

Implementing Native Support for Oculus and Leap Motion in a
Commercial Engineering Visualization and Analysis Platform
Anastacia MacAllistera, Tsung-Pin Yehb, Eliot Winera; aIowa State University – Ames, Iowa; bSiemens PLM Software – Ames, Iowa

Abstract
While previous research in academia points to the ability of

Natural User Interfaces (NUIs) and low-cost display devices to help
users better understand a design, there does not exist much research
on how these devices can be integrated into existing legacy code
used by engineering and design firms. The lack of commercial
engineering software that integrates NUIs and low-cost display
devices, like the Oculus Rift, can be attributed to the fast changing
device market and the lack of awareness many engineering software
makers show in emerging interaction paradigms. The lack of work
in the area of integrating low-cost immersion devices into
commercial software creates a barrier for adoption of these new
devices and interaction paradigms. The work presented in this paper
details a proof of concept system integrating the Leap Motion and
Oculus Rift, into a commercial engineering visualization and
analysis package called Siemens’ Teamcenter® Lifecycle
Visualization Mockup (Mockup). Based on the recorded
performance data, hooking up both the Leap and the Oculus results
in a frame rate of around 30 frame per second. Indicating that these
two devices together can provide real time, fluid interaction in a
commercial engineering platform.

Introduction
Research in academia points to the ability of low-cost Virtual

Reality (VR) immersion devices to improve a user's ability to
understand designs [1-3]. With today’s fast passed globalized
economy, interdisciplinary design teams need these tools that help
bridge the gap between varying backgrounds, allowing them to
make more informed decisions faster [4-6].

While previous research in academia points to the ability of
NUIs and low-cost display devices to better aid the user in
developing a mental model there does not exist much research on
how these devices can be integrated into existing legacy code bases
that many engineering and design firms use. The lack of work in the
area of integrating low-cost immersion devices into commercial
software creates a barrier for adoption for these new devices and
interaction paradigms. Work presented in this paper aims to
accelerate the adoption of these devices for the general working
population by looking at how low-cost immersion devices can be
integrated in to commercial engineering visualization software.

The purpose of the work presented in this paper is to
demonstrate a proof of concept system that integrates low-cost
immersion devices into a commercial engineering visualization and
analysis package. The problem the proof of concept system aims to
address is the lack of commercially available solutions that fuse
together research and academic benefits associated with low-cost
immersion devices and commercial software. For this work a low-
cost immersion device is considered a device that is priced at a
consumer level, plus facilitates more natural intuitive interaction
between the user and the computer when compared with the
traditional mouse and keyboard. Specifically, device wise, the
research presented in this paper looks at brining together NUIs and
low-cost HMD devices to a commercial software package. The aim

is help users develop a better design understanding and allow them
to intuitively manipulate and interact with the design. For the proof
of concept, the low-cost immersion devices used are an interaction
device called the Leap Motion and a head-mounted display (HMD)
called the Oculus Rift. The engineering software package used is
Teamcenter® Lifecycle Visualization Mockup (Mockup). The work
presented in this paper summarizes the process of integrating such
devices into commercial code and how well these devices provide a
fluid user experience.

Background
Recently low cost immersion devices have burst onto the scene

and grabbed headlines. Examples include Facebook’s acquisition of
Oculus and the release of motion capture devices like the Leap
Motion. The capabilities of these new devices have garnered not
only the publics’ attention, but also the attention of both academia
and industry. That attention is due to the devices ability to impart
novel user experiences and facilitate increased design
understanding. All of this potential comes at a fraction of the cost of
traditional VR systems like CAVEsTM.

Much research has been focused on exploring the potential
these devices hold. Existing research touches on everything from
aiding a physically impaired user in their interactions with
computers to creating simplified interfaces for design review. While
the devices intrigue industry, like academia, commercial
applications lag behind in investigating these promising new
mediums of interaction. This is due to the fast changing landscape
of these new devices. Many traditional engineering software
companies have yet to integrate any of these products directly into
their commercial offerings. This creates a barrier to acceptance and
adoption in the professional realm. If these promising devices
continue to only exist in research code the professional cannot gain
expertise with or evaluate these devices. Thus they cannot contribute
valuable input to the creation of these new interfaces and display
modes.

Teams and Technology
 Product design in today’s globalized world requires quick
turnarounds to maintain profitability. As a result, many design teams
are becoming an amalgamation of diverse interdisciplinary
backgrounds in order to take advantage of concurrent design. This
shift to the concurrent design approach allows companies to push
products out in a faster more accurate manner [4]. However, this
push towards interdisciplinary design teams means that these
diverse teams need tools to communicate. There needs to be a way
for the engineering and the marketing professional to be on the same
page. In addition, not only are teams made up of different
background, like engineers and marketers, but also they can often
be distributed across the country or the world. Effective work tools
such as visualization or product life-cycle management software can
mitigate the challenges of diverse working backgrounds and
distributed work environments [5, 6].

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.4.ERVR-417

IS&T International Symposium on Electronic Imaging 2016
The Engineering Reality of Virtual Reality 2016 ERVR-417.1

 While software tools can help facilitate communication
between members and streamline the design process, developing a
platform that all members of the team are comfortable using is a
challenging task. When creating a system to aid the design process
researchers need to take special time to consider all team members
involved. A team member’s technical skill level can vary greatly
from the engineer all the way to upper management. In order to reap
the benefits of concurrent design all members need to be involved
in the design process from the beginning. This ensures they are able
to understand the design enough to contribute time and ideas to
shape the final product.

To try and maximize the effectiveness of the software tools for
distributed and interdisciplinary teams much research has been done
on how teams collaborate and the role software can play in that
process [7-9]. From previous research it is apparent how important
these tools are for aiding communication. However, while these
tools can be invaluable, it is difficult to make them suitable for all
team members’ skill levels. Technical programs like computer-
aided design (CAD) usually drive the design process. This makes
the goal of letting every team member, especially those who lack a
technical background, interact with the design especially
challenging [10]. This interaction challenge is due to the large
amount of learning required to master technical complex
engineering software. These new interaction devices have the
potential to lower the barrier of entry and greatly aid the user’s
design understanding at a fraction of the cost of traditional
installations.

Virtual Reality
VR principles can greatly improve users experiences with

engineering software programs like CAD because VR principles,
like head-tracking, tend to be more user oriented than traditional
keyboard based interaction models [11]. While VR interaction
modes are more user-friendly, engineers and product designers still
require the mathematically accurate model representations produced
by engineering software. Berta theorized that if engineering
software and VR were ever combined, users would be given the user
centered principles that come with VR but the model based accuracy
that comes with CAD [1]. By combining the two the aim is to make
a program helpful to both the technical engineers and other team
members. In addition to the usability aspect, VR provides the ability
to integrate a sense of presence and immersion into the process of
investigating designs. These senses can be invaluable when trying
to make informed design decisions since it provides an increase in
understanding and intent [2, 12].
 While traditional large scale VR has the ability to provide
numerous benefits, the implementation of such setups can be
problematic. Challenges include the large costly nature of the
installations, the purchasing of specialty software, and the necessary
domain knowledge to run such a system. These barriers serve to
create serious bottlenecks and do not allow the vast majority of
worker’s access to the technology. This lack of access serves to
seriously blunt the potential benefits of its use [13].

