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Abstract. City traffic often exhibits regional characteristics, such as
large trucks frequently appearing in the suburbs, and the paths to
playgrounds on weekends generally being congested. Discovering
and visualizing these hidden traffic regions inside which roads share
similar characteristics of traffic conditions simplifies the modeling
complexities of whole city traffic conditions and therefore contributes
significantly toward city planning. Unfortunately, such traffic regions
always have irregular shapes and are time varying, which makes
their discovery extremely complicated. In addition, establishing a
method to visualize and explore the traffic regions interactively
still remains challenging. In this article, the authors propose a
latent Dirichlet allocation (LDA)-based approach to the discovery of
underlying traffic regions (or region topics) from vehicle trajectories
captured by surveillance devices installed along roadsides. They
treat vehicle trajectories as documents and the values of different
traffic features, such as locations, directions, speeds and vehicle
types, as the corresponding words. After applying the LDA model,
they obtain a list of region topics with combined feature values, in
which the different feature values are clustered with probabilistic
assignments. Meanwhile, they build a prototype system to explore
the surveillance-device-based vehicle trajectories according to the
discovered region topics. The prototype system, which consists of
map view, cloud view, treemap view and matrix-table view, visualizes
the feature values of hidden traffic regions. The authors finally
research a real case based on the traffic data in Wenzhou City,
a large city in eastern China with a population of more than nine
million. They investigate approximately 157 surveillance devices and
750,000 moving vehicles. The case demonstrates the effectiveness
of both their proposed approach and the prototype system. c© 2016
Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2016.60.2.020403]

INTRODUCTION
Nowadays, as increasing volumes of urban traffic data are
captured and become available, opportunities increasingly
arise for data-driven analysis that can lead to improvements
in traffic conditions. By using such huge amounts of traffic
stream data, decision makers can now understand the
patterns and trends of traffic flow in different parts of a city.
However, the discovery of a method to effectively visualize
and investigate the wide range of complex traffic data still
remains as one of the great challenges.1–4

In this article, we focus on how to explore traffic regions
by analyzing massive vehicle trajectories. Here, we use the

Received June 30, 2015; accepted for publication Nov. 16, 2015; published
online Jan. 7, 2016. Associate Editor: Song Zhang.
1062-3701/2016/60(2)/020403/18/$25.00

phrase traffic region to represent an area inside which roads
share similar traffic features or patterns statistically—these
areas typically have irregular shapes and are also time
varying. For example, many large trucks appear in some
areas of the suburbs, while areas close to popular theme
parks are generally congested on weekends. To explore these
traffic regions, we examine one new type of traffic trajectory
data that is recorded by surveillance devices, such as loop
sensors and surveillance cameras. These surveillance devices
are now quite common in cities in China. They are installed
along roadsides, generally every few hundred meters. They
capture the traffic records of each vehicle passing through
them, including the plate number, passing speed, passing
direction and vehicle type (large vehicle or small vehicle),
etc. In a typical medium sized city in China, generally
hundreds of such surveillance devices are in use. Each day,
millions or tens of millions of passing records are captured,
which involve hundreds of thousands of moving vehicles.
Differently from the traffic data collected by floating taxis
or buses (i.e., the traditional GPS data that are common
in the United States), such surveillance-device-based traffic
data collected at fixed locations have at least the follow-
ing advantages when exploring urban traffic conditions.
(1) They cover almost all vehicles running on themajor roads
of the city. In contrast, traditional GPS data are typically
restricted to taxis and buses, which are only a small subset
of moving vehicles.4 (2) Because drivers are reluctant to
pick up passengers in congested roads or during rush hour,
traditional GPS data only reflect the traffic conditions of
regions where taxis move frequently. (3) The GPS trajectory
data are recorded in a quasi-continuous manner, which can
create additional noise due to moving locations, directions
and speeds. Unfortunately, it is not always a straightforward
task to identify and remove such noise.5

Toobtain insight intomassive surveillance-device-based
trajectory data, we propose an analysis method based on the
latent Dirichlet allocation (LDA) model, called the traffic
LDA (TLDA). The LDA model was originally used in text
analyses to study topics from a large corpus of documents
that were naturally decomposed into words.6 In TLDA, we
define trajectories as documents and the values of different
traffic features as the corresponding words. Here, the traffic
features include locations represented by IDs of surveillance
devices, vehicles’ passing directions, types and speeds. After
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applying the TLDA model, we obtain a list of topics with
combined feature values defined earlier. We call these topics
region topics. In these region topics, the different features’
values are clustered with probabilistic assignment. In this
way,we can discover the hidden traffic regions and rank them
by the frequency of the passing records within a time slot.

The discovered traffic regions based on region topics
are valuable for city planning. For example, the industrial
function of a certain region can be revealed based on the
distribution of different vehicle types. More specifically,
a region with a greater number of large vehicles verifies
its role of carrying cargo transportation. Additionally, the
probabilistic distribution of speeds and directions can be
used to discriminate the traffic conditions of different
regions. Moreover, by ranking the region topics in different
periods of time, the traffic trends can be discovered to
support decision making, such as designing reversible lanes
and selecting sites of subway stations.

Exploration of traffic trajectory data to discover the
hidden messages of urban traffic conditions has always
been a hot topic in both academia and industry. To the
best of our knowledge, to date only Wang et al. have
studied how to visualize surveillance-device-based traffic
trajectory data.4 Hong et al. first applied LDA to unsteady
flow fields,7 whereas Chu et al. first used LDA to find the
hidden topics from taxi GPS data.8 These related works
inspired us to effectively use the surveillance-device-based
trajectory data based on LDA. Differently from the above
works, however, we propose a novel LDA-basedmulti-feature
approach that adds the features about the vehicles’ directions,
types and speeds in addition to the geographic positions of
the monitoring surveillance devices. In addition, we develop
a set of comprehensive visualization techniques for better
understanding of the extracted region topics, such as the
map view that shows multiple region features, the treemap
view that compares the values of distinct features and the
matrix-table view that explores the feature evaluations.

The contributions of our work are fourfold. (1) To the
best of our knowledge, this is the first work to use the traffic
data captured by surveillance devices to mine the traffic
regions (or region topics), which leads to a more accurate
result. Unlike the GPS data collected from floating vehicles,
the surveillance-device-based data record the trajectories of
nearly all moving vehicles on the major roads of a city.
On the contrary, methods based on GPS data are prone to
being inaccurate to some extent due to the limited coverage
of driving routes and the frequent missing of floating GPS
data. (2) We consider multiple features that characterize
the traffic regions, such as locations, directions, speeds and
vehicle types. Compared with traditional approaches based
on one single feature such as passing speeds, our approach
can reveal traffic regions that hold much more semantic
meaning. (3) According to the probability distribution of
different feature values, we divide the city areas into several
traffic regions with irregular shapes. Such partitioning is
much more consistent with the real situation compared
with partitioning relying on mandatory approaches. (4) We

demonstrate the components for interactive visualization
of traffic regions and their corresponding features, which
includemap view, cloud view, treemap view andmatrix-table
view. The most extensive result yet reported for the real case
verifies the effectiveness of our approach.

