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Abstract 
While previous research in academia points to the ability of 

Natural User Interfaces (NUIs) and low-cost display devices to help 
users better understand a design, there does not exist much research 
on how these devices can be integrated into existing legacy code 
used by engineering and design firms. The lack of commercial 
engineering software that integrates NUIs and low-cost display 
devices, like the Oculus Rift, can be attributed to the fast changing 
device market and the lack of awareness many engineering software 
makers show in emerging interaction paradigms. The lack of work 
in the area of integrating low-cost immersion devices into 
commercial software creates a barrier for adoption of these new 
devices and interaction paradigms. The work presented in this paper 
details a proof of concept system integrating the Leap Motion and 
Oculus Rift, into a commercial engineering visualization and 
analysis package called Siemens’ Teamcenter® Lifecycle 
Visualization Mockup (Mockup). Based on the recorded 
performance data, hooking up both the Leap and the Oculus results 
in a frame rate of around 30 frame per second. Indicating that these 
two devices together can provide real time, fluid interaction in a 
commercial engineering platform.  

Introduction 
Research in academia points to the ability of low-cost Virtual 

Reality (VR) immersion devices to improve a user's ability to 
understand designs [1-3]. With today’s fast passed globalized 
economy, interdisciplinary design teams need these tools that help 
bridge the gap between varying backgrounds, allowing them to 
make more informed decisions faster [4-6]. 

While previous research in academia points to the ability of 
NUIs and low-cost display devices to better aid the user in 
developing a mental model there does not exist much research on 
how these devices can be integrated into existing legacy code bases 
that many engineering and design firms use. The lack of work in the 
area of integrating low-cost immersion devices into commercial 
software creates a barrier for adoption for these new devices and 
interaction paradigms. Work presented in this paper aims to 
accelerate the adoption of these devices for the general working 
population by looking at how low-cost immersion devices can be 
integrated in to commercial engineering visualization software. 

The purpose of the work presented in this paper is to 
demonstrate a proof of concept system that integrates low-cost 
immersion devices into a commercial engineering visualization and 
analysis package. The problem the proof of concept system aims to 
address is the lack of commercially available solutions that fuse 
together research and academic benefits associated with low-cost 
immersion devices and commercial software. For this work a low-
cost immersion device is considered a device that is priced at a 
consumer level, plus facilitates more natural intuitive interaction 
between the user and the computer when compared with the 
traditional mouse and keyboard. Specifically, device wise, the 
research presented in this paper looks at brining together NUIs and 
low-cost HMD devices to a commercial software package. The aim 

is help users develop a better design understanding and allow them 
to intuitively manipulate and interact with the design. For the proof 
of concept, the low-cost immersion devices used are an interaction 
device called the Leap Motion and a head-mounted display (HMD) 
called the Oculus Rift. The engineering software package used is 
Teamcenter® Lifecycle Visualization Mockup (Mockup). The work 
presented in this paper summarizes the process of integrating such 
devices into commercial code and how well these devices provide a 
fluid user experience. 

Background 
Recently low cost immersion devices have burst onto the scene 

and grabbed headlines. Examples include Facebook’s acquisition of 
Oculus and the release of motion capture devices like the Leap 
Motion. The capabilities of these new devices have garnered not 
only the publics’ attention, but also the attention of both academia 
and industry. That attention is due to the devices ability to impart 
novel user experiences and facilitate increased design 
understanding. All of this potential comes at a fraction of the cost of 
traditional VR systems like CAVEsTM.  

Much research has been focused on exploring the potential 
these devices hold. Existing research touches on everything from 
aiding a physically impaired user in their interactions with 
computers to creating simplified interfaces for design review. While 
the devices intrigue industry, like academia, commercial 
applications lag behind in investigating these promising new 
mediums of interaction. This is due to the fast changing landscape 
of these new devices. Many traditional engineering software 
companies have yet to integrate any of these products directly into 
their commercial offerings. This creates a barrier to acceptance and 
adoption in the professional realm. If these promising devices 
continue to only exist in research code the professional cannot gain 
expertise with or evaluate these devices. Thus they cannot contribute 
valuable input to the creation of these new interfaces and display 
modes. 

Teams and Technology 
 Product design in today’s globalized world requires quick 
turnarounds to maintain profitability. As a result, many design teams 
are becoming an amalgamation of diverse interdisciplinary 
backgrounds in order to take advantage of concurrent design. This 
shift to the concurrent design approach allows companies to push 
products out in a faster more accurate manner [4]. However, this 
push towards interdisciplinary design teams means that these 
diverse teams need tools to communicate. There needs to be a way 
for the engineering and the marketing professional to be on the same 
page. In addition, not only are teams made up of different 
background, like engineers and marketers, but also they can often 
be distributed across the country or the world. Effective work tools 
such as visualization or product life-cycle management software can 
mitigate the challenges of diverse working backgrounds and 
distributed work environments [5, 6]. 
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 While software tools can help facilitate communication 
between members and streamline the design process, developing a 
platform that all members of the team are comfortable using is a 
challenging task. When creating a system to aid the design process 
researchers need to take special time to consider all team members 
involved. A team member’s technical skill level can vary greatly 
from the engineer all the way to upper management. In order to reap 
the benefits of concurrent design all members need to be involved 
in the design process from the beginning. This ensures they are able 
to understand the design enough to contribute time and ideas to 
shape the final product.  