While these large costly installations are the gold standard for
immersion, they are not always necessary to reap the benefits of VR
technology [14]. Lower cost devices such as the Oculus can produce
experience on par with large costly installations for a fraction of the
price [16]. Using these lower cost devices does come with a slight
tradeoff in performance and immersion, but as pointed out in work
by McMahan full immersion is not always necessary to produce
enhanced design understanding [15]. In addition in some cases
namely product design, immersion level and design understanding

are more dependent on interaction paradigms than the technology
used to display the information, meaning that these low-cost HMDs
can provide a visual display of information similar to a costly walled
system [3, 18].

Natural User Interfaces
 As detailed above, previous work in VR suggests that it has the
ability to help aid users’ understanding of a design. In addition to
display technology, user understanding can be aided through
interaction with the on screen environment. Namely using Natural
User Interfaces (NUIs), like gestures, to interact with entities instead
of a mouse and keyboard [1, 19-32].
 Tumkor et al. shows how low-cost interaction devices can
improve interaction and collaboration [33]. They found through a
user study that performing some tasks when using the modeling
program SolidWorks are faster when using gestures. Overall, they
found that gestures as an interaction paradigm hold considerable
promise, but are hampered by the mixing of traditional
mouse/keyboard based interaction metaphors and new NUI based
interaction modes. They conclude that to move forward,
applications that use gesture interfaces need to be designed from the
ground up, using only NUI principles and interaction modes to avoid
user confusion.
 Song et al. developed an application that interacts with a CAD
system using gaze and finger control [34]. Their research aimed to
tackle the issue of user fatigue when using gestures. For their
program they identified a subset of actions that are considered
primary CAD tasks. The tasks they identified are translation,
rotation, and zooming. In their study they interviewed users after
testing their program. Results indicated that users found the gestures
to be far more intuitive to use than the mouse and keyboard, but the
users still reported the mouse and keyboard to be more comfortable
than the gestures.
 Araullo and Potter perform a small user study with commodity
interaction devices, the Leap Motion and Oculus Rift, to test how
users respond to interacting with these devices [35]. They found that
the most important aspect when designing gesture interfaces is to
keep things simple to avoid user confusion. A factor that especially
creates confusion is the mixing of interface types. The work
advocates designing systems around the NUI and strongly cautions
against mixing mouse and keyboard mental models with NUI
principles.

Commodity Hardware in Research and
Industry

While NUIs play an important role in increasing a users
understanding of the design by allowing intuitive interaction, the
display technology is also a very important piece of the puzzle. As
mentioned above HMDs can be a viable alternative to costly and
bulky CAVETM systems. The use of these HMDs over standard 2D
desktop displays allows designers to create a better mental model of
the design. When these low-cost display devices are coupled with
NUIs they provide a natural cost effective way to see and interact
with the design or environment. This interaction and viewing greatly
aids a users understanding [16, 36, 38]. Increasing the likelihood
that they can identify and correct any design defects earlier in the
design process reducing change costs.
 Researchers have taken notice of the potential of low cost VR.
They have already started to leverage the combination of NUIs and
emerging low-cost immersion devices. Research in the field shows
the potential of NUI principles and low-cost display devices to
transform user interaction [38-41].

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.4.ERVR-417

IS&T International Symposium on Electronic Imaging 2016
The Engineering Reality of Virtual Reality 2016 ERVR-417.2

Work by Karolczak and Klepaczko is one such example of the
pairing of NUIs and low-cost HMDs [42]. The researchers use an
Oculus and a Leap Motion to allow a user to explore medical images
in a 3D environment. In the paper the researchers tout the relatively
low cost of the viewer and its ability to provide fine control for
investigation for a fraction of the cost of other systems. The
researchers theorize that at a relatively low cost the system could be
widely deployed allowing a large number of doctors and students
the ability to use the powerful learning tool.
 Thompson, is an example of a Leap being used in an
engineering design type environment [43]. The work looked at using
the Leap Motion for manipulating a conceptual engineering design
program. Results showed that the relatively accurate Leap provides
a viable way to quickly manipulate CAD models [44]. The one
detractor the researcher mentioned was that, in order for these types
of interfaces to catch on, no matter how promising they are, they
need to be integrated into a commercial offering to gain support and
acceptance.
 MacAllister et al. takes steps towards addressing this issue by
exploring the use of an NUI in an existing engineering design
package. The research looked at using a Kinect for large-scale
design review in a commercial program called Teamcenter®
Lifecycle Visualization Mockup (Mockup) [45]. The program was a
proof of concept. It integrated a commercial low-cost immersion
device, the Kinect, with the existing commercial code though a plug-
in. The program allowed the user to interact with the model rotating
it left or right, use the immersive wand and allowed the user to bring
up Mockup’s immersive menu. From the work and feedback the
authors received, the proof of concept program was a step in the
right direction. The concept program allowed the user to fluidly and
intuitively interact with the design, but had a limited feature set.
 Additional work by MacAllister focused on evaluating the NUI
by seeing how it performed against the existing user interface in
Mockup [46]. The analysis showed that the NUI program worked
well for the user from a learning and execution time point of view
and it improved upon the existing interface for everyday core tasks.
However, the work found that the Kinect at times created user
fatigue and the large throw distance (~5 ft.) for the Kinect limited
its use. The space requirement limited the programs use to large
areas, eliminating the possibility of letting the desktop engineer have
a new tool at their personal workstation.

The two drawbacks of user fatigue and large space
requirements drove the exploration of the Leap motion over the
Kinect as a new interface device. In addition, in previous work the
authors mainly focused on the NUI. Previous work did not
incorporate the benefits to design understanding produced by
portable low-cost HMDs.
 While academics use of NUIs and low-cost immersion devices
marks progress in developing new interaction models, true change
will not happen until commercial offerings start to integrate these
devices and principles. This work aims to jump start that process by
producing a proof of concept system that integrates NUIs and low-
cost immersion devices into commercial engineering software.

Method

Device Selection
 Over the past few years the market has been flooded with new
commodity low-cost immersion devices like the Kinect, WiiMote,
Oculus Rift, and Leap Motion. With the consistently shifting market
keeping track of the latest most promising devices can be a
challenge. The authors selected the technology used in this work

based on experience from former projects and though researching
current market offerings [45, 46]. The selections for display devices
and motion controlling devices are justified below.