The remainder of this article is organized as follows.
After presenting the data profile and problem definition in
the second section, we propose the traffic latent Dirichlet
allocation (TLDA) model that can be used to discover
hidden region topics in the third section. We then give some
details about how to visualize the results based on TLDA
in the fourth section. Next, the fifth section introduces the
implementation of a prototype system for discovering and
visualizing traffic regions. A case study is shown in the sixth
section to demonstrate the effectiveness of our approach
and prototype system. Following the discussion and related
work given in the seventh and eighth sections, the last
section summarizes our work and outlines future research
directions.

DATA PROFILE AND PROBLEMDEFINITION
In the past few years, numerous surveillance devices have
been set up along the roadsides for traffic monitoring
in China. These surveillance devices continuously record
vehicles passing through. In our approach, we use two types
of traffic datasets: the trajectory dataset and the surveillance
device dataset. The trajectory dataset contains a list of
vehicle passing records captured by surveillance devices, with
attributes of surveillance device ID, plate number, vehicle
type (large vehicle or small vehicle), passing speed, passing
direction and passing time. Alternatively, the surveillance
devices dataset contains the information on all installed
surveillance devices, such as IDs, names and their geographic
positions represented by longitudes and latitudes.

This article focuses on the traffic datasets inWenzhou, a
large coastal city in the Zhejiang province of southeast China.
Each day, our trajectory dataset increases by approximately
550million passing records, involving about 750,000moving
vehicles in Wenzhou City. In addition, 157 surveillance
devices are installed every few hundred meters along the
major roads in Wenzhou City. All surveillance devices can
identify the vehicle’s plate number, passing direction and
speed. The vehicle type (large vehicle or small vehicle) can
be obtained from the vehicle database by the vehicle’s plate
number.

To obtain a glimpse of the data profile, we have made
some preliminary analyses on the trajectory dataset. We
choose Thursday June 5, 2014 as the sampling day. Figure 1
plots the positions of surveillance devices. For each device,
we calculate its traffic flow volume as the number of records
in the trajectory dataset. This is mapped to the circle size in
the map. Figure 2 shows that the total traffic flow volume
for every ten minutes reached a high level at 8:00 am, then
began to drop down until noon, and again rose slowly to a
second peak between 5:00 pm and 6:00 pm. For some roads,
the traffic volume changed dramatically with direction.
Figure 3(a) presents such a case, in which the surveillance
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Figure 1. Locations of all surveillance devices in Wenzhou City on June 5, 2014. Each circle represents one device, with its size being proportional to
the volume of traffic flow passing through it.

Figure 2. Total traffic flow volume calculated every ten minutes in Wenzhou City on June 5, 2014.

device captured a higher volume from west to east than
from east to west between 5:00 am and 8:00 am, and vice
versa between 8:00 pm and 10:00 pm. Finally, we choose a
surveillance device near the highway off-ramp to observe
the ratio between the number of large vehicles and that of
small vehicles. Fig. 3(b) shows that the average ratio is 0.096.
However, many more large vehicles passed through in the
earlymorning than at any other time. This is possibly because
the drivers were busy carrying the cargoes with their large
vehicles in the morning.

Although we can obtain the geographic distribution of
surveillance devices that have greater volumes of vehicles
from the preliminary analysis, we cannot manage to
discover the distribution of trajectories, which is much

more important for city planning. Here, the trajectory
data involve the changing volumes of vehicles in each
direction for each vehicle type passing through one specific
surveillance device. The regional traffic characteristics may
not be obviously revealed from one surveillance device.
Instead, a group of surveillance devices may reveal similar
characteristics of traffic trajectories passing through them,
thus forming a traffic region statistically. Such traffic regions
are always hidden with certain probabilities and therefore
are very difficult to discover. In summary, the problem of
our work can be described as follows: how to discover the
hidden traffic regions that share similar characteristics from
surveillance-device-based trajectory data and further explore
them in a visualized way.

J. Imaging Sci. Technol. 020403-3 Mar.-Apr. 2016

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.3.VSTIA-519

IS&T International Symposium on Electronic Imaging 2016
Video Surveillance and Transportation Imaging Applications 2016 VSTIA-519.3



Yu et al.: Discovering and visualizing underlying traffic regions from vehicle trajectories with multi-features

(a)

(b)

Figure 3. Traffic volume captured by one surveillance device every ten minutes in Wenzhou City, on June 5, 2014. (a) One-day traffic flow volume in
each direction. (b) One-day traffic flow volume ratio for large vehicles to small vehicles.

DISCOVERING TRAFFIC REGIONS
LDA Basics
In natural language processing, LDA is a technique that
automatically discovers topics that documents contain. It
posits that each document is a mixture of a small number of
topics and that each word’s creation is attributable to one of
the document’s topics. As an example of a topic model, LDA
was first presented by Blei et al. in 2003.6 Here, we present an
intuitive explanation to show how LDAworks. The detail can
be found in Layman’s ‘‘Explanation of Topic Modeling with
LDA.’’9

Suppose we have the following set of sentences.
Sentence 1: An apple contains lots of vitamins.
Sentence 2: I like to eat an apple, but now I prefer Apple

mobile phones.
Sentence 3: Since Jobs has left us, will Apple reduce the

price?
Given the set of sentences, LDA might classify the bold

words under the Topic F, which we might label as ‘‘fruit.’’

Similarly, words in italicsmight be classified under a separate
Topic T, which we might label as ‘‘technology.’’ Further, it
can be inferred from the word count in each sentence that
Sentence 1 is of 100% Topic F, Sentence 2 is of 40% Topic F
and 60% Topic T, and Sentence 3 is of 100% Topic T.

LDA achieves this in the following three steps.
Step 1: You tell the algorithm howmany topics you think

there are. You can either use an informed estimate, or simply
trial and error.

Step 2: The algorithm will assign every word to a
temporary topic in a semi-random manner (according to a
Dirichlet distribution, to be exact). This also means that if a
word appears twice, each word may be assigned to different
topics. Note that in analyzing actual documents, function
words (e.g., ‘‘an,’’ ‘‘I,’’ ‘‘but’’) are removed and not assigned
to any topics.