To try and maximize the effectiveness of the software tools for 
distributed and interdisciplinary teams much research has been done 
on how teams collaborate and the role software can play in that 
process [7-9]. From previous research it is apparent how important 
these tools are for aiding communication. However, while these 
tools can be invaluable, it is difficult to make them suitable for all 
team members’ skill levels. Technical programs like computer-
aided design (CAD) usually drive the design process. This makes 
the goal of letting every team member, especially those who lack a 
technical background, interact with the design especially 
challenging [10]. This interaction challenge is due to the large 
amount of learning required to master technical complex 
engineering software. These new interaction devices have the 
potential to lower the barrier of entry and greatly aid the user’s 
design understanding at a fraction of the cost of traditional 
installations.         

Virtual Reality  
VR principles can greatly improve users experiences with 

engineering software programs like CAD because VR principles, 
like head-tracking, tend to be more user oriented than traditional 
keyboard based interaction models [11]. While VR interaction 
modes are more user-friendly, engineers and product designers still 
require the mathematically accurate model representations produced 
by engineering software. Berta theorized that if engineering 
software and VR were ever combined, users would be given the user 
centered principles that come with VR but the model based accuracy 
that comes with CAD [1]. By combining the two the aim is to make 
a program helpful to both the technical engineers and other team 
members. In addition to the usability aspect, VR provides the ability 
to integrate a sense of presence and immersion into the process of 
investigating designs. These senses can be invaluable when trying 
to make informed design decisions since it provides an increase in 
understanding and intent [2, 12]. 
 While traditional large scale VR has the ability to provide 
numerous benefits, the implementation of such setups can be 
problematic. Challenges include the large costly nature of the 
installations, the purchasing of specialty software, and the necessary 
domain knowledge to run such a system. These barriers serve to 
create serious bottlenecks and do not allow the vast majority of 
worker’s access to the technology. This lack of access serves to 
seriously blunt the potential benefits of its use [13].  

While these large costly installations are the gold standard for 
immersion, they are not always necessary to reap the benefits of VR 
technology [14]. Lower cost devices such as the Oculus can produce 
experience on par with large costly installations for a fraction of the 
price [16]. Using these lower cost devices does come with a slight 
tradeoff in performance and immersion, but as pointed out in work 
by McMahan full immersion is not always necessary to produce 
enhanced design understanding [15]. In addition in some cases 
namely product design, immersion level and design understanding 

are more dependent on interaction paradigms than the technology 
used to display the information, meaning that these low-cost HMDs 
can provide a visual display of information similar to a costly walled 
system [3, 18]. 

Natural User Interfaces 
 As detailed above, previous work in VR suggests that it has the 
ability to help aid users’ understanding of a design. In addition to 
display technology, user understanding can be aided through 
interaction with the on screen environment. Namely using Natural 
User Interfaces (NUIs), like gestures, to interact with entities instead 
of a mouse and keyboard [1, 19-32]. 
 Tumkor et al. shows how low-cost interaction devices can 
improve interaction and collaboration [33]. They found through a 
user study that performing some tasks when using the modeling 
program SolidWorks are faster when using gestures. Overall, they 
found that gestures as an interaction paradigm hold considerable 
promise, but are hampered by the mixing of traditional 
mouse/keyboard based interaction metaphors and new NUI based 
interaction modes. They conclude that to move forward, 
applications that use gesture interfaces need to be designed from the 
ground up, using only NUI principles and interaction modes to avoid 
user confusion. 
 Song et al. developed an application that interacts with a CAD 
system using gaze and finger control [34]. Their research aimed to 
tackle the issue of user fatigue when using gestures. For their 
program they identified a subset of actions that are considered 
primary CAD tasks. The tasks they identified are translation, 
rotation, and zooming. In their study they interviewed users after 
testing their program. Results indicated that users found the gestures 
to be far more intuitive to use than the mouse and keyboard, but the 
users still reported the mouse and keyboard to be more comfortable 
than the gestures. 
 Araullo and Potter perform a small user study with commodity 
interaction devices, the Leap Motion and Oculus Rift, to test how 
users respond to interacting with these devices [35]. They found that 
the most important aspect when designing gesture interfaces is to 
keep things simple to avoid user confusion. A factor that especially 
creates confusion is the mixing of interface types. The work 
advocates designing systems around the NUI and strongly cautions 
against mixing mouse and keyboard mental models with NUI 
principles. 