Display Device – Oculus Rift DK2
 Criteria for the display device were that it had to be low-cost
commodity hardware, less than one-thousand dollars, and relatively
close to a mature, released product. The maturity of the device was
an important factor, with the changing low-cost immersion device
market many promises are made, but few actually deliver. The Rift
was selected in part because, it was relatively low-cost when
compared with other HMDs on the market like the HTC Vive or
Sony HMZ-T3. The authors were constrained, though, during HMD
selection by the fact that Mockup runs on a desktop. As a result,
phone compatible devices like the VROne were not included in the
review. In addition to the cost requirement, the Oculus was also
selected due to its maturity. The pre-released prototypes by Oculus
and the early 2016 projected release date indicate that the device is
closer to maturity than many of its peers. This near production state
of the Rift integrates well with the stated goal of the work, to take
steps to develop a proof of concept system that could actually be
rolled out into production in the near future.

In the end, the Oculus Rift used for the proof of concept system
was a second-generation version, shown below in Figure 1 with the
Leap Motion attached. The resolution of the device was 960x1080
pixels per eye. The field of view of the device was one-hundred
degrees.

Interaction Device – Leap Motion Controller
 The low-cost commodity HMD market generates a lot of buzz
but not many mature products, limiting the number of offerings to
choose from at this point. In the interaction device market, however,
there are many mature devices. Devices such as the WiiMote,
Kinect, Leap Motion and Playstation Move are just a few such
commodity interaction devices. As far as devices go, the majority
such as the WiiMote, Kinect and PlayStation Move are suited to
large gesture based actions not smaller desktop workstations. These
devices, due to hardware limitations, are unable to register finer
movements like the Leap.

The proof of concept system described in this paper is geared
towards using finer hand movements captured at close distances,
relative to the controller. The device selection was based on
previous work indicating that while devices such as the Kinect could
produce a valid proof of concept system, the space, fatigue and

FIGURE 1: OCULUS RIFT DK2 HEADSET WITH LEAP

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.4.ERVR-417

IS&T International Symposium on Electronic Imaging 2016
The Engineering Reality of Virtual Reality 2016 ERVR-417.3

accuracy constraints hampered the system’s potential reach [45, 46].
Based on the constraints and previous work the authors selected the
Leap Motion due to a combination of its tracking accuracy, low-
cost, and small space requirements [44].

Gesture Selection
 During the conceptualization phase of the program gesture
selection was guided by standards used in previous work [34, 45,
46]. Selected based on these guidelines were a subset of gestures
that are representative of everyday CAD actions. Only a limited
number of actions are integrated into the program, because the
program is a proof of concept. The authors wanted to start out
manageable and prove first that low-cost display and interaction
devices could be integrated successfully into a commercial
engineering visualization package.
 The actions the authors decided to use for the system’s
interface were an on/off gesture for the hand display mode, direction
based rotation, and a zoom in/out feature. These gestures were
selected as a representative subset of CAD based actions common
to everyday engineering tasks [34].

The first gesture is the on/off feature for turning on hand
tracking. By making a closed right fist the user can turn on the
virtual hands and gesture recording functionality. By turning on the
hand-tracking mode the user can interact with the on screen
geometry using the gestures detailed above. In addition, the user can
see a virtual representation of their hands in the virtual environment.
Figure 2 is an example of the hands a user sees when hand-tracking
mode is active. To turn off hand tracking mode the user has to make
a fist with their left hand. The authors decided to use these mirrored
gestures since research in NUIs suggests users find mirrored
gestures for on/off actions highly intuitive [47].

FIGURE 2: OCULUS VIEW OF HANDS IN MOCKUP WITH
DISTORTION SHADER

The second gesture, direction based rotation shown in Figure
3, allows the user to use the Leap application programming interface
(APIs) built in swipe gesture to rotate the model. The swipe gesture
allows the user to rotate the model about any axis by recording the
direction vector of the swipe gesture. This allows the user full
freedom to explore any part of the model. Work in similar areas only
allowed rotation of the model around a program specified axis [45].
This created frustration and the inability to fully investigate the
model. The proof of concept system presented in this paper allows
the user greater control over the model, thus giving them more
ability to investigate and enhance their understanding of the design.

FIGURE 3: LEAP MOTION SWIPE GESTURE[48]

The third gesture, the zoom in/out feature was assigned to the
hands moving toward/away gesture. Moving the hands away from
each other, in a manner similar from point 1 to 2 shown in Figure 4,
causes the scene on screen to become larger. The opposite, moving
the hands towards each other causes the scene to become smaller.
This method was implemented using the motions feature of the Leap
API. However, the initial scaling was too sensitive and created many
false positives. In order to combat this issue, the authors
implemented a certainty function to only register a scale event over
a number of frames and above a certain certainty threshold. After
implementing these safeguards, the feature became more reliable.

FIGURE 4: HAND SCALING ZOOM IN

Program Implementation
 Implementing integration of the Oculus Rift and Leap Motion
into Mockup can be separated into three main parts; information
flow, distortion shader and hand tracking. The two main challenges
encountered when developing the program were integrating the
display device into the existing codebase and integrating the
handling all the information from the Leap Motion and Oculus for
display in Mockup. Figure 5 shows a use case for the system. The

1 2 2

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.4.ERVR-417

IS&T International Symposium on Electronic Imaging 2016
The Engineering Reality of Virtual Reality 2016 ERVR-417.4

user is viewing a virtual cockpit from the Oculus and can interact
with the physical model while seeing the high detail VR
representation. This use case is representative of an engineering
design review. In such a review engineers would bring in members
of the management team to look at a design and make comments.
Previous research presented in the Background section points to the
ability of devices such as the Oculus to increase the user’s ability to
understand a design. This could help the design review team more
quickly make informed decisions all without having to make
expensive detailed physical models that may change after a review.
However, while these devices show promise little research exists on
integrating them into a commercial engineering visualization and
analysis package like the example shown in the figure below.

FIGURE 5: DEMO SYSTEM SETUP

Information Handling
 Data was captured by the Leap and Oculus though an
extensible data structure within the native Mockup code. This
extensible format served to isolate the device code from the more
Mockup specific code, insulating the core functionality from any
lower level changes. The Leap data structure contains the types of
gestures and motions that can be registered by the program. In
addition, information specific to a gesture type is also contained, like
the swipe direction for the rotate gesture.

Figure 6 shows an overall diagram of code structure and the
components involved in the proof of concept system. In the program
architecture the Leap Motion and the Oculus hardware are

integrated natively into Mockup. This integration is facilitated by
the extensive architecture in place to deal with various input devices.

Mockup is designed to handle different sensor and display
devices, like the 3D SpaceMouseTM. Sensors devices like the Leap
are handled by the Sensor Manager, which directs traffic from
hardware specific API code into Mockup specific commands. In
order to add the integration of the Leap Motion, the authors had to
write code to translate Leap specific data from the API into
information that could be interpreted by the Sensor Manager and
sent to the rendering engine. While translating data between Leap
and Sensor Manager formats was not exceedingly difficult, this
translation is something that needs to be paid attention to in the
future. If device makers like Leap, try to lock down APIs and give
developers less freedom to access low level data this could create a
major hurdle for device adoption. Programs like Mockup require
their own data formats and do not want to have to adopt a new
formats every time they integrate a new device. Being able to
translate from a device specific data format into a standard Mockup
format allows the handling of more devices with less overhead cost.