Step 3 (iterative): The algorithm will check and update
topic assignments, looping through each word in every
document. For each word, its topic assignment is updated by
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(a)

(b)

Figure 4. Comparing the traditional LDA model (a) with our TLDA model
(b).

weighing conclusions from the following two criteria. How
prevalent is that word across topics? How prevalent are topics
in the document?

The process of checking topic assignment is repeated
for each word in every document, cycling through the
entire collection of documents multiple times. This iterative
updating is the key feature of LDA that generates a final
solution with coherent topics.

The TLDAModel
To use the LDA model for multi-feature analysis in traffic
trajectory data, we need to define equivalent LDA concepts at
the beginning (Figure 4). We consider vehicle trajectories as
the central subjects, which play a similar role to documents in
the topic model. We then consider the values of each feature
as words, with trajectories being bags of feature values, which
is analogous to the concept of documents being bags of words
in the topic model. For any facet x of the traffic trajectory
data, such as location, direction, speed or vehicle type, we
assign a feature value set Fx to describe its possible values.
In this way, any trajectories sharing similar characteristics
would frequently have the same feature values. All feature
value sets Fx can then be united to generate a feature value
vocabulary.

Having the defined feature value vocabulary, we can
transform the trajectories at a time slot into sequences that
contain multiple feature values. Afterwards, the sequences
are used as the input to estimate the underlying TLDAmodel.
In this way, the region topics, the distribution of region topics
per trajectory, and the distribution of features per region
topic can be generated.

For the convenience of the reader, Table I summarizes all
important notations used in this article.

As mentioned earlier, the LDA model typically can be
used to analyze topics in a corpus of documents. Similarly,

Table I. Key notations and their descriptions.

Notation Definition and brief description

D The total number of trajectories.
K The total number of region topics.
N The total number of iterations.
V The set of all possible feature values.
dj The j th trajectory.
Ed The corpus of trajectories, i.e., Ed = {dj }

D
j=1.

Wj The total number of feature values in dj , i.e., Wj =‖dj ‖.
W The total number of feature values in all trajectories, i.e.,

W =
∑D

j=1 Wj .
ωi ,j The j th feature value in the trajectory di .
zi ,j The region topic assignment for the j th feature value in the

trajectory di .
θj The distribution probability of region topics for the j th

trajectory.
Eθ = {θm }Dm=1 The D × K distribution probability matrix for D trajectories

and K region topics.
ϕk The distribution probability of feature values for the region

topic k .
Eϕ = {ϕk }

K
k=1 The K × V distribution probability matrix for K region topics

and V feature values.
α The Dirichlet prior for θj .
β The Dirichlet prior for ϕk .
x One certain traffic feature, such as passing direction, passing

speed, etc.
Fx The set of possible feature values on feature x .
Eϕx The K × ‖Fx‖ distribution probability matrix for K region

topics and ‖Fx‖ feature values on feature x .
Sk The sampling frequency for the region topic k .
ES The sampling frequencies for all region topics, i.e.,

ES = {Sk }.

Figure 5. The model of the region topic.

any trajectory dj can be modeled as a mixture of K region
topics, while any region topic k can be characterized by a
multinomial distribution ϕk over feature values V . Here,
among all variables, only ωi,j is observable, while others
like zi,j, θj and ϕk are all latent variables. We generate the
observation of these latent variables using the following
process presented in Figure 5 for the related model.

Step 1: For every trajectory dj, draw a region topic
distribution θj from a Dirichlet prior with parameter α, i.e.,
θj ∼Dir(α), where j ∈ {1, . . . ,D}.

Step 2: For every region topic k, draw a feature value
distribution ϕk from a Dirichlet prior with parameter β , i.e.,
ϕk ∼Dir(β), where k ∈ {1, . . . ,K }.
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Step 3: For a feature value position i in the jth trajectory,
where i ∈ {1, . . . ,Wj} and j ∈ {1, . . . ,D}, choose a region
topic for this position zi,j = k ∼ Multinomial(θj) and a
feature value from this chosen region topic ωi,j = ‖V‖ ∼
Multinomial(ϕzi,j).

After the generative process is determined, the joint
ability of the model can be described as

P
(
ωi,j, zi,j, θi,j;α, β

)
=

K∏
k=1

P (ϕk;β)
M∏
j=1

P
(
θj;α

) Wj∏
i=1

P
(
zi,j | θj

)
P
(
ωi,j | ϕzi,j

)
.

(1)

Therefore, the whole model estimation process serves simply
to maximize the above likelihood function by Bayesian
inference with parameters α and β . In our work, we adopt
an implementation using Gibbs sampling.10

Algorithm 1 (TLDA) can be divided into the following
three steps.

(1) Model initialization (from line 1 to 31).

We first randomly initialize the region topic ID for each
feature value about trajectories, so that the ID comes from
the uniform distribution in 1 to K . Afterwards, we count
the total number of feature values about each trajectory
that appears in each region topic (trajectory2topic), the total
number of each feature value appearing in each region topic
(value2topic), the number of feature values appearing in each
region topic (values2topic) and the number of feature values
appearing in each trajectory (values2trajectory).

(2) Gibbs sampling (from line 45 to 72).

This step runs N times to obtain the converging
results about the sampling frequency on each region topic
(values2topic) and the feature value probability distribution
on each region topic (phi). One iteration consists of the
following four substeps.

• Obtain the region topic ID of every feature value from
each trajectory in the previous iteration. Then update
the counting number of each feature value in each
region topic (value2topic), the counting number of each
trajectory in each region topic (trajectory2topic), the
total counting number of feature values in each region
topic (values2topic) and the total counting number
of feature values in each trajectory (values2trajectory)
(from 47 to 55).
• Calculate the probability of each feature value belonging
to a different region topic, and use the polynomial
probability distribution about each region topic to
sample the new region topic ID of one certain feature
value (lines 56–58).
• Use the topic ID generated in the previous substep
to update value2topic, trajectory2topic, values2topic
and values2trajectory (lines 59–64).

• Update the probability distribution of each trajectory
in each region topic (theta) (lines 65–67), and the
probability distribution of each value in each region
topic (phi) (lines 68–70).

(3) Results processing (lines 35–43).
The feature values are divided by different features (i.e.,

dividing Eϕ into different features of Eϕx whose rows are
normalized).

The Evolution of Region Topics
To link the region topics of different time slots, we first
divide the K areas according to our experience that one
surveillance device is only located in one area. The region
topics are then created for given time slots, which reflect
the different traffic patterns for the different periods of a
day. For example, a significant difference in traffic patterns
usually exists between the rush hour and other times. Thus,
we define a similarity between the region topics discovered
through TLDA and the areas defined in advance at one time
slot. Given one Region Topic i and one area j, their similarity
can be computed as

Si,j =
Size

(
Ti ∩Tj

)
Size

(
Ti ∪Tj

) , (2)

where Ti is the set of surveillance devices with a higher
probability over a predefined threshold in area i, or Ti = {w |
P(w | i) > c}, and Tj is the set of surveillance devices in area
j. Based on the similarities, each region topic can be assigned
to one most closely related area. The sum of similarities of
such most closely related area pairs can therefore reflect the
abnormal condition of a time slot with which we are actually
concerned.