Commodity Hardware in Research and 
Industry 

While NUIs play an important role in increasing a users 
understanding of the design by allowing intuitive interaction, the 
display technology is also a very important piece of the puzzle. As 
mentioned above HMDs can be a viable alternative to costly and 
bulky CAVETM systems. The use of these HMDs over standard 2D 
desktop displays allows designers to create a better mental model of 
the design. When these low-cost display devices are coupled with 
NUIs they provide a natural cost effective way to see and interact 
with the design or environment. This interaction and viewing greatly 
aids a users understanding [16, 36, 38]. Increasing the likelihood 
that they can identify and correct any design defects earlier in the 
design process reducing change costs. 
 Researchers have taken notice of the potential of low cost VR. 
They have already started to leverage the combination of NUIs and 
emerging low-cost immersion devices. Research in the field shows 
the potential of NUI principles and low-cost display devices to 
transform user interaction [38-41]. 
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Work by Karolczak and Klepaczko is one such example of the 
pairing of NUIs and low-cost HMDs [42]. The researchers use an 
Oculus and a Leap Motion to allow a user to explore medical images 
in a 3D environment. In the paper the researchers tout the relatively 
low cost of the viewer and its ability to provide fine control for 
investigation for a fraction of the cost of other systems. The 
researchers theorize that at a relatively low cost the system could be 
widely deployed allowing a large number of doctors and students 
the ability to use the powerful learning tool. 
 Thompson, is an example of a Leap being used in an 
engineering design type environment [43]. The work looked at using 
the Leap Motion for manipulating a conceptual engineering design 
program. Results showed that the relatively accurate Leap provides 
a viable way to quickly manipulate CAD models [44]. The one 
detractor the researcher mentioned was that, in order for these types 
of interfaces to catch on, no matter how promising they are, they 
need to be integrated into a commercial offering to gain support and 
acceptance. 
 MacAllister et al. takes steps towards addressing this issue by 
exploring the use of an NUI in an existing engineering design 
package. The research looked at using a Kinect for large-scale 
design review in a commercial program called Teamcenter® 
Lifecycle Visualization Mockup (Mockup) [45]. The program was a 
proof of concept. It integrated a commercial low-cost immersion 
device, the Kinect, with the existing commercial code though a plug-
in. The program allowed the user to interact with the model rotating 
it left or right, use the immersive wand and allowed the user to bring 
up Mockup’s immersive menu. From the work and feedback the 
authors received, the proof of concept program was a step in the 
right direction. The concept program allowed the user to fluidly and 
intuitively interact with the design, but had a limited feature set. 
 Additional work by MacAllister focused on evaluating the NUI 
by seeing how it performed against the existing user interface in 
Mockup [46]. The analysis showed that the NUI program worked 
well for the user from a learning and execution time point of view 
and it improved upon the existing interface for everyday core tasks. 
However, the work found that the Kinect at times created user 
fatigue and the large throw distance (~5 ft.) for the Kinect limited 
its use. The space requirement limited the programs use to large 
areas, eliminating the possibility of letting the desktop engineer have 
a new tool at their personal workstation.  

The two drawbacks of user fatigue and large space 
requirements drove the exploration of the Leap motion over the 
Kinect as a new interface device. In addition, in previous work the 
authors mainly focused on the NUI. Previous work did not 
incorporate the benefits to design understanding produced by 
portable low-cost HMDs.  
 While academics use of NUIs and low-cost immersion devices 
marks progress in developing new interaction models, true change 
will not happen until commercial offerings start to integrate these 
devices and principles. This work aims to jump start that process by 
producing a proof of concept system that integrates NUIs and low-
cost immersion devices into commercial engineering software. 

Method 

Device Selection 
 Over the past few years the market has been flooded with new 
commodity low-cost immersion devices like the Kinect, WiiMote, 
Oculus Rift, and Leap Motion. With the consistently shifting market 
keeping track of the latest most promising devices can be a 
challenge. The authors selected the technology used in this work 

based on experience from former projects and though researching 
current market offerings [45, 46]. The selections for display devices 
and motion controlling devices are justified below.  

Display Device – Oculus Rift DK2 
 Criteria for the display device were that it had to be low-cost 
commodity hardware, less than one-thousand dollars, and relatively 
close to a mature, released product. The maturity of the device was 
an important factor, with the changing low-cost immersion device 
market many promises are made, but few actually deliver. The Rift 
was selected in part because, it was relatively low-cost when 
compared with other HMDs on the market like the HTC Vive or 
Sony HMZ-T3. The authors were constrained, though, during HMD 
selection by the fact that Mockup runs on a desktop. As a result, 
phone compatible devices like the VROne were not included in the 
review. In addition to the cost requirement, the Oculus was also 
selected due to its maturity. The pre-released prototypes by Oculus 
and the early 2016 projected release date indicate that the device is 
closer to maturity than many of its peers. This near production state 
of the Rift integrates well with the stated goal of the work, to take 
steps to develop a proof of concept system that could actually be 
rolled out into production in the near future. 

In the end, the Oculus Rift used for the proof of concept system 
was a second-generation version, shown below in Figure 1 with the 
Leap Motion attached. The resolution of the device was 960x1080 
pixels per eye. The field of view of the device was one-hundred 
degrees. 

 

 

Interaction Device – Leap Motion Controller 
 The low-cost commodity HMD market generates a lot of buzz 
but not many mature products, limiting the number of offerings to 
choose from at this point. In the interaction device market, however, 
there are many mature devices. Devices such as the WiiMote, 
Kinect, Leap Motion and Playstation Move are just a few such 
commodity interaction devices. As far as devices go, the majority 
such as the WiiMote, Kinect and PlayStation Move are suited to 
large gesture based actions not smaller desktop workstations. These 
devices, due to hardware limitations, are unable to register finer 
movements like the Leap.  

The proof of concept system described in this paper is geared 
towards using finer hand movements captured at close distances, 
relative to the controller. The device selection was based on 
previous work indicating that while devices such as the Kinect could 
produce a valid proof of concept system, the space, fatigue and 

FIGURE 1: OCULUS RIFT DK2 HEADSET WITH LEAP  
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accuracy constraints hampered the system’s potential reach [45, 46]. 
Based on the constraints and previous work the authors selected the 
Leap Motion due to a combination of its tracking accuracy, low-
cost, and small space requirements [44]. 