In addition to input devices, Mockup also currently handles
multiple display configurations though the display manager.
Supported display modes consist of immersive display
environments like CAVEsTM and standard desktop environments.
Configuration of these environments is performed using VCD and
SCD configuration files. The VCD file sets up the immersive
viewing window size and stereo viewing properties. For the Oculus
it was imperative to set the correct parameters in order to make sure
rendered images were represented correctly due to the highly
immersive nature of the device. With users being able to look around
the environment in a full 360 degrees’, images displayed need to be
portrayed in the correct perspective to 1) reduce the possibility of
motion sickness and 2) to ensue the model would be as close to the

FIGURE 6: SYSTEM ARCHITECTURE

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.4.ERVR-417

IS&T International Symposium on Electronic Imaging 2016
The Engineering Reality of Virtual Reality 2016 ERVR-417.5

actual product as possible. The SCD file sets up the transformation
matrix adjustment to align the device’s coordinate system with the
coordinate system in Mockup. For the work presented all
transformation matrices in the SCD file were set to identity, and the
coordinate system alignment was handled inside the Sensor Manger.

Distortion Shader
 The optics in the Oculus Rift create distortion in the images
seen by the user [49]. The lenses in the Oculus, specifically, create
what is known as pincushion distortion in the image. This occurs
due to the use of the lenses to magnify the images shown on the
screen to increase the field of view of the device. While using the
lenses to increase the devices field of view creates a more immersive
experience for the user, the distortion created in the image is
undesired. This pincushion distortion, shown in Figure 7, is rectified
in the Mockup rendering engine by applying what is know as a
barrel distortion, shown in Figure 8 [50]. This distortion correction
is applied to the rendered scene using OpenGL shaders within the
standard Mockup graphics pipeline. Figure 2 shows a desktop screen
capture of the distortion corrected image in Mockup. Notice how the
image has black space around the edges, this is due to the morphing
of the image with the distortion correction. While on a 2D screen the
image looks misshapen, when viewing though the Oculus optics the
image will look accurate to the user.

FIGURE 7: PINCUSHION DISTORTION

Since Mockup is optimized to handle large engineering
geometry using specialized custom rendering routines, using the
standard Oculus API for image rendering purposes was not an
option. For the prototype system in the paper, the HMD needed to
be fully integrated into the existing rending engine Mockup
employs. This implementation of the custom distortion correction
for the Oculus in Mockup was aided by the low level data access
provided by the Oculus API. Due to Mockup’s custom render,
complete access to the data displayed by Oculus was required to
make the corrections. If Oculus decided to disallow access to the
raw image data this would create a barrier not only for integration
into Mockup, but also to other users who employ custom rendering
routines.

FIGURE 8: BARREL DISTORTION

In addition to the distortion issue, the lens on Oculus Rift also
causes a visual effect known as chromatic aberration. This results in
a colored fringe visible around the edges of the objects. The effect
is especially visible around the transition point between different
colors and around the edges of the view area. The “chromatic
aberration” seen by the user when looking at the image though the
Oculus lenses, is due to the difference in light reflection through the
lenses. This is a result of all wavelengths of light passing through
the curved lens having varying focal distances [51]. Viewing the
image uncorrected looks similar to Figure 9. Notice the blur around
the edges of objects and the rings of color around object edges such
as the seat. When an image is correct for the chromatic aberration
effect is looks more like Figure 10, with sharper object edges. This
is due to the distortion shader pre-distorting the red, green, and blue
colors of the image based on the offset from the center of the lens.
Thus when the color-distorted image is projected through the curved
lens, the red, green and blue colors of the image align again.

FIGURE 9: IMAGE UNCORRECTED FOR CHROMATIC
ABERRATION

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.4.ERVR-417

IS&T International Symposium on Electronic Imaging 2016
The Engineering Reality of Virtual Reality 2016 ERVR-417.6

 FIGURE 10: IMAGE CORRECTED FOR CHROMATIC
 ABERRATION

However, even with these corrections the chromatic aberration
reduction code in the distortion shader cannot completely eliminate
the chromatic aberration effect. This is since the curved lens offset
the color differently for all range of wavelengths, where the shader
code can only pre-distort the R, G, and B colors, thus the color fringe
around the edges of the objects could still be noticeable. This fringed
effect can be reduced by higher samples of anti-aliasing, like 8 or
16, depending on the graphics hardware capability.

Both barrel distortion and chromatic aberration reduction are
implemented inside the fragment shader. A new rendering routine
was created inside the Mockup rending pipeline specifically for
images displayed using the Oculus. This new rendering routine takes
into account the corrections for both chromatic aberration and the
lens distortion. Mockup automatically switches to the Oculus
rendering routine when the device is set up using the previously
mentioned configuration files. The custom rendering process for the
Oculus in Mockup follows the following procedure:

1. Create a new Frame Buffer Object (FBO)
2. Bind the new FBO as the new default FBO
3. Execute the normal rendering operation. It renders the

current scene into FBO
4. Unbind the FBO
5. Render a quad that covers the current view window
6. Use the Oculus Rift fragment shader to perform barrel

distortion and chromatic aberration reduction by using the
FBO as the pixel color lookup

Creating a custom rendering routine inside Mockup for the specific
display needs of the Oculus was a fairly straight forward task once
all the necessary actions were determined. Once the Oculus was
hooked up to Mockup the researchers had to determine what
corrections were necessary to produce an accurate high quality
image. While some of the optics related issues could be predicted, it
is hard to tell how a device will integrate until it is actually hooked
up to a program. The data access provided by the Oculus SDK made
the task less prohibitive than if the APIs tried to handle the data in a
more locked down manner. However, it is a balance between
usability and access. For consumer type devices, device makers

want casual developers to be able to use their products, thus they
offer easy to use API calls that abstract some of the complexity.
However, for more commercial applications, developers require
access to low level data to use in house development practices
independent of the Oculus API.

Hand Tracking
In addition to the gesture data, the authors also had to correctly

manipulate the Leap skeletal data for the HMD based tracking. This
required transforming a number of coordinate systems. Switching
from Leap to Oculus to Mockup coordinates. In addition, the authors
had to make sure that the Mockup view updated with any
movements from the user wearing the Oculus headset. This required
number coordinate transformations and unit conversions for the
model geometry and the camera view matrix.