VISUALIZING TRAFFIC REGIONS
As described in the previous section, the visual interface
consists of four components: the map view, the cloud view,
the treemap view and the matrix-table view, as presented in
Figure 6. These visualization components are orchestrated in
a coordinated manner for effective user exploration.

Map View
The location feature represented by the surveillance device
ID indicates the geographic characteristic of region topics.
Various backgrounds, such as topography, satellite and
transportation maps, can be attached to provide visual
cues and context to geographic and cultural information.
Messages such as tourist attractions, subway stations and
government buildings can also be placed on the map. To
visualize one region topic’s location feature, a surveillance
device that belongs to a certain region topicwith a probability
value greater than a predefined threshold is drawn as a circle
with a given region topic color, whose size is determined by
its importance, or the proportion of traffic volume passing
through it over thewhole traffic volume in a particular region
topic. For simplicity, we use the words surveillance device
or simply device to represent its corresponding circle on the
map.
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Additionally, a surveillance device may be indicated by
multiple overlapped circles with different region topic colors.
To improve the visual effects of such overlapped topics, the
transparency of a circle can be set to 0.8 so that it can be
easily observed. Fig. 6(a) displays the location features of four
region topics generated from TLDA on the map of Wenzhou
City. Users can manipulate the appearance of the region
topics by setting layers as visible/invisible and changing the
color and transparency.

Cloud View
Weuse a word cloud to display semantic information and the
relationships between different surveillance devices. The size
of a surveillance device name reflects its importance (i.e., the
frequency of its occurrence in all trajectories of one region
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(a)

(e)

(f)
(d)

(b) (c)

Figure 6. Visual interface. (a) Map view of region topics. The circles marked with ‘‘a1,’’ ‘‘a2,’’ ‘‘a3’’ and ‘‘a4’’ are mandatory selected areas used for
comparison with discovered region topics. (b) Cloud view of the 15 surveillance devices with the greatest traffic volumes captured in all region topics.
(c) Cloud view of the 15 surveillance devices with the greatest traffic volume in region topic 1. (d) Treemap view of region topics. (e) Matrix-table view
showing the change of importance of different areas during the entire day. (f) Matrix-table view showing the change of feature values in area a3 during
the entire day.

topic). The names are not randomly positioned. Instead,
the distance between two names reflects their relationship
by introducing the attracting and repelling forces computed
from pairwise cosine similarities:

sim(ci, cj)=
∑K−1

k=0 p(ci | tk) · p(cj | tk)√∑K−1
k=0 p(ci | tk)2 ·

√∑K−1
k=0 p(cj | tk)2

, (3)

where ci or cj denotes one surveillance device, K is the
total number of region topics and p(c | t) is the conditional
distribution probability of the device of c given the region
topic of t . In other words, surveillance devices with similar
region topic distributions are clustered together.

Furthermore, in the cloud of a given region topic, the
names of surveillance devices are aggregated together if
they are frequently passed through by vehicles traveling
inside this region topic. The cloud view can also show the
most important, or the most frequently passed through,
surveillance devices among all region topics, or those selected
by users. Fig. 6(b) shows the top 15 surveillance devices with
the largest frequencies in all region topics, whereas Fig. 6(c)
shows the same but only in Region Topic 1. Here, we use the
names of roads where surveillance devices are installed to
indicate the devices’ names.

Treemap View
The treemap view helps users to discover the hierarchical
data,11 while exploring the proportion of sampling frequency
in each region topic and the values of each feature. Fig. 6(d)
visualizes all feature values for all region topics over a
treemap, where each tone denotes one specific region topic
and its color represents one specific feature; each rectangle
shows one specific feature value for different features. In
other words, the treemap has three hierarchies, as follows.
The first hierarchy (i.e., the region topic hierarchy) has the
same tones as those of the region topic indicated in the
map view. The area sizes of region topics with different
tones represent the total sampling frequency of all vehicle
records, which are assigned as busy degree to this region
topic. The second hierarchy that shows region topic features
is subdivided equally and distinguished by different colors.
The last hierarchy shows different values for each feature.
It consists of many small rectangles marked with their
corresponding values. Here, the ‘‘L’’ and ‘‘S’’ signs indicate
large vehicles and small vehicles, respectively, regarding the
vehicle type feature. In addition, the arrow signs denote the
direction feature, whereas the numbers represent the ranges
of the speed feature. Generally, the treemap helps users to
acquaint themselves with the proportion of vehicle volumes
appearing in each region topic, and the proportion of various
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feature values in each region topic. It also helps to facilitate
the comparison of various feature values under different
region topics intuitively.

To create a treemap, one must define a tiling algorithm,
that is, a way to divide a rectangle into subrectangles of
specified areas. Ideally, a treemap algorithm would create
rectangles with aspect ratios (the proportional relationship
between the width and the height) close to one, whichmeans
squares; furthermore the algorithm would preserve some
sense of the ordering in the input data. Unfortunately, these
two properties have an inverse relationship. As the aspect
ratio is optimized, the order of placement becomes less
predictable. Conversely, as the order becomes more stable,
the aspect ratio is degraded. It is commonly known that
human vision is not good at recognizing area sizes, especially
for long and thin (non-square) rectangles. Moreover, in
our treemap view, we need to label the feature values on
the leaf node rectangles, which is a difficult task for long
and thin rectangles. In our approach, therefore, we prefer
optimized aspect ratios, ormore square rectangles, to a stable
placement order. We apply the tiling algorithm Squarified.12
Differently from many other ordered tiling algorithms such
as Slice and Dice, BinaryTree and Ordered, Squarified tends
to have square leaf nodes in the treemap view, although its
order of placement is less predictable. To compensate for its
unordered placement, we use different tones and colors for
different rectangles in our approach.

Matrix-Table View
The matrix-table view shows the temporal patterns for
specific region topics, as illustrated in Fig. 6(e) and (f). It has
two types of tables: the region topic evolution table and the
feature evolution table. Fig. 6(e) visualizes the region topic
evolution table, where each row represents one specific area
that is described in Fig. 6(a) and each column shows the
areas’ corresponding region topics at different time slots with
importance in different tones which are the same as those in
the map view. To emphasize the exceptional patterns related
to correlative time slots, we use transparency to improve
the visual effect. A more opaque column represents that the
region topics discovered at this time slot (column) change
more dramatically than other region topics discovered at
other time slots. In addition, the size of the unit stands for
the sampling frequency of the region topic at a time slot.