Gesture Selection 
 During the conceptualization phase of the program gesture 
selection was guided by standards used in previous work [34, 45, 
46]. Selected based on these guidelines were a subset of gestures 
that are representative of everyday CAD actions. Only a limited 
number of actions are integrated into the program, because the 
program is a proof of concept. The authors wanted to start out 
manageable and prove first that low-cost display and interaction 
devices could be integrated successfully into a commercial 
engineering visualization package. 
 The actions the authors decided to use for the system’s 
interface were an on/off gesture for the hand display mode, direction 
based rotation, and a zoom in/out feature. These gestures were 
selected as a representative subset of CAD based actions common 
to everyday engineering tasks [34].  

The first gesture is the on/off feature for turning on hand 
tracking. By making a closed right fist the user can turn on the 
virtual hands and gesture recording functionality. By turning on the 
hand-tracking mode the user can interact with the on screen 
geometry using the gestures detailed above. In addition, the user can 
see a virtual representation of their hands in the virtual environment. 
Figure 2 is an example of the hands a user sees when hand-tracking 
mode is active. To turn off hand tracking mode the user has to make 
a fist with their left hand. The authors decided to use these mirrored 
gestures since research in NUIs suggests users find mirrored 
gestures for on/off actions highly intuitive [47]. 

 
FIGURE 2: OCULUS VIEW OF HANDS IN MOCKUP WITH 
DISTORTION SHADER  

The second gesture, direction based rotation shown in Figure 
3, allows the user to use the Leap application programming interface 
(APIs) built in swipe gesture to rotate the model. The swipe gesture 
allows the user to rotate the model about any axis by recording the 
direction vector of the swipe gesture. This allows the user full 
freedom to explore any part of the model. Work in similar areas only 
allowed rotation of the model around a program specified axis [45]. 
This created frustration and the inability to fully investigate the 
model. The proof of concept system presented in this paper allows 
the user greater control over the model, thus giving them more 
ability to investigate and enhance their understanding of the design. 

 
FIGURE 3: LEAP MOTION SWIPE GESTURE[48] 

The third gesture, the zoom in/out feature was assigned to the 
hands moving toward/away gesture. Moving the hands away from 
each other, in a manner similar from point 1 to 2 shown in Figure 4, 
causes the scene on screen to become larger. The opposite, moving 
the hands towards each other causes the scene to become smaller. 
This method was implemented using the motions feature of the Leap 
API. However, the initial scaling was too sensitive and created many 
false positives. In order to combat this issue, the authors 
implemented a certainty function to only register a scale event over 
a number of frames and above a certain certainty threshold. After 
implementing these safeguards, the feature became more reliable.  

 
FIGURE 4: HAND SCALING ZOOM IN 

Program Implementation 
 Implementing integration of the Oculus Rift and Leap Motion 
into Mockup can be separated into three main parts; information 
flow, distortion shader and hand tracking. The two main challenges 
encountered when developing the program were integrating the 
display device into the existing codebase and integrating the 
handling all the information from the Leap Motion and Oculus for 
display in Mockup.  Figure 5 shows a use case for the system. The 

1 2 2 
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user is viewing a virtual cockpit from the Oculus and can interact 
with the physical model while seeing the high detail VR 
representation. This use case is representative of an engineering 
design review. In such a review engineers would bring in members 
of the management team to look at a design and make comments. 
Previous research presented in the Background section points to the 
ability of devices such as the Oculus to increase the user’s ability to 
understand a design. This could help the design review team more 
quickly make informed decisions all without having to make 
expensive detailed physical models that may change after a review. 
However, while these devices show promise little research exists on 
integrating them into a commercial engineering visualization and 
analysis package like the example shown in the figure below. 

 

 
FIGURE 5: DEMO SYSTEM SETUP 

Information Handling 
 Data was captured by the Leap and Oculus though an 
extensible data structure within the native Mockup code. This 
extensible format served to isolate the device code from the more 
Mockup specific code, insulating the core functionality from any 
lower level changes. The Leap data structure contains the types of 
gestures and motions that can be registered by the program. In 
addition, information specific to a gesture type is also contained, like 
the swipe direction for the rotate gesture.  

Figure 6 shows an overall diagram of code structure and the 
components involved in the proof of concept system. In the program 
architecture the Leap Motion and the Oculus hardware are 

integrated natively into Mockup. This integration is facilitated by 
the extensive architecture in place to deal with various input devices.  

Mockup is designed to handle different sensor and display 
devices, like the 3D SpaceMouseTM. Sensors devices like the Leap 
are handled by the Sensor Manager, which directs traffic from 
hardware specific API code into Mockup specific commands. In 
order to add the integration of the Leap Motion, the authors had to 
write code to translate Leap specific data from the API into 
information that could be interpreted by the Sensor Manager and 
sent to the rendering engine. While translating data between Leap 
and Sensor Manager formats was not exceedingly difficult, this 
translation is something that needs to be paid attention to in the 
future. If device makers like Leap, try to lock down APIs and give 
developers less freedom to access low level data this could create a 
major hurdle for device adoption. Programs like Mockup require 
their own data formats and do not want to have to adopt a new 
formats every time they integrate a new device. Being able to 
translate from a device specific data format into a standard Mockup 
format allows the handling of more devices with less overhead cost. 