The largest goal for the hand tracking work was to transform
the Leap coordinates into Mockup world coordinates. The Leap
HMD tracking SDK at the time of use was still in beta, meaning its
features were still experimental and lacked some functionality.
During the beta stage Leap did not change its coordinate system to
match with the Oculus. The Leap controller coordinate system is set
with respect to the controller and is constant no matter what
orientation the controller is in. The Leap Motion coordinate system
is shown below in Figure 11.

 FIGURE 11: LEAP MOTION COORDINATE SYSTEM [48]

As a result of the set coordinate system, when mounted to the
Oculus the Leap controller sends data that is not in the same frame
of reference as the Oculus data. This creates an issue because, when
in HMD mode the goal is to get the hands to be displayed relative to
the head position. This allows the hand position data captured by the
Leap rendered in the virtual environment to parallel the real world,
adding realism and an environment that can be intuitively interacted
with. In order to draw the hands relative to the head, coordinates
need to be transferred from Leap coordinates to Oculus coordinates,
shown in Figure 6, then finally to Mockup world coordinates.

FIGURE 12: OCULUS RIFT COORDINATE SYSTEM [48]

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.4.ERVR-417

IS&T International Symposium on Electronic Imaging 2016
The Engineering Reality of Virtual Reality 2016 ERVR-417.7

A collection of matrix transforms is conducted to change Leap
to Oculus coordinates then to Mockup world coordinates. As with
the distortion shader portion of the work, the implementation of the
hand tracking was aided by the low level access provided by the
Leap Motion API. Being able to access the raw coordinate data was
helpful. Allowing the researchers to manipulate the data as needed.
As Leap is continuing to adjust and make the API more user friendly
it is imperative that they still allow for access to the raw data for
groups that seek to use it for more commercial purposes. The first
step in this process is to grab the world coordinates from the Oculus
head tracking API. This is preformed though a function call to the
API that returns the translation and rotation matrices. Multiplied
together, as shown in Equation 1, returns the Oculus position and
rotation in the physical world.

𝑴𝑶𝒄𝒖𝒍𝒖𝒔

𝑾𝒐𝒓𝒍𝒅
= 	𝑴𝑶𝒄𝒖𝒍𝒖𝒔𝑻𝒓𝒂𝒏𝒔𝑴𝑶𝒄𝒖𝒍𝒖𝒔𝑹𝒐𝒕	 EQUATION 1

The second step is to figure out where in relation to the Oculus

the Leap is mounted, so the correction can be calculated. Equation
2 shows the matrix that describes this correction. The 𝑡 in the matrix
represents the offset from the user’s eye position to the Leap
controller. This depends on the mounting position of the Leap on the
Oculus. For this project, the researchers mounted the Leap centered
on the Oculus. Ensuring that there was no offset in the 𝑥 or 𝑦
position. The Leap coordinate system is also rotated 90 degrees to
match the Oculus world coordinate system using the equation
below.

𝑴𝑳𝒆𝒂𝒑
𝑶𝒄𝒖𝒍𝒖𝒔

= 	

−𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 −𝟏 𝟎
𝟎 −𝟏 𝟎 𝟎
𝒕𝒙 𝒕𝒚 𝒕𝒛 𝟏

						 EQUATION 2

The only translation needed for the Leap coordinates was an offset
of -0.08 meters in the 𝑧 direction, seen in Equation 3. This is due to
the Leap being 0.08 meters in front of the user’s eye position.

𝒕𝒛 = −𝟎. 𝟎𝟖	[𝒎] EQUATION 3

Multiplying Equation 1 and Equation 2 as seen in Equation 4
results in a matrix that will adjust the Leap motion coordinates into
in the same coordinate system as the Oculus. This conversion matrix
will be updated continuously while running the program. As the
Oculus headset moves about the origin, the origin is the Oculus
tracking camera, the view shown in Mockup adjusts to render the
correct view perspective in the Oculus headset. This conversion
matrix also allows for mapping the points captured by the Leap to
be adjusted into the same coordinate system as the Oculus and then
mapped into the virtual Mockup environment.

𝑴𝑳𝒆𝒂𝒑

𝑾𝒐𝒓𝒍𝒅
= 	𝑴𝑶𝒄𝒖𝒍𝒖𝒔

𝒘𝒐𝒓𝒍𝒅
𝑴𝑳𝒆𝒂𝒑

𝑶𝒄𝒖𝒍𝒖𝒔
 EQUATION 4

Converting the points captured by the Leap controller into points
displayed in the virtual Mockup environment is accomplished using
Equation 5. In this equation the local Leap coordinates are
multiplied by a matrix containing the conversion from millimeters
to meters, then the Leap to Oculus world coordinates and finally
then by a scaling factor specific to the Mockup scene. The Mockup
scaling factor will depend on both the size of the scene and the
document units.

𝑷𝑴𝒐𝒄𝒌𝒖𝒑

𝟏
=

	𝑴𝑴𝒐𝒄𝒌𝒖𝒑𝑺𝒄𝒂𝒍𝒊𝒏𝒈𝑴𝑳𝒆𝒂𝒑
𝒘𝒐𝒓𝒍𝒅

𝟎. 𝟎𝟎𝟏 𝟎 𝟎 𝟎
𝟎 𝟎. 𝟎𝟎𝟏 𝟎 𝟎
𝟎 𝟎 𝟎. 𝟎𝟎𝟏 𝟎
𝟎 𝟎 𝟎 𝟏

𝑷𝑳𝒆𝒂𝒑
𝟏

 EQUATION 5

Implementing the hand tracking piece of the project was not
exceedingly difficult. The most difficult part of the task was finding
the conversion factors for Mockup. Scaling the hands to the proper
size depending on the model viewed in the virtual environment was
important to create a realistic immersive scene. Aspects had to be
considered like hand size compared to the model, reach of the hands
and adjusting the hand size based on the model units proved
challenging. For the prototype the hand size was determined based
on the scaling of the model and the reach of the hands was a one to
one scale with the reach of the user in the physical space.

In the future a type of gain based hand placement could be
explored to provide the user with more interaction space for larger
models. Increasing their ability to interact outside of their immediate
physical reach. The hand scaling for the model based on document
units was difficult. The way the code was structured it was hard to
get the document unit information into the section of code
controlling the Oculus. The problem of dealing with legacy code
structures to accomplish device integration is most likely going to
be a real problem moving forward. Integrating these new devices
with the existing codebase that were not designed to support these
interactions and display mediums, will take some dedication and
work on the part of developers.

Results
The final prototype allows users to interact with models via the

Leap Motion in Mockup. The models are viewed using the Oculus
Rift hooked into the Mockup graphics pipeline. The Oculus display
device works well. Especially, after the distortion and chromatic
aberration corrections were applied to the images, viewing the
model with the Oculus is a smooth and seamless process. The user
is able to move their head and receive a full 360 degree view the the
environment thanks to head tracking. The manipulation using the
Leap, however, proved to be more difficult. The results of both user
interface testing and the system performance measurements are
discussed below.