In a similar way, Fig. 6(f) shows the feature evolution
table, in which the columns represent time slots and the
values for the speed and type features are encoded into
the matrix with different tone scales. Here, a deeper color
represents a lower speed or a greater number of large vehicles,
and a lighter color a higher speed or a greater number of small
vehicles. Meanwhile, the periodic values of the direction
feature are distinguished by the arrows pointing in eight
different directions.

Furthermore, in the matrix-table view, the user can
manipulate the region topics in the region evolution table,
whose corresponding feature evolutions can be displayed
simultaneously in the feature evolution table.

Figure 7. The interaction among different views in our system.

Interactions among Views
The map view, cloud view, treemap view and matrix-table
view are fully interactively related (Figure 7). By default,
all of the views show the traffic condition for the most
recent time slot. If the user clicks on one certain time slot
in the past in the matrix-table view, all other views are
automatically updated to reflect the traffic condition for that
time slot. If the user clicks on one certain area in the region
topic evolution table of the matrix-table view, such as a1,
a2, a3, or a4 in Fig. 6(e), this area will be automatically
highlighted in the map view with its geographic information
attached, and its related feature evolution table will be
updated simultaneously. In addition, if the user clicks on
one certain traffic region in the treemap view, the circles
representing the surveillance devices in this traffic region
will be automatically highlighted in the map view. Moreover,
if the user clicks on one certain traffic region in the map
view, the cloud view will automatically show the top 15
most frequently passed-by surveillance devices for this traffic
region. Alternatively, if the user clicks on the name of a
surveillance device in the cloud view, the circle representing
this surveillance device will be automatically highlighted in
the map view.

SYSTEM PIPELINE
Based on the TLDA model, we implement a prototype
system to support the visualization and exploration of traffic
trajectory data (Figure 8).

Meanwhile, we determine four facets (Flocation, Fdirection,
Ftype and Fspeed), whose possible values are listed in Table II.

During our preprocessing phase, we obtain each vehicle’s
trajectory from the raw trajectory dataset at different time
intervals, including the ID of the surveillance device, passing
direction, passing speed and vehicle type.

We implement the computation of TLDA based on
JGibbLDA, a Java implementation of latent Dirichlet alloca-
tion (LDA) using Gibbs sampling for parameter estimation
and inference.13 To use the TLDAmodel, a set of parameters
must be preset, including the number of topics K , the
Dirichlet prior on per-document topic distribution α,
the Dirichlet prior on per-topic word distribution β and
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Figure 8. Prototype of our system. The user chooses the features and initially sets the value for each feature. Then, trajectories are extracted with these
values. After setting the TLDA parameters, the Gibbs sampling result of the model, including the sampling frequency of region topics and their distributions
of feature values, can be generated. The system offers multiple interactive views to visualize the results.

Table II. Possible values for each facet.

Facet Possible values

Flocation The ID of the surveillance device

Fdirection

West to east, east to west, south to north, north to south, southeast
to northwest, northwest to southeast, northeast to southwest and
southwest to northeast (denoted by→,←, ↑, ↓,↖,↘,↙,↗,
respectively)

Ftype Large vehicle, small vehicle

Fspeed
0–10 km/h, 10–20 km/h, 20–30 km/h, 30–40 km/h, 40–50 km/h,
50–60 km/h and>60 km/h

the number of iterations N . We specify these particular
parameters as Tang et al. describe in Ref. 14. By applying
TLDA on the trajectory data, we can acquire both the
sampling frequencies of the appearances of feature values
and their distribution in each region topic. These sampling
frequencies can be further used to rank the importance of
different region topics.

The visualization part consists of four subparts. The first
subpart, ormap view, presents the surveillance devices whose
probabilities in one region topic are greater than a predefined
threshold, with the map attached to show their locations.
In the second subpart, we use the cloud view to analyze the
relationship between surveillance devices. The third subpart
supplies the treemap view to compare the traffic importance
amongdifferent region topics, and the proportion of different
feature values in each region topic. In the last subpart, we
use the matrix-table view to display the changes in the
importance of each region and the overall values of different
features with time changing.

A CASE STUDY
To evaluate the effectiveness of our approach and the
prototype system, we conducted an extensive experiment in

WenzhouCity, a large city in eastern China with a population
of more than nine million. We used the real traffic trajectory
data collected from 157 surveillance devices in Wenzhou
City and 436 surveillance devices in its neighboring counties
on June 5, 2014. We set the number of region topics to six
in Wenzhou City and its neighboring counties, and to four
in Wenzhou City, and we set the time slot to one hour. In
other words, region topics are generated every 60 min for
the entire day (i.e., 0:00 am–1:00 am, 1:00 am–2:00 am, . . . ,
11:00 pm–00:00 am). This section illustrates four cases in
detail. The first case shows the discovered region topics,
whereas the second reveals the vehicle moving patterns. The
last two cases show the features of the discovered region
topics and their evolution.

Discovered Region Topics
Tables III and IV illustrate four discovered region topics from
157 surveillance devices in Wenzhou City between 8:00 am
and 9:00 am, June 5, 2014.

Region Topic Importance
The total frequency of all vehicles’ occurrences in a given
region topic represents this region topic’s importance. In
Table III, the region topics are ranked by importance (i.e.,
the total number of moving records) from Region Topic 1 to
Region Topic 4. Region Topic 1, the busiest one, has 295,823
moving records, whereas Region Topic 4, the least busy one,
has 218,150 moving records. This result indicates that these
four topics actually have small differences in their feature
values.

Probability Distribution of Feature Values
For each region topic, a feature value also has its distinct fre-
quency of occurrence, which we refer to as value importance
over the topic. In other words, a value importance, P(w | z),
represents the appearance probability of a feature value w
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Table III. TLDA results: the total number of moving records in a given region topic
represents this region topic’s importance; every feature value has a different frequency
of appearance in a given region topic, defined by the probability P (w | z ).

# Moving
records

The appearance probability of feature values

Device ID:
330302023

Speed:
10–20 km/h

Direction:
north–south

Vehicle type:
small vehicle

. . .

Region
topic 1

295,823 0.019 0.071 0.099 0.109 . . .

Region
topic 2

272,364 0.0009 0.079 0.046 0.110 . . .

Region
topic 3

258,064 0 0.068 0.095 0.155 . . .

Region
topic 4

218,150 0 0.014 0.034 0.156 . . .

Table IV. TLDA results: the probability distributions of region topics for a given vehicle
trajectory P (z | d ). Real plate numbers are not shown for protection of privacy.

