariance property of depth gradients. Poisson equation is
solved under Neumann boundary conditions to reconstruct depth
from depth gradient.

Konrad et al. [8] proposed nonparametric approach without
warping process. The inferred depth values comes from median
of retrieved depth maps. These median is performed based on an
assumption that the location of some objects (i.e., sky, building,
furniture) are quite consistent with the candidate images. A joint
filtering is then executed to align depth boundaries to those of
the input image. However, if the candidate depths are not locally

Figure 2. The illustration of grouping by block-matching for depth samples

consistent with input image, it might fail to estimate proper depth
values from median.

In our method, we retrieve semantically similar matching
candidates from RGB-D dataset using a deep convolutional fea-
ture. From the reliable matching candidates, a robust candidate
fusion method is proposed considering the geometrical configura-
tion in a whole neighborhood. Furthermore, we perform an effec-
tive refinement process, resolving the copying problem frequently
occurred in conventional approaches.

3. Proposed Method
The proposed method is based on an assumption that two

patches that are semantically similar also have similar geomet-
ric structure. This is reasonable, since there is co-occurrence
statistics between depth and photometric discontinuities. Given
a monocular query image I0, our objective is to estimate plausi-
ble depth map based on large database which consists of RGB
images and their corresponding depth maps. Our nonparametric
depth estimation begins with retrieving visually similar N scenes
from the database. We then perform block-matching, resulting in
N depth samples for all patches in the query image. These sam-
ples are used for constructing candidate volumes which will be
combined to form an initial estimate. Finally, we employ mod-
ern edge-aware filter for the refinement. The overall framework is
described in Fig. 1.

3.1 Retrieval of training RGB-D
Retrieving visually similar RGB-D candidates from large

database is one of the most important processes in depth estima-
tion based on nonparametric learning. To select candidate depths
from the database, we retrieve similar images by making use of
high-level image feature. In this configuration, visual similar-
ity between two images is measured using the CNN descriptor,
which is 4096-dimensional feature vector. In [13], deep convo-
lutional neural network is used to classify the large number of
images into the 1000 different classes. The network consists of 5
convolutional and 3 fully-connected layers. The CNN descriptor
is the output of the last hidden layer. If two images produce fea-
ture activation with small difference, the neural network considers
them to be similar. In [14], the authors experimentally show that
the CNN descriptor outperforms SIFT feature to describe images.
In this way, we extract visually similar N RGB-D candidates from
the database. Let gi denote the CNN descriptor of the image Ii in
the database. The CNN descriptors for all images in the database
are pre-computed for an efficient retrieval. The matching scores
between input query and RGB images in the database are calcu-
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(a) (b) (c) (d) (e)

Figure 3. Retrieved candidates by high-level feature: (a) input image, (b) Extracted candidates by the CNN descriptor, (c) Extracted candidates by GIST, (d)

initial estimation using (b), (e) initial estimation using (c)

lated using the sum of squared difference (SSD) as follows:

dist(I0, Ii) = ‖g0−gi‖2
2 , (1)

where g0 is the CNN descriptor of the input image. We then se-
lect the top k matching pairs with the lowest SSD. The pairs have
roughly similar geometric structure with input image. We empir-
ically find that the CNN descriptor is more suitable to retrieve the
semantically similar candidates than conventional representation,
e.g., GIST [10] or HOG [11].