User Interface Testing
Overall, tracking with the Leap was inaccurate and jittery. The

quality of tracking was very sensitive to lighting conditions. Often
the device would lose tracking when operating under standard office
fluorescent lighting. Also the HMD tracking mode on the Leap,
which is meant to improve tracking of the device when mounted to
a head mounted display, was lackluster. This first beta released by
Leap was not accurate and often resulted in jittery tracking. When
demoing the prototype, the regular desktop tracking mode for the
Leap was preferable to the the HMD mode. In addition, the tracking
range of the Leap was limited and unreliable. This intermittent
tracking often would cause the hands in the virtual world to jump
and twist. Degrading the user experience.

 For this application the Leap controller interface was
challenging to design since during normal operation the hands are
generally pointing way from the Leap. This results in the controller
not having line of sight to the fingers, creating problems for tracking
and gesture recognition. When the camera cannot see the fingers it

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.4.ERVR-417

IS&T International Symposium on Electronic Imaging 2016
The Engineering Reality of Virtual Reality 2016 ERVR-417.8

causes the hand model in the virtual world to not match up with user
movements. While this mismatch was a problem in the prototype,
the authors believe this issue can be mitigated in the future via code
to keep the fingers as is, in relation to the palm when tracking is lost.
However, this still leaves the problem with gestures. In the HMD
tracking mode, the gestures were unreliable. The Leap was not able
to recognize gestures with any degree of regularity. This made the
gesture interface as designed unusable. The Leap couldn’t even
recognize the the scaling gesture when the hands were pointed so all
the fingers were visible to the camera, the best case scenario. This
failure to work even under prefect conditions does not endear itself
well to the use of the Leap controller for any type of robust fluid
gesture interface when mounted on the Oculus.

After initial testing with the prototype, it is evident that the
interface needs do not match with the current capabilities of the Leap
when mounted on the Oculus. With the unreliable tracking and line
of sight problems, the Leap does not produce a quality user
experience. Moving forward, Leap needs to continue working on
tracking and gesture recognition in HMD mode to make it robust
enough for production code.

System Performance
To understand how the addition of these commodity devices

impacted the performance of Mockup, the authors measured the
frame rates of the system under different loading conditions.
Looking at the frame rates can provide valuable information about
how well the low-cost commodity devices integrate together with
Mockup, irrespective of usability. The Oculus display device with
Leap attached was tested with varying model sizes and rendering
pipelines to see if the prototype experience in Mockup meets a
threshold of 30 frames per second for real time rendering quality
[52]. The authors selected the rendering threshold because,
rendering below 30 fps can start to degrade the user experience. In
a commercial product such as Mockup, the quality of the experience
needs to be high to maintain customer satisfaction. The frame rate
testing is performed on a system with 3.6 GHZ Intel Xeon CPU,
16G of RAM, and nVidia Quadro K4200 graphics card. The frame
rate is measured at the end of the rendering routine by recording the
difference between two sequence frames, and taking the average
time in seconds over 50 frames. Table 1 below contains the results
of this testing.

The first testing mode, standard desktop interface, was tested
to provide a baseline performance. The desktop rendering pipeline
in Mockup is designed to provide real time model rendering for large
models at high frame rates, in order to produce a quality user
experience. This testing used a standard desktop monitor to display
images rather than the Oculus. Where as, the second testing mode
used the standard rendering pipeline found in the desktop test, but
added the Oculus and the Leap as display and input devices instead
of a desktop monitor. The third mode used both the Oculus and the
Leap, but the rendering pipeline incorporating the chromatic
aberration and distortion shader correction for the Oculus. Based on
the architecture of Mockup, the authors hypothesized that hooking
up devices like the Oculus and Leap would somewhat decrease the
frame rate. However, the authors were unsure how much extra
overhead these devices would add. The results of the testing and
their implications are discussed below.

TABLE 1: AVERAGE FRAMES PER SECOND TESTING RESULTS
 Testing

Model
Size

Number
of

Polygons

Desktop
[fps]

Standard
Rendering

Pipeline
[fps]

Modified
Rendering

Pipeline
[fps]

Small 1,179,883 60.24 31.55 30.03
Medium 8,337,490 59.88 30.03 28.99
Large 18,137,354 59.17 29.94 28.57

The results show that for the standard desktop interface the
frame rates are well above the 30 fps benchmark. These results for
desktop demonstrate Mockup’s custom rendering routines ability to
handle large numbers of polygons while maintaining real time
interactive frame rates. Within the desktop condition, the frame rate
drops only 1.07 fps for around an 18 times increase in polygons. The
custom rendering pipeline unique to Mockup, developed to support
large scale model visualization, was one of the reasons why Mockup
needs to be able to natively integrate these low-cost interaction
devices. Interacting directly with the devices, at a low level, allows
Mockup to maintain its real time rendering capabilities by
employing code optimizations that incorporate these new devices.
These optimizations are integral to providing a degree of control
over the end product. For commercial software, specifically, this
ability to refine the end product and create a high quality user
experience is a must. As these new devices are released, companies
will want to integrate them into existing products to maintain their
specific branding, meaning low level API access to data is an
important feature to aid device adoption by commercial companies.

 The second testing condition, no distortion shaders, tests the
performance of the prototype with both the Leap and the Oculus
devices hooked up to Mockup. This testing condition looks at the
sensor integration into Mockup, independent of the rendering
pipeline corrections for chromatic aberration and distortion
described above. Results from this test show that the frame per
second performance drops to around half of the desktop, to 31.55
fps, for a small model. When the distortion shader and chromatic
aberration correction are applied the frame rate again drops, but only
by 1.52 fps. This small drop off in frame rate between the standard
rendering pipeline and the modified rendering pipeline indicate that
the bulk of the performance degradation is coming from the sensor
manager portion that handles the Leap and the Oculus positioning.

Based on the results of the testing, in order to improve the
frame rate measurements of the prototype system, the next step is to
identify where in the sensor manager the bottle neck occurs. Based
on the amount of coordinate data from the Oculus head positioning
and the Leap hand tracking this portion would be a likely starting
point for code optimization. Finding a way to more efficiently
handle and pass this data may improve frame rate speeds in future
work.

Conclusion
The end result of the project was a functioning prototype

demonstrating the integration of two, low-cost immersion devices
into a commercial engineering visualization and analysis platform.
The two devices, Leap and Oculus, were used to test the feasibility
of using low-cost commodity hardware in production code. From
testing the interface, the authors found that the Leap controller was
not accurate or reliable enough for use in the prototype system. The
occlusion of the fingers by the hand created jittering and loss of
tracking. Also, during testing the gestures recognition was found to
be unreliable. Moving forward the Leap could work as an interface

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.4.ERVR-417

IS&T International Symposium on Electronic Imaging 2016
The Engineering Reality of Virtual Reality 2016 ERVR-417.9

option if it was mounted on the desktop, however, the usability
would be impacted since interaction would be limited to the desktop
tracking volume. Another possibly for an interface, would be using
a more expensive physical controller such as a data glove.