Trajectory Region topic 1 Region topic 2 Region topic 3 Region Topic 4

C#####1 0.484375 0.484375 0.015625 0.015625
C#####2 0.015625 0.171875 0.171875 0.640255
C#####3 0.294117 0.382354 0.294118 0.029411
C#####4 0.018518 0.018518 0.018518 0.944446

(in one feature x) over a given Region Topic z . Here, the
sum of value importances of all feature values belonging to
one certain feature is normalized to 1. Table III displays the
distribution of feature values {device ID = 33030223; speed
= 10–20 km/h; direction = north–south; vehicle type =
small vehicle}, or value importance, over four region topics,
as an example.

Trajectory Probability Distribution
Each trajectory has its own probability distributions over
multiple region topics. We use P(z | d) to denote the distri-
bution probability for a Region Topic z over a given vehicle
trajectory d . Table IV shows the probability distributions of
four region topics for four vehicle trajectories, which can be
further used for trajectory clustering.

Vehicle Moving Patterns
The discovered region topics demonstrate some typical
traveling patterns of vehicles. Figure 9 displays four region
topics generated for the time slots of 3:00 am to 4:00 am and
8:00 am to 9:00 am

One can observe the surveillance devices in the circle
marked with ‘‘I’’ in Fig. 9(a). The green devices with large
sizes indicate that they are the most frequently passed-by
ones in Region Topic 4. Although these green devices are
separated by two pink devices (GaoxiangRd marked with
‘‘GX’’ and LiuhongqiaoRd & ZhanqianRd marked with ‘‘LZ’’)
in geography, the devices within the circle marked with ‘‘I’’

turn out to have the same color in Fig. 9(b). Combined
with their cloud views in Fig. 9(c) and (d), the GaoxiangRd
and LiuhongqiaoRd & ZhanqianRd devices were far away
from those devices at 3:00 am to 4:00 am, but the distances
decreased at 8:00 am to 9:00 am. Consequently, we can
infer that vehicles seldom traveled between the eastern
and western green devices through the pink devices from
3:00 am to 4:00 am, but did travel from 8:00 am to 9:00 am.
Meanwhile, from their relevant treemaps on the direction
feature, we can see that the passing directions in Region Topic
4 between 3:00 am and 4:00 am were mainly from north to
south or from south to north, as shown in Fig. 9(a), but were
almost equally distributed between 8:00 am and 9:00 am, as
presented in Fig. 9(b) for the same area, which is consistent
with the corresponding map views.

A large residential zone in the northeastern part of
Wenzhou City is identified by a circle marked with ‘‘II’’ in
Fig. 9. This zone in Fig. 9(a) has a smaller number of devices
with smaller sizes compared with that in Fig. 9(b), from
whichwe can draw the conclusion that people rarely went out
in the earlymorning in this zone. In addition, the surveillance
devices with larger sizes in Fig. 9(b) prove that they were
just experiencing the morning rush hour. The circle marked
with ‘‘III’’ in Fig. 9(a) corresponds to the zone for entering
and leaving Wenzhou City. From the color of the devices,
we can see the presence of two routes (i.e., DongOu Avenue
and Kanghua Road). The large sizes of the devices indicate
that Kanghua Road was more occupied compared with other
routes at that time.

Let us focus on the surveillance devices with various
colors on the map. First, the device overlaid by three colors,
with a symbol ‘‘a’’ in Fig. 9(a), indicates that it is an important
conjunction of three groups of vehicles. Second, a large device
in both Region Topic 1 and Region Topic 2 at the intersection
of Airport Avenue and Jinxiu Road is marked with ‘‘b’’ in
Fig. 9(b). The regions for Region Topic 1 and Region Topic 2
are adjacent to each other, at the intersection of which many
devices are geographically near. Among these devices, only
that marked with b is overlaid with two colors (i.e., red and
pink); it connects different functional regions.

Analysis of Passing Direction, Speed and Vehicle Type
We further analyze the sampling frequency of each topic,
the indicator of busy degree of regions, and the proportion
of each of the feature values. Fig. 6(a) and (d) illustrate the
location feature on the map, and the speed, direction and
type features on the treemap at the time slot from 8:00 am
to 9:00 am, respectively. Little difference is seen for the
sizes of the red, pink and orange rectangles, whereas the
green rectangle has theminimum size, as Fig. 6(d) illustrates.
From the related map view in Fig. 6(a), we know that the
green topic covers the areas around the airport and the
roads linking the airport and downtown, in addition to the
Wenzhou expressway. These areas are less busy compared
with other traffic regions at morning rush hour.

Meanwhile, Fig. 6(d) uses three different colors, or
different scales of tone, to display the features of passing
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(a) (b)
(d)

(c)

Figure 9. Change of traffic conditions between (a) 3:00 am and 4:00 am and (b) 8:00 am and 9:00 am. Their cloud views about surveillance devices
in ‘‘I’’ are given in (c) and (d), respectively.

direction, speed and vehicle type. The darkest one shows the
values of the speed feature. The values of ‘‘10,’’ ‘‘20’’ and ‘‘30’’
occupy the main and similar proportions in the red, pink
and orange regions. However, the value of high speed has
a larger proportion in the green region. We can therefore
conclude that the regions in the central part of Wenzhou
City were all congested except for the suburbs at that time.
For the direction feature, from the bottom right rectangle in
Fig. 6(d), we can find that the number of vehicles passing
from east to west is roughly the same as that from west to
east, but more vehicles are passing from north to south than
south to north. This shows that the direction from north to
south was the main traffic flow direction at this time slot. For
the type feature, large vehicles have the maximum number
in the green region topic. This is consistent with what would
commonly be expected (i.e., large vehicles always appear
more frequently in expressway or suburban areas).

Evolution of Region Topics
Fig. 6(f) shows the change of importance of different areas
through related region topics during the entire day. From
Fig. 6(f), we find horizontally that the traffic volume of
each area reaches a high level at the time slot from 8:00 am
to 9:00 am, and maintains a high level until the time slot
from 6:00 pm to 7:00 pm. The minimum occurs between
4:00 am and 5:00 am, whereas a small decrease occurs
between 11:00 am and 2:00 pm. The area marked with ‘a3 in
Fig. 6(a) can be regarded as the most important area because
it is covered bymore red and pink colors. Combined with the
geographic information about the area a3 we know that this
area is the major business center. In addition, observing the
transparency of each column, we find that five columns have
a smaller transparency, and the column at the time slot from
7:00 pm to 8:00 pm has the smallest.

Our system also supports the visualization of overall
feature values for each region topic about the most similar
area at different time slots. If a user selects an area in
the matrix-table view, the evolution of its feature values
will appear simultaneously. Figures 10(b) and (c) show the
feature evolution about the areas a1 and a2, respectively.