3.2 Depth inference via block-matching and ro-
bust regression

Although the candidate depths are roughly consistent with
depth information for the query image, they are not aligned lo-
cally. We address this problem by establishing nonlocal neighbor-
hoods between an input query and each of the retrieved images.
In a nutshell, we group hypothetical depth samples via block-
matching [15], resulting in N depth samples for all patches in the
query image. Rather than using a patch in the spatial domain, the
matching process based on nonlocal principle is implemented by
computing K nearest neighbors (KNN) with k = 1 in the feature
space. At each pixel in the input image, we find a patch in each
RGB candidates using a feature vector X(i) = (Si,x,y) at a pixel i,
where Si is 128-dimensional SIFT feature [16] and (x,y) denotes
the spatial coordinates of pixel i with some weight. Since the re-
trieved candidates have similar geometric structures, it is reason-
able to find somewhat close patch with pixel i in each RGB can-
didate. It can be efficiently implemented by using KD-tree [17]
which is one of the approximated nearest neighbors (ANN). An
illustration of grouping by block-matching for depth samples is
shown in Fig. 2. The red points indicate the same position for
all images and blue boxes denote patches. Blue boxes in the re-
trieved RGB-D candidates are matched patches with the red point
in the input image using KNN with k = 1. Since we use SIFT
feature for block matching, the patches have similar appearances.
We can observe that two blocks with similar appearance indeed
share a common structure in a depth image.

The candidate volumes built by stacking the k depth sam-
ples are then combined in a robust manner as following regression
problem:

Pi = argmin
P

N

∑
j=1

wi, j

∥∥∥P−P j
m j(i)

∥∥∥
2
, (2)

where subscript i is pixel location and superscript j denotes the
jth candidate. Pi is depth patch centered at i for input query, P j

is depth patch from the jth candidate and w j denotes the weight
determined by block-matching cost:

wi, j = exp(−
∥∥Si−S j

∥∥2

σ2 ). (3)

The P j is specified by a mapping function, m j(·), according to the
results of block-matching. The solution of (2), Pi, is Euclidean
median of stacked N depth samples. There exists an extensive
literature on the computation of Euclidean median [18] [19]. We
solve this problem using Weiszfeld algorithm [18] [19]. The algo-
rithm is a form of IRLS. Given the current estimate P(t)

i , the next
iterate is obtained as follows:

P(t+1)
i = argmin

P

k

∑
j=1

wi, j

∥∥∥P−P j
m j(i)

∥∥∥2

2∥∥∥P(t)
i −P j

m j(i)

∥∥∥
2

. (4)

(4) is a least-square problem, and the minimizer is given by

P(t+1)
i =

∑
j

µ
(t)
j P j

m j(i)

∑
j

µ
(t)
j

, (5)

where µ
(t)
j = wi, j/

∥∥∥P(t)
i −P j

m j(i)

∥∥∥
2
. After processing all the

patches in the query image, the obtained patch estimates can over-
lap and thus there are multiple estimates for each pixel. We aver-
age them to form an initial estimate.

3.3 Post-processing with joint filtering
The initial estimate has meaningful geometric information as

shown in right side of Fig. 2. However, due to the outliers in can-
didate depth patches, the initial estimate remains still noisy. Also,
it is not aligned with boundaries of the input image. To resolve the
problems, we refine the initial estimate by means of joint filtering
technique. In our method, the weighted median filter (WMF) [20]
is employed, which accomplishes smoothing via L1 norm min-
imization. Traditional approaches [8], [21] usually exploit the
edge-aware averaging filters (EAF) such as [22] and [23] for re-
finement. However, EAFs complete smoothing through L2 norm
minimization, so they are not suitable for depth refinement in that
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(a) (b) (c) (d)

Figure 4. Comparison of refinement process with and without texture han-

dling: (a) input image, (b) ground truth, (c) refined depth without texture

smoothing, (d) refined depth with texture smoothing

the quadratic gives severe influence to erroneous depth hypothe-
ses [20].

One of the problems in the joint filtering techniques is texture
copying of guidance image. Thus instead of using the input image
directly as a guidance image, we filter it with rolling guidance
filter [24] to handle texture copying problem. By using rolling
guidance filter, we can alleviate texture in the input image.