From the performance testing, the authors found that the sensor
manager is the main bottle neck for frame rate performance. While
frame rates did not change for different model sizes they did change
between the desktop and Oculus/Leap tests. For a small model, the
frame rate drops in around half when hooking up the Oculus/Leap
prototype to Mockup. This indicates that for future work, to ensure
a quality customer experience, the code dealing with integrating the
sensors needs to be optimized or parallelized, where as the rendering
corrections for chromatic aberration and the distortion shader do not
significantly impact performance. One likely way to improve the
performance of the prototype, would be to add another thread
dedicated to handling the positioning information coming from the
Leap and the Oculus. Splitting this information processing off into
a separate thread would likely eliminate some of the bottlenecks
contributing to the drop in frame rates.

Overall, the work demonstrates the feasibility of using these
low-cost commodity devices in a commercial engineering
visualization and analysis package. While the Leap controller may
not be well suited for an interface while mounted on an HMD, the
Oculus itself shows promise as a new medium for visualizing
models in a commercial engineering visualization and analysis
package.

References
[1] Berta, J., 1999, "Integrating VR and CAD," Computer Graphics and

Applications, IEEE , 9(5), pp.14-19.

[2] Schuemie, M. J., V an Der Straaten, P ., Krijn, M., V an Der Mast, C.
A., 2001, “Research on presence in virtual reality: A survey,”
CyberPsychology & Behavior, 4(2), 183-201.

[3] Gruchalla, K., 2004, "Immersive W ell-path Editing: Investigating the
Added Value of Immersion," Virtual Reality - Proceedings, pp.157-
164.

[4] Swink, M.L., Sandvig, J.C., Mabert, V .A., 1996, "Customizing
concurrent engineering processes: Five case studies," Journal of
Product Innovation Management, 13(3), pp. 229-244.

[5] Shen, W., Hao, Q., Li, W., 2008, "Computer Supported Collaborative
Design: Retrospective and Perspective," Computers in Industry, 59(9),
pp. 855- 862.

[6] Belkadi, F., Bonjour, E., Camargo, M., Troussier, N., & Eynard, B.,
2013, “A situation model to support awareness in collaborative
design,” International Journal of Human-Computer Studies, 71(1),
110-129.

[7] Elrod, S., Bruce, R., Gold, R., Goldberg, D., Halasz, F., Janssen, W.,
Lee, D., McCall, K., Pedersen, E., Pier, K., Tang, J., Welch, B., 1992,
"Liveboard: a large interactive display supporting group meetings,
presentations, and remote collaboration," Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI '92), pp.
599-607.

[8] Bouchlaghem, D., Shang, H., Whyte, J., Ganah, A., 2005,
"Visualisation in Architecture, Engineering and Construction (AEC),
Automation in Construction,” 14(3), pp. 287-295.

[9] Zhong, H., W achs, J. P ., & Nof, S. Y ., 2014, “Telerobot-enabled
HUB-CI model for collaborative lifecycle management of design and
prototyping,” Computers in Industry.

[10] Stelzer, R., Steindecker, E., Arndt, S., Steger, W., 2014, "Expanding
VRPN To Tasks in Virtual Engineering” Proceedings of the ASME
2014 Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, pp. 1-8.

[11] Shiratuddin, M.F.; Wong, K.W., 2011, "Non-contact Multi-hand
Gestures Interaction Techniques for Architectural Design in a Virtual
Environment," Information Technology and Multimedia (ICIM), pp.1-
6.

[12] Witmer, B. G., Singer, M. J., 1998, “Measuring presence in virtual
environments: A presence questionnaire,” Presence: Teleoperators and
virtual environments, 7(3), 225-240.

[13] Mujber, T.S., Szecsi, T., Hashmi, M.S.J., 2004, "Virtual Reality
Applications in Manufacturing Process Simulation," Journal of
Materials Processing Technology, Vol. 155–156, pp. 1834-1838.

[14] Bowman, D.A., and McMahan, R.P., 2007, "Virtual Reality: How
Much Immersion Is Enough?," Computer , 40(7), pp.36-43.

[15] McMahan, R.P., Gorton, D., Gresock, J., McConnell, W., Bowman,
D.A., 2006, "Separating the Effects of Level of Immersion and 3D
Interaction Techniques," Proceedings of the ACM symposium on
Virtual reality software and technology (VRST ’06), pp.108-111.

[16] Kalivarapu, V., MacAllister, A., Hoover, M., Sridhar, S., Schlueter, J.,
Civitate, A., Thompkins, P., Smith, J., Hoyle, J., Oliver, J., Winer, E.,
Chernoff, G., “Game-day Football Visualization Experience on
Dissimilar Virtual Reality Platforms”, Accepted for publication at the
IS&T/SPIE Electronic Imaging, San Francisco, CA, February 2015.

[17] Barfield, W., Hendrix, C., Bystrom, K., 1997, “Visualizing the
Structure of Virtual Objects Using Head Tracked Stereoscopic
Displays,” Virtual Reality Annual International Symposium, pp. 114-
120.

[18] Ware, C., and Mitchell, P., “Reevaluating stereo and motion cues for
visualizing graphs in three dimensions,” Proc. of the 2nd Symposium
on Applied Perception in Graphics and Visualization, 1-8 (2005).

[19] Kosmadoudi, Z., Lim, T., Ritchie. J., Louchart, S., Liu, Y., Sung, R.,
2013, "Engineering design using game-enhanced CAD: The potential
to augment the user experience with game elements," Computer- Aided
Design, 45(3), pp. 777-795.

[20] Ju, W., Madsen, S., Fiene, J., Bolas, M., McDowall, I., Faste, R., 2003,
“Interaction Devices for Hands-On Desktop Design,” SPIE, pp. 585-
595.

[21] Francese, R., Passero, I., Tortora, G., 2012, "Wiimote and Kinect:
Gestural User Interfaces Add a Natural Third Dimension to HCI,"
Proceedings of the International Working Conference on Advanced
Visual Interfaces (AVI '12), pp.116-123.

[22] Shiratuddin, M.F.; Wong, K.W., 2011, "Non-contact Multi-hand
Gestures Interaction Techniques for Architectural Design in a Virtual
Environment," Information Technology and Multimedia (ICIM), pp.1-
6.

[23] Purschke, F., Schulze, M., Zimmermann, P., 1998, "Virtual Reality-
new Methods for Improving and Accelerating the Development
Process in Vehicle Styling and Design," Computer Graphics
International, pp.789-797.