In addition to input devices, Mockup also currently handles 
multiple display configurations though the display manager. 
Supported display modes consist of immersive display 
environments like CAVEsTM and standard desktop environments. 
Configuration of these environments is performed using VCD and 
SCD configuration files. The VCD file sets up the immersive 
viewing window size and stereo viewing properties. For the Oculus 
it was imperative to set the correct parameters in order to make sure 
rendered images were represented correctly due to the highly 
immersive nature of the device. With users being able to look around 
the environment in a full 360 degrees’, images displayed need to be 
portrayed in the correct perspective to 1) reduce the possibility of 
motion sickness and 2) to ensue the model would be as close to the 

FIGURE 6: SYSTEM ARCHITECTURE 
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actual product as possible. The SCD file sets up the transformation 
matrix adjustment to align the device’s coordinate system with the 
coordinate system in Mockup. For the work presented all 
transformation matrices in the SCD file were set to identity, and the 
coordinate system alignment was handled inside the Sensor Manger. 

Distortion Shader  
 The optics in the Oculus Rift create distortion in the images 
seen by the user [49]. The lenses in the Oculus, specifically, create 
what is known as pincushion distortion in the image. This occurs 
due to the use of the lenses to magnify the images shown on the 
screen to increase the field of view of the device. While using the 
lenses to increase the devices field of view creates a more immersive 
experience for the user, the distortion created in the image is 
undesired. This pincushion distortion, shown in Figure 7, is rectified 
in the Mockup rendering engine by applying what is know as a 
barrel distortion, shown in Figure 8 [50]. This distortion correction 
is applied to the rendered scene using OpenGL shaders within the 
standard Mockup graphics pipeline. Figure 2 shows a desktop screen 
capture of the distortion corrected image in Mockup. Notice how the 
image has black space around the edges, this is due to the morphing 
of the image with the distortion correction. While on a 2D screen the 
image looks misshapen, when viewing though the Oculus optics the 
image will look accurate to the user. 

 
FIGURE 7: PINCUSHION DISTORTION 

Since Mockup is optimized to handle large engineering 
geometry using specialized custom rendering routines, using the 
standard Oculus API for image rendering purposes was not an 
option. For the prototype system in the paper, the HMD needed to 
be fully integrated into the existing rending engine Mockup 
employs. This implementation of the custom distortion correction 
for the Oculus in Mockup was aided by the low level data access 
provided by the Oculus API. Due to Mockup’s custom render, 
complete access to the data displayed by Oculus was required to 
make the corrections. If Oculus decided to disallow access to the 
raw image data this would create a barrier not only for integration 
into Mockup, but also to other users who employ custom rendering 
routines. 
 

 
FIGURE 8: BARREL DISTORTION 

In addition to the distortion issue, the lens on Oculus Rift also 
causes a visual effect known as chromatic aberration. This results in 
a colored fringe visible around the edges of the objects. The effect 
is especially visible around the transition point between different 
colors and around the edges of the view area. The “chromatic 
aberration” seen by the user when looking at the image though the 
Oculus lenses, is due to the difference in light reflection through the 
lenses. This is a result of all wavelengths of light passing through 
the curved lens having varying focal distances [51]. Viewing the 
image uncorrected looks similar to Figure 9. Notice the blur around 
the edges of objects and the rings of color around object edges such 
as the seat. When an image is correct for the chromatic aberration 
effect is looks more like    Figure 10, with sharper object edges. This 
is due to the distortion shader pre-distorting the red, green, and blue 
colors of the image based on the offset from the center of the lens. 
Thus when the color-distorted image is projected through the curved 
lens, the red, green and blue colors of the image align again. 

 
FIGURE 9: IMAGE UNCORRECTED FOR CHROMATIC 
ABERRATION 
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   FIGURE 10: IMAGE CORRECTED FOR CHROMATIC  
   ABERRATION 

However, even with these corrections the chromatic aberration 
reduction code in the distortion shader cannot completely eliminate 
the chromatic aberration effect. This is since the curved lens offset 
the color differently for all range of wavelengths, where the shader 
code can only pre-distort the R, G, and B colors, thus the color fringe 
around the edges of the objects could still be noticeable. This fringed 
effect can be reduced by higher samples of anti-aliasing, like 8 or 
16, depending on the graphics hardware capability. 

Both barrel distortion and chromatic aberration reduction are 
implemented inside the fragment shader. A new rendering routine 
was created inside the Mockup rending pipeline specifically for 
images displayed using the Oculus. This new rendering routine takes 
into account the corrections for both chromatic aberration and the 
lens distortion. Mockup automatically switches to the Oculus 
rendering routine when the device is set up using the previously 
mentioned configuration files. The custom rendering process for the 
Oculus in Mockup follows the following procedure: 

 
1. Create a new Frame Buffer Object (FBO) 
2. Bind the new FBO as the new default FBO 
3. Execute the normal rendering operation. It renders the 

current scene into FBO 
4. Unbind the FBO 
5. Render a quad that covers the current view window  
6. Use the Oculus Rift fragment shader to perform barrel 

distortion and chromatic aberration reduction by using the 
FBO as the pixel color lookup 

Creating a custom rendering routine inside Mockup for the specific 
display needs of the Oculus was a fairly straight forward task once 
all the necessary actions were determined. Once the Oculus was 
hooked up to Mockup the researchers had to determine what 
corrections were necessary to produce an accurate high quality 
image. While some of the optics related issues could be predicted, it 
is hard to tell how a device will integrate until it is actually hooked 
up to a program. The data access provided by the Oculus SDK made 
the task less prohibitive than if the APIs tried to handle the data in a 
more locked down manner. However, it is a balance between 
usability and access. For consumer type devices, device makers 

want casual developers to be able to use their products, thus they 
offer easy to use API calls that abstract some of the complexity. 
However, for more commercial applications, developers require 
access to low level data to use in house development practices 
independent of the Oculus API. 