4. Experimental Results
In the experiments, we analyze the performance of the pro-

posed method on various monocular images using both outdoor
and indoor scenes. We use Make3D dataset [5] for outdoor
scenes, consisting of 534 outdoor scenes and their correspond-
ing depth maps captured by a layer scanner. For indoor scenes,
database are built-up by NYU Kinect V2 dataset [25] which con-
sists of 1449 indoor scenes by a Kinect sensor. We select 100
and 654 test images in outdoor and indoor database, respectively.
In addition, we retrieve 6 RGB-D candidates from the database
in all the experiments. The proposed method was implemented
in Matlab and is simulated on a Single PC with Quad-core CPU
4.0GHz and 8.0GB RAM. We show the performance of the pro-
posed method with respect to qualitative and quantitative evalua-
tions.

To show the qualitative evaluation, the experiments are per-
formed to show the excellence of each step of the proposed
method. Fig. 3 shows the performance comparison of the pro-
posed retrieval framework with the method of [7]. By comparing
Fig. 3(b) and Fig. 3(c), we can confirm that the CNN descriptor
is more suitable than GIST in retrieving geometric similar can-
didates. It can be seen that our method provides a semantically
meaningful candidates. Furthermore, we can confirm that the ini-
tial estimation using the CNN descriptor is superior to the one
using GIST as shown in the Fig. 3(d) and Fig. 3(e). On the
contrary, HOG descriptor employed in [8] failed to provide the
meaningful candidates. In Fig. 4, we demonstrate the effective-
ness of our refinement process. In the input image (Fig. 4(a)),
there are highly textured regions, e.g., the roof of the building and
the windows between pillars. Fig. 4(c) is the refined depth ob-
tained using guidance image as input image directly. As a result,
there exist undesirable artifacts by the textures in red and blue
rectangles. On the contrary, the proposed method obtains the re-
fined depth (Fig. 4(d)) using texture smoothed input image. As
shown in Fig. 4(d), it is free from such artifacts. Fig. 5 shows the
results of the proposed method and competing algorithms [5,7,8]
with natural outdoor scenes. Our method estimates better results

Table 1. Quantitative Evaluation

Average C Median C time(s)

Depth Transfer [7] 0.73 0.79 120
Konrad et.al [8] 0.80 0.86 2

Make3D [5] 0.78 0.78 25
Proposed method 0.87 0.87 22

which reflect proper 3D structures. It also preserves sharp edges
around image structure, whereas the competing methods lack in
preservation of depth discontinuities.

For the quantitative evaluation, the normalized cross-
covariance (C score) is measured between the estimated depth
map and the ground truth. C score is calculated in n test set by
the following equation:

C =
1

nσdE σdG
∑
x
(dG[x]−µdG)(dE [x]−µdE ), (6)

where µd and σd are the mean and the standard deviation of depth
map d, and dE and dG denote estimated depth map and ground
truth depth map, respectively. Higher score indicates higher cor-
relation to the ground truth. Table 1 summarizes the results of
quantitative evaluation. The proposed method outperforms other
existing methods. Fig. 6 shows C scores of the estimated depth
maps with respect to other competing methods. The running times
of competing algorithms and the proposed method are shown in
Table 1. Our method is much faster than [7], and slightly faster
than [5]. Although it is slower than [8], our method produces
more accurate depth map than [8].

5. Conclusion
In this paper, we propose a depth estimation method from

a single monocular scene based on nonparametric sampling ap-
proach. Based on the CNN descriptor, we can retrieve more simi-
lar candidates with the input image than conventional representa-
tion, e.g., GIST or HOG. The initial depth estimation is obtained
from the candidates using block matching and robust regression
algorithm which considers non-local neighborhood patches. Fi-
nally, we effectively refine the initial estimation, resolving texture
copying problem frequently occurred in joint filtering methods.
Experimental results show the presented method outperforms pre-
vious methods in terms of accuracy. Although our method is not
faster than some competing methods, it can produce more promis-
ing results than previous methods. In future works, we will extend
the proposed method to video by accelerating the algorithm.
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