They indicate that the areas a1 and a2 were less busy
compared with the other two areas (i.e., the areas a3 and
a4), if considering the entire day. This is the reason why
their features in the feature evolution tables are illustrated
in yellow and green. In the first line of Fig. 10(b), a deeper
tone at the time slot from 7:00 am to 8:00 pm than other
time slots indicates that the increasing traffic volume reduces
the overall speed in daytime. By contrast, the first line in
Fig. 10(c) hasmuch shallower tones, indicating that a2 always
remains unblocked, simply because it is relatively remote
from the downtown area. In addition, the second lines in
Fig. 10(b) and (c) represent the proportion of the number of
small vehicles to that of large vehicles. The tone at the time
slot from 8:00 am to 9:00 am in Fig. 10(b) looks extremely
pale, which verifies the fact that it is the time for driving to
work. On the contrary, the tone at the time slots from 3:00 am
to 5:00 am in Fig. 10(c) looks very deep, which indicates the
presence of many large vehicles at that time. Finally, the last
lines in Fig. 10(b) and (c) demonstrate the directions of traffic
flow. It can be concluded that the direction from south to
north in these two areas has greater traffic volume than other
directions by considering the arrow directions.

DISCUSSION
In this section, we discuss the influence of setting different
TLDA parameters on final results, evaluate the effectiveness
and compare our TLDA model with other approaches from
two aspects.

Setting TLDA Parameters
In the TLDAmodel, the set of parameters can be adjusted to
tune the final results. These parameters include the number
of region topics (K ), the Dirichlet prior on the distribution
probability of trajectories over region topics (α), theDirichlet
prior on the distribution probability of region topics over
feature values (β) and the number of iterations (N ).

Generally, the number of region topics, or K , is difficult
to determine since it greatly depends on the actual traffic
data. Too few region topics will miss some important pat-
terns, while too many region topics may produce redundant,
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(a)

(c)

(b)

Figure 10. Map view at 7:00 pm to 8:00 pm. (b) Summary of feature values in area a1 in Fig. 6(a) during the entire day. (c) Summary of feature value
in area a2 in Fig. 6(a) during the whole day.

meaningless or trivial results. Meanwhile, the Dirichlet
priors α and β influence the region topic distribution per
trajectory and the feature value distribution per region
topic, respectively. A smaller value would typically make the
distribution more concentrated, and vice versa. However, in
our work, we do not observe significant differences in the
results. Finally, the number of iterations, or N , also affects
the quality of results. We found that the output converges
quickly within thousands of iterations. In our case, we set the

number of iterations to 1000, which is a balance between time
efficiency and the quality of results.

We set K = 4, α = 0.1, β = 0.01 and N = 1000 as the
default settings. From the results shown in Figure 11, we can
see that as the number of topics increases, the large region
topics are divided into small ones with similar importance.
However, the results with smaller numbers of region topics
are less stable than those with larger ones due to the short
trajectories. It is of note that our test shows that the Dirichlet
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Visualization of TLDA results with different parameter settings: (a) K = 4, α = 0.1, β = 0.01; (b) K = 2, α = 0.1,β = 0.01; (c) K = 8, α = 0.1,
β = 0.01; (d) K = 4, α = 1, β = 0.01; (e) K = 4, α = 0.1, β = 0.1; (f) K = 8, α = 1, β = 0.1.

priorsα and β have a relatively small sensitivity on the results
of our TLDA model.

Evaluation of Effectiveness
Nowadays, the traffic conditions in many large cities are
becoming increasingly worse and complicated. Therefore,
modeling and exploring the changing traffic conditions at the
level of the entire city are extremely challenging. However,

some traffic regions always exist inside which roads share
similar characteristics of traffic conditions. Discovering such
traffic regions can significantly simplify the complexities of
modeling whole city traffic conditions.

To evaluate the effectiveness of TLDA, we use the traffic
data in the city of Wenzhou along with its neighboring
Yueqing County, Ruian County, Pingyang County and
Cangnan County. As Figure 12 indicates, we observe that
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Figure 12. The region topics obtained from TLDA for Wenzhou City and
its neighboring counties Yueqing, Ruian, Pingyang and Cangnan. The
region topics are distinguished by different colors.

the city of Wenzhou can be divided into three region topics,
roughly consistent with its inner three districts, whereas
YueqingCounty andRuianCounty form two different region
topics, and Pingyang County and Cangnan County are
combined together into one region topic, with the number
of topics being set to six. Pingyang County and Cangnan
County are merged into one region topic because many
vehicles frequently drive along the expressway between
Pingyang County and Cangnan County, thus forming a
strong connectivity between them. It is obviously concluded
that vehicles move inside their respective counties (or
districts) more frequently than they do between counties and
districts, which is consistent with the real situation.

In addition, our research can be extremely useful in
helping the city to improve traffic. We obtained many
valuable inspirations from the practice of our approach in
Wenzhou City. For example, we identified one zone and its
two routes (i.e., DongOu Avenue and Kanghua Road) that
are primarily used for entering and leaving Wenzhou City.
This suggests that these two routes play a very important
role in connecting the inside and outside of the city and
need to be broadened when necessary. We also found that
the intersection of Airport Avenue and Jinxiu Road belongs
to both Region Topic 1 and Region Topic 2, which suggests
that this intersection must be paid much attention during
traffic control because it connects two different functional
regions. Additionally, we concluded that the number of
vehicles passing from east to west is roughly the same as that
from west to east, but more vehicles are passing from north
to south than south to north between 8:00 am and 9:00 am.
This shows that the direction from north to south is themain
traffic flow at this time slot, and supports the decision of

designing reversible lanes in somemain roads that run in the
north and south direction.

Comparison with Other Approaches
The TLDA model brings a novel perspective to exploring
traffic data. Previous exploration methods are more about
clustering and statistics, while some are texture based.
Compared with these methods, TLDA has two major
differences. (1) It not only clusters trajectories using a fuzzy
assignment based on probabilities, but also produces the
meaningful region topics by incorporating multi-features,
such as vehicle speed and direction. These region topics
reveal complex inherent traffic flow behaviors, which may
be difficult to define for detection and extraction without
prior knowledge. (2) It is much easier to combine the features
of traffic flow since it treats every trajectory as a bag of
feature values. Moreover, these features could be totally
heterogeneous from very different fields, which enables users
to explore the data in a more flexible way.

In clustering, traditional clustering algorithms such as
k-Meansmust determine many influence factors, such as the
differences of passing-vehicle numbers and road distances, in
advance for the calculation of distances between surveillance
devices. In fact, the final results depend heavily on these
influence factors. Unfortunately, analysts generally have
difficulty in choosing and determining themost suitable ones
if they do not have strong domain knowledge.