Hand Tracking  
In addition to the gesture data, the authors also had to correctly 

manipulate the Leap skeletal data for the HMD based tracking. This 
required transforming a number of coordinate systems. Switching 
from Leap to Oculus to Mockup coordinates. In addition, the authors 
had to make sure that the Mockup view updated with any 
movements from the user wearing the Oculus headset. This required 
number coordinate transformations and unit conversions for the 
model geometry and the camera view matrix. 

The largest goal for the hand tracking work was to transform 
the Leap coordinates into Mockup world coordinates. The Leap 
HMD tracking SDK at the time of use was still in beta, meaning its 
features were still experimental and lacked some functionality. 
During the beta stage Leap did not change its coordinate system to 
match with the Oculus. The Leap controller coordinate system is set 
with respect to the controller and is constant no matter what 
orientation the controller is in. The Leap Motion coordinate system 
is shown below in Figure 11. 

 
 FIGURE 11: LEAP MOTION COORDINATE SYSTEM [48] 

As a result of the set coordinate system, when mounted to the 
Oculus the Leap controller sends data that is not in the same frame 
of reference as the Oculus data. This creates an issue because, when 
in HMD mode the goal is to get the hands to be displayed relative to 
the head position. This allows the hand position data captured by the 
Leap rendered in the virtual environment to parallel the real world, 
adding realism and an environment that can be intuitively interacted 
with. In order to draw the hands relative to the head, coordinates 
need to be transferred from Leap coordinates to Oculus coordinates, 
shown in Figure 6, then finally to Mockup world coordinates. 

 

 
FIGURE 12: OCULUS RIFT COORDINATE SYSTEM [48] 

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.4.ERVR-417

IS&T International Symposium on Electronic Imaging 2016
The Engineering Reality of Virtual Reality 2016 ERVR-417.7



 

 

A collection of matrix transforms is conducted to change Leap 
to Oculus coordinates then to Mockup world coordinates. As with 
the distortion shader portion of the work, the implementation of the 
hand tracking was aided by the low level access provided by the 
Leap Motion API. Being able to access the raw coordinate data was 
helpful. Allowing the researchers to manipulate the data as needed. 
As Leap is continuing to adjust and make the API more user friendly 
it is imperative that they still allow for access to the raw data for 
groups that seek to use it for more commercial purposes. The first 
step in this process is to grab the world coordinates from the Oculus 
head tracking API. This is preformed though a function call to the 
API that returns the translation and rotation matrices. Multiplied 
together, as shown in Equation 1, returns the Oculus position and 
rotation in the physical world. 
 
𝑴𝑶𝒄𝒖𝒍𝒖𝒔

𝑾𝒐𝒓𝒍𝒅
= 	𝑴𝑶𝒄𝒖𝒍𝒖𝒔𝑻𝒓𝒂𝒏𝒔𝑴𝑶𝒄𝒖𝒍𝒖𝒔𝑹𝒐𝒕	            EQUATION 1 

 
The second step is to figure out where in relation to the Oculus 

the Leap is mounted, so the correction can be calculated. Equation 
2 shows the matrix that describes this correction. The 𝑡 in the matrix 
represents the offset from the user’s eye position to the Leap 
controller. This depends on the mounting position of the Leap on the 
Oculus. For this project, the researchers mounted the Leap centered 
on the Oculus. Ensuring that there was no offset in the 𝑥 or 𝑦 
position. The Leap coordinate system is also rotated 90 degrees to 
match the Oculus world coordinate system using the equation 
below. 
 

𝑴𝑳𝒆𝒂𝒑
𝑶𝒄𝒖𝒍𝒖𝒔

= 	

−𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 −𝟏 𝟎
𝟎 −𝟏 𝟎 𝟎
𝒕𝒙 𝒕𝒚 𝒕𝒛 𝟏

						         EQUATION 2 

 
The only translation needed for the Leap coordinates was an offset 
of -0.08 meters in the 𝑧 direction, seen in Equation 3. This is due to 
the Leap being 0.08 meters in front of the user’s eye position. 
 
𝒕𝒛 = −𝟎. 𝟎𝟖	[𝒎]              EQUATION 3 
 

Multiplying Equation 1 and Equation 2 as seen in Equation 4 
results in a matrix that will adjust the Leap motion coordinates into 
in the same coordinate system as the Oculus. This conversion matrix 
will be updated continuously while running the program. As the 
Oculus headset moves about the origin, the origin is the Oculus 
tracking camera, the view shown in Mockup adjusts to render the 
correct view perspective in the Oculus headset. This conversion 
matrix also allows for mapping the points captured by the Leap to 
be adjusted into the same coordinate system as the Oculus and then 
mapped into the virtual Mockup environment. 
 
𝑴𝑳𝒆𝒂𝒑

𝑾𝒐𝒓𝒍𝒅
= 	𝑴𝑶𝒄𝒖𝒍𝒖𝒔

𝒘𝒐𝒓𝒍𝒅
𝑴𝑳𝒆𝒂𝒑

𝑶𝒄𝒖𝒍𝒖𝒔
         EQUATION 4 

 
Converting the points captured by the Leap controller into points 
displayed in the virtual Mockup environment is accomplished using 
Equation 5. In this equation the local Leap coordinates are 
multiplied by a matrix containing the conversion from millimeters 
to meters, then the Leap to Oculus world coordinates and finally 
then by a scaling factor specific to the Mockup scene. The Mockup 
scaling factor will depend on both the size of the scene and the 
document units.  