[24] Fiorentino, M., Uva, A.E., Monno, G., Radkowski, R., 2012,
“Augmented Technical Drawings A Novel Technique for Natural
Interactive Visualization of Computer-Aided Design Models,” Journal
of Computing and Information Science in Engineering, Vol. 12, pp. 1-
8.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.4.ERVR-417

IS&T International Symposium on Electronic Imaging 2016
The Engineering Reality of Virtual Reality 2016 ERVR-417.10

[25] Fiorentino, M., Radkowski, R., Stritzke, C., Uva, A.E., Monno, G.,
2013, “Design Review of CAD Assemblies Using Bimanual Natural
Interface,” International Journal on Interactive Design and
Manufacturing, 7(4), pp. 249-260.

[26] Nanjundaswamy, V.G., Kulkarni, A., Chen, Z., Jaiswal, P., Shankar,
S.S., Verma, A., Rai, R., 2013, “Intutive 3D computer-Aided Design
(CAD) System With Multimodal Interfaces,” Proceedings of the
ASME 2013 International Design Engineering Technical Conferences
and Computers in Engineering Conference, pp. 1-11.

[27] Park, H., Park, J., Kim, M., 2012, “3D Gesture-Based View
Manipulator for Large Scale Entity Model Review,” Asia Simulation
Conference, pp. 524-533.

[28] Sabir, K., Stolte, C., Tabor, B., O’Donoghue, S., 2013, “The Molecular
Control Toolkit: Controlling 3D Molecular Graphics via Gesture and
Voice,” Biological Data Visualization, pp. 49-56.

[29] Gallo, L., Placitelli, A.P., Ciampi, M., 2011, "Controller-Free
Exploration of Medical Image Data: Experiencing the Kinect,"
Computer-Based Medical Systems (CBMS), 2011 24th International
Symposium on, pp. 27-30.

[30] Wright, M., Lin, C., O’Neill, E., Cosker, D., Johnson, P., 2011, “3D
Gesture Recognition: An Evaluation of User and System
Performance,” International Conference on Pervasive Computing, pp.
294-313.

[31] Lee, S., Chae, J., Kim, H., Lim, Y., Lee, K., 2013, “Towards a More
Natural Digital Content Manipulation via User Freehand Gestural
Interaction in a Living Room,” Proceedings on the 2013 ACM
International Joint Conference on Pervasive and Ubiquitous
Computing (UbiComp ’13), pp. 617-626.

[32] Fikkert, W., van der Vet, P., van der Veer, G., Nijholt, A., 2010,
“Gesture for Large Display Control,” 8th International Gesture
Workshop, pp. 245-256.

[33] Tumkor, S., Esche, S. K., Chassapis, C., 2013, “Hand Gestures in CAD
Systems,” Proceedings of the ASME 2013 International Mechanical
Engineering Congress and Exposition, pp. 1-9.

[34] Song, J., Cho, S., Baek, S., Lee, K., Bang, H., 2014, “GaFinC: Gaze
and Finger Control Interface for 3D Model Manipulation in CAD
Application,” Computer-Aided Design, Vol. 46, pp. 239-245.

[35] Araullo, J., & Potter, L. E., 2014, “Experiences using emerging
technology,” In Proceedings of the 26th Australian Computer-Human
Interaction Conference on Designing Futures: the Future of Design (pp.
523-526). ACM.

[36] Donalek, C., Djorgovski, S. G., Cioc, A., Wang, A., Zhang, J., Lawler,
E., Yeh, S., Mahabal, A., Graham, M., Drake, A., Davidoff, S., Norris,
J. S., Longo, G., 2014, "Immersive and Collaborative Data
Visualization Using Virtual Reality Platforms,” IEEE International
Conference on Big Data.

[37] Lobos, P., Beimler, R., Lammers, M., Steinicke, F., 2014, "Touching
the Cloud : Bimanual Annotation of Immersive Point Clouds," 2014
IEEE Symposium on pp. 191-192. IEEE.

[38] Plemmons, D., & Holz, D., 2014, "Creating next-gen 3D interactive
apps with motion control and Unity3D," In ACM SIGGRAPH 2014
Studio, p. 24, ACM.

[39] Coelho, J. C., & Verbeek, F. J., 2014, "Pointing Task Evaluation of
Leap Motion Controller in 3D Virtual Environment," In Creating the
Difference, Proceedings of the ChiSparks 2014 Conference, The
Hague, The Netherlands, pp. 78-85.

[40] Tomori, Z., Jan K., Peter K., Petr J., Mojmir S., Silvie B., Marian A.,
and Pavel Z., 2014, "Natural user interface as a supplement of the
holographic Raman tweezers," In SPIE NanoScience+ Engineering,
International Society for Optics and Photonics, pp. 91642P-91642P.

[41] Van Thanh, T., Kim, D., & Jeong, Y. S., 2015, "Real-Time Virtual
Lego Brick Manipulation Based on Hand Gesture Recognition,"
In Advanced Multimedia and Ubiquitous Engineering, Springer Berlin
Heidelberg, pp. 231-238.

[42] Karolczak, K., & Klepaczko, A. A stereoscopic viewer of the results of
vessel segmentation in 3D magnetic resonance angiography images.

[43] Frederick Thompson, MS, 2014, “Evaluation of a commodity VR
interaction device for gestural object manipulation in a three
dimensional work environment.”

[44] Weichert, F., Bachmann, D., Rudak, B., & Fisseler, D. 2013, "Analysis
of the accuracy and robustness of the leap motion
controller," Sensors, 13(5), pp. 6380-6393.

[45] MacAllister, A., Winer, E., Yeh, T., Seal, D., Degenhardt, G., 2014,
“A Natural User Interface for Immersive Design Review,”
International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference, ASME.

[46] Anastacia MacAllister, MS, 2014, “Natural user interfaces for
interdisciplinary design review using the Microsoft Kinect.”

[47] Fikkert, W., van der Vet, P., van der Veer, G., Nijholt, A., 2010,
“Gesture for Large Display Control,” 8

International Gesture

Workshop, pp. 245-256.

[48] Leap Motion, July 2015,
https://developer.leapmotion.com/documentation/cpp/devguide/Leap_
Overview.html#gestures

[49] “Oculus Rift in Action”, 2013, “Understanding the Oculus Rift
Distortion Shader,” http://rifty-
business.blogspot.com/2013/08/understanding-oculus-rift-
distortion.html, 06 July 2015.

[50] Khattak, S., Cowan, B., Chepurna, I., & Hogue, A. 2014, “A real-
time reconstructed 3D environment augmented with virtual objects
rendered with correct occlusion.” In Games Media Entertainment
(GEM), pp. 1-8.

[51] Javidi, B., Okano, F., 2011, “Three-Dimensional Television, Video,
and Display Technologies,” Springer.

[52] Meehan, M., Insko, B., Whitton, M., Brooks Jr., F.P., 2002,
“Physiological Measures of Presence in Stressful Virtual
Environments,” ACM Transactions on Graphics (TOG), pp. 645-652.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.4.ERVR-417

IS&T International Symposium on Electronic Imaging 2016
The Engineering Reality of Virtual Reality 2016 ERVR-417.11