 
𝑷𝑴𝒐𝒄𝒌𝒖𝒑

𝟏
=

	𝑴𝑴𝒐𝒄𝒌𝒖𝒑𝑺𝒄𝒂𝒍𝒊𝒏𝒈𝑴𝑳𝒆𝒂𝒑
𝒘𝒐𝒓𝒍𝒅

𝟎. 𝟎𝟎𝟏 𝟎 𝟎 𝟎
𝟎 𝟎. 𝟎𝟎𝟏 𝟎 𝟎
𝟎 𝟎 𝟎. 𝟎𝟎𝟏 𝟎
𝟎 𝟎 𝟎 𝟏

𝑷𝑳𝒆𝒂𝒑
𝟏

                 EQUATION 5 

Implementing the hand tracking piece of the project was not 
exceedingly difficult. The most difficult part of the task was finding 
the conversion factors for Mockup. Scaling the hands to the proper 
size depending on the model viewed in the virtual environment was 
important to create a realistic immersive scene. Aspects had to be 
considered like hand size compared to the model, reach of the hands 
and adjusting the hand size based on the model units proved 
challenging. For the prototype the hand size was determined based 
on the scaling of the model and the reach of the hands was a one to 
one scale with the reach of the user in the physical space.  

In the future a type of gain based hand placement could be 
explored to provide the user with more interaction space for larger 
models. Increasing their ability to interact outside of their immediate 
physical reach. The hand scaling for the model based on document 
units was difficult. The way the code was structured it was hard to 
get the document unit information into the section of code 
controlling the Oculus. The problem of dealing with legacy code 
structures to accomplish device integration is most likely going to 
be a real problem moving forward. Integrating these new devices 
with the existing codebase that were not designed to support these 
interactions and display mediums, will take some dedication and 
work on the part of developers.  

Results 
The final prototype allows users to interact with models via the 

Leap Motion in Mockup. The models are viewed using the Oculus 
Rift hooked into the Mockup graphics pipeline. The Oculus display 
device works well. Especially, after the distortion and chromatic 
aberration corrections were applied to the images, viewing the 
model with the Oculus is a smooth and seamless process. The user 
is able to move their head and receive a full 360 degree view the the 
environment thanks to head tracking. The manipulation using the 
Leap, however, proved to be more difficult. The results of both user 
interface testing and the system performance measurements are 
discussed below. 

User Interface Testing 
Overall, tracking with the Leap was inaccurate and jittery. The 

quality of tracking was very sensitive to lighting conditions. Often 
the device would lose tracking when operating under standard office 
fluorescent lighting. Also the HMD tracking mode on the Leap, 
which is meant to improve tracking of the device when mounted to 
a head mounted display, was lackluster. This first beta released by 
Leap was not accurate and often resulted in jittery tracking. When 
demoing the prototype, the regular desktop tracking mode for the 
Leap was preferable to the the HMD mode. In addition, the tracking 
range of the Leap was limited and unreliable. This intermittent 
tracking often would cause the hands in the virtual world to jump 
and twist. Degrading the user experience. 

 For this application the Leap controller interface was 
challenging to design since during normal operation the hands are 
generally pointing way from the Leap. This results in the controller 
not having line of sight to the fingers, creating problems for tracking 
and gesture recognition. When the camera cannot see the fingers it 
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causes the hand model in the virtual world to not match up with user 
movements. While this mismatch was a problem in the prototype, 
the authors believe this issue can be mitigated in the future via code 
to keep the fingers as is, in relation to the palm when tracking is lost. 
However, this still leaves the problem with gestures. In the HMD 
tracking mode, the gestures were unreliable. The Leap was not able 
to recognize gestures with any degree of regularity. This made the 
gesture interface as designed unusable. The Leap couldn’t even 
recognize the the scaling gesture when the hands were pointed so all 
the fingers were visible to the camera, the best case scenario. This 
failure to work even under prefect conditions does not endear itself 
well to the use of the Leap controller for any type of robust fluid 
gesture interface when mounted on the Oculus. 

After initial testing with the prototype, it is evident that the 
interface needs do not match with the current capabilities of the Leap 
when mounted on the Oculus. With the unreliable tracking and line 
of sight problems, the Leap does not produce a quality user 
experience. Moving forward, Leap needs to continue working on 
tracking and gesture recognition in HMD mode to make it robust 
enough for production code. 

System Performance  
To understand how the addition of these commodity devices 

impacted the performance of Mockup, the authors measured the 
frame rates of the system under different loading conditions. 
Looking at the frame rates can provide valuable information about 
how well the low-cost commodity devices integrate together with 
Mockup, irrespective of usability. The Oculus display device with 
Leap attached was tested with varying model sizes and rendering 
pipelines to see if the prototype experience in Mockup meets a 
threshold of 30 frames per second for real time rendering quality 
[52]. The authors selected the rendering threshold because, 
rendering below 30 fps can start to degrade the user experience. In 
a commercial product such as Mockup, the quality of the experience 
needs to be high to maintain customer satisfaction. The frame rate 
testing is performed on a system with 3.6 GHZ Intel Xeon CPU, 
16G of RAM, and nVidia Quadro K4200 graphics card. The frame 
rate is measured at the end of the rendering routine by recording the 
difference between two sequence frames, and taking the average 
time in seconds over 50 frames. Table 1 below contains the results 
of this testing.  

The first testing mode, standard desktop interface, was tested 
to provide a baseline performance. The desktop rendering pipeline 
in Mockup is designed to provide real time model rendering for large 
models at high frame rates, in order to produce a quality user 
experience. This testing used a standard desktop monitor to display 
images rather than the Oculus. Where as, the second testing mode 
used the standard rendering pipeline found in the desktop test, but 
added the Oculus and the Leap as display and input devices instead 
of a desktop monitor. The third mode used both the Oculus and the 
Leap, but the rendering pipeline incorporating the chromatic 
aberration and distortion shader correction for the Oculus. Based on 
the architecture of Mockup, the authors hypothesized that hooking 
up devices like the Oculus and Leap would somewhat decrease the 
frame rate. However, the authors were unsure how much extra 
overhead these devices would add. The results of the testing and 
their implications are discussed below. 

TABLE 1: AVERAGE FRAMES PER SECOND TESTING RESULTS 
  Testing 
 
 
Model 
Size 

Number 
of 

Polygons 

Desktop 
[fps] 

Standard 
Rendering 

Pipeline 
[fps] 

Modified 
Rendering 

Pipeline 
[fps] 

Small 1,179,883 60.24 31.55 30.03 
Medium 8,337,490 59.88 30.03 28.99 
Large 18,137,354 59.17 29.94 28.57 

The results show that for the standard desktop interface the 
frame rates are well above the 30 fps benchmark. These results for 
desktop demonstrate Mockup’s custom rendering routines ability to 
handle large numbers of polygons while maintaining real time 
interactive frame rates. Within the desktop condition, the frame rate 
drops only 1.07 fps for around an 18 times increase in polygons. The 
custom rendering pipeline unique to Mockup, developed to support 
large scale model visualization, was one of the reasons why Mockup 
needs to be able to natively integrate these low-cost interaction 
devices. Interacting directly with the devices, at a low level, allows 
Mockup to maintain its real time rendering capabilities by 
employing code optimizations that incorporate these new devices. 
These optimizations are integral to providing a degree of control 
over the end product. For commercial software, specifically, this 
ability to refine the end product and create a high quality user 
experience is a must. As these new devices are released, companies 
will want to integrate them into existing products to maintain their 
specific branding, meaning low level API access to data is an 
important feature to aid device adoption by commercial companies. 

  The second testing condition, no distortion shaders, tests the 
performance of the prototype with both the Leap and the Oculus 
devices hooked up to Mockup. This testing condition looks at the 
sensor integration into Mockup, independent of the rendering 
pipeline corrections for chromatic aberration and distortion 
described above. Results from this test show that the frame per 
second performance drops to around half of the desktop, to 31.55 
fps, for a small model. When the distortion shader and chromatic 
aberration correction are applied the frame rate again drops, but only 
by 1.52 fps. This small drop off in frame rate between the standard 
rendering pipeline and the modified rendering pipeline indicate that 
the bulk of the performance degradation is coming from the sensor 
manager portion that handles the Leap and the Oculus positioning. 

Based on the results of the testing, in order to improve the 
frame rate measurements of the prototype system, the next step is to 
identify where in the sensor manager the bottle neck occurs. Based 
on the amount of coordinate data from the Oculus head positioning 
and the Leap hand tracking this portion would be a likely starting 
point for code optimization. Finding a way to more efficiently 
handle and pass this data may improve frame rate speeds in future 
work. 

Conclusion 
The end result of the project was a functioning prototype 

demonstrating the integration of two, low-cost immersion devices 
into a commercial engineering visualization and analysis platform. 
The two devices, Leap and Oculus, were used to test the feasibility 
of using low-cost commodity hardware in production code. From 
testing the interface, the authors found that the Leap controller was 
not accurate or reliable enough for use in the prototype system. The 
occlusion of the fingers by the hand created jittering and loss of 
tracking. Also, during testing the gestures recognition was found to 
be unreliable. Moving forward the Leap could work as an interface 
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option if it was mounted on the desktop, however, the usability 
would be impacted since interaction would be limited to the desktop 
tracking volume. Another possibly for an interface, would be using 
a more expensive physical controller such as a data glove. 

From the performance testing, the authors found that the sensor 
manager is the main bottle neck for frame rate performance. While 
frame rates did not change for different model sizes they did change 
between the desktop and Oculus/Leap tests. For a small model, the 
frame rate drops in around half when hooking up the Oculus/Leap 
prototype to Mockup. This indicates that for future work, to ensure 
a quality customer experience, the code dealing with integrating the 
sensors needs to be optimized or parallelized, where as the rendering 
corrections for chromatic aberration and the distortion shader do not 
significantly impact performance. One likely way to improve the 
performance of the prototype, would be to add another thread 
dedicated to handling the positioning information coming from the 
Leap and the Oculus. Splitting this information processing off into 
a separate thread would likely eliminate some of the bottlenecks 
contributing to the drop in frame rates. 

Overall, the work demonstrates the feasibility of using these 
low-cost commodity devices in a commercial engineering 
visualization and analysis package. While the Leap controller may 
not be well suited for an interface while mounted on an HMD, the 
Oculus itself shows promise as a new medium for visualizing 
models in a commercial engineering visualization and analysis 
package. 
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