To show the advantages of our approach over traditional
clustering algorithms, we compared the visual results of our
approachwith those of heatmap, which visualizes the clusters
of traffic regions based on the traffic volumes passing by
surveillance devices and the distances between surveillance
devices. Figure 13 shows two diagrams that are based on
the same trajectory data between 8:00 am and 9:00 am
on June 5, 2014 in Wenzhou City. Clearly, our approach
presents not only the frequently passed-by surveillance
devices approximately along the south border ofRegion Topic
2 and the north border of Region Topic 3, indicated by
large pink and orange circles, respectively, but also some
infrequently passed-by surveillance devices between Region
Topic 2 and Region Topic 3, indicated by small circles. In
other words, the reason for generating two different regions
(Region Topic 2 and Region Topic 3) in our approach is
because only a small number of vehiclesmove between them.
However, heatmap fails to differentiate between Region Topic
2 and Region Topic 3. Thus, our approach can discover the
relationship among different surveillance devices and the
traffic volume of vehicles passing by the same surveillance
devices, which heatmap fails to do.

It is worth mentioning that our approach allows one
item (surveillance device) to belong to more than one cluster
(region topic or traffic region), whereas some traditional
clustering approaches allow one item to belong to only one
cluster. For example, the surveillance devicemarked by ‘‘c’’ in
Fig. 13(a) is located in both Region Topic 1 and Region Topic
4, meaning that its location connects two different regions,
which is consistent with the real situation.
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(a)

(b)

Figure 13. Comparing our approach with heatmap in visualizing traffic
regions based on traffic data between 8:00 am and 9:00 am on June 5,
2014 inWenzhou City: (a) TLDA-based traffic regions; (b) heatmap-based
traffic regions.

Finally, although some research works focus on the
study of clustering of trajectories, determining how to
cluster long trajectories still remains a difficult task. Some
split long trajectories before clustering,15 whereas others
employ DBSCAN based on the density in the space.16
Unfortunately, these approaches neither consider the whole
complete trajectory nor employ the relationship among the
trajectories. In addition, they usually have a higher compu-
tational complexity. By contrast, our approach transforms
the trajectories into plain text and considers each complete
trajectory and its relationship. Thus, it is able to obtain the
traffic regions with a reduced computational complexity.

RELATEDWORK
Exploring the traffic stream helps in acquiring knowledge of
the traffic conditions. Currently, many related works exist, in
both academia and industry. In this section, we briefly review
current advances discussed in the literature regarding traffic
data visualization, topic modeling and LDA, and the design
of visualization.

Traffic Visualization
Due to the growing rate at which traffic data are being
collected, traffic visualization analysis is becoming a very
active research field, combining techniques and expertise
from many other fields, including GIS, computational
movement analysis, computational geometry, databases
and data mining.17 Three major types of traffic data
are origin–destination (OD) data, GPS data and sparse
traffic trajectory data. OD data are collected by public
transportation systems such as subway and bus systems,
bicycle systems, etc., whereas GPS data are primarily used for
traffic monitoring concerning specific vehicles. In addition,
sparse traffic trajectory data are usually reconstructed from
images or videos by surveillance devices.

For OD data, Zeng et al. visualize and explore passenger
mobility in a public transportation system with a family
of analytical tasks based on inputs from transportation
researchers.18 Furthermore, Beecham et al. use visual
analytics techniques to identify, describe and explain cycling
behavior within a large and attribute-rich transactional
dataset.19 By applying visual analytics techniques to vehicle
traffic data, Andrienko et al. find a way to visualize and study
the relationships between traffic intensity and movement
speed on links of a spatially abstracted transportation
network.20

In previous studies, GPS data are frequently used.
Ferreira et al. study taxi GPS data to understand trends
in movement patterns on k-means.21 Wang et al. present a
data-driven solution by leveraging a visual analysis system to
evaluate the real traffic situation based on taxi GPS data.22

In our article, we focus on sparse traffic trajectory data,
which record the movement of vehicles at fixed locations.
These trajectory data combine both location-based and
movement-based data. To the best of our knowledge, only
Wang et al. have studied this type of data in the visualization
community.4 They present a visual analysis system to allow
users to check how traffic congestion at one site is correlated
with traffic flows on neighboring links, and with route
selection in its neighborhood.

Topic Model and LDA Analysis
The topic model is widely used in text analysis. In 1998,
Landauer et al. first proposed the concept of Latent Semantic
Analysis,23 which has been a frequently used topic model
since then. Latent Semantic Analysis adds a latent semantic
layer between documents and words. The extracted latent
semantics represent the contextual-usage meaning of words
by statistical computations applied to a large corpus of text.
With pLSI/pLSA,24,25 the statistical analysis and generative
model based on LSA is introduced. pLSA solves the problem
of synonyms and polysemy, but it suffers from overfitting.
Blei et al. propose the concept of the topic model and the
related LDA model.6 LDA is a multi-layer Bayesian model,
including the layers of words, topics and documents. In LDA,
every topic is a mixture of words, while every document is a
mixture of topics. By introducing the Dirichlet distribution,
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the LDA model can avoid overfitting, from which pLSA
suffers.

In text analysis, many visualization approaches are
proposed for the results derived by the LDA model. Choo
et al. propose UTOPIAN to represent the keywords about
topics, using the sizes of circles to indicate the probabilities.
They use distinct colors to distinguish different topics.26 To
visualize the evolution of topics over time,Wei et al. proposed
a visual exploratory text analytic system (TIARA), which
encodes the hotness of topics using the width of rivers in
ThemeRiver.27 In addition to applications in the text analysis
field, the LDA model has also been adopted in areas such
as classification,28 pattern recognition29 and segmentation.30
Hong et al. support the exploration of unsteady flow fields
with their proposed LDA-basedmethod.7 For traffic streams,
Chu et al. use the LDA model to discover hidden themes
from trajectory data,8 and Zheng et al. use mobility data as
the document, and POIs (Points of Interest) as metadata to
discover regions of different functions in a city31

In this article, we build a topic model for sparse
surveillance-device-based trajectory data to discover hidden
knowledge. To obtain more knowledge, we refer to Hong
et al.’s work but supplement various features (e.g., speed
feature, direction feature, vehicle type feature), from which
we can not only obtain the hidden region topics, but also
acquire messages of speed, direction and type of related
regions.

The Design of the Visualization
To date, many approaches have presented visual tools
for exploring geographical information.32,33 These tools
typically have map-based displays and employ information
visualization techniques to visualize the spatial attributes of
the data over temporal changes. Word clouds are often used
to highlight the important words. Treemaps are also used
to display multi-class data. For example, NewsMap uses a
treemap to display topics by changing the direction of the
rectangle and nesting rectangles to represent different levels,
and through the size of the rectangle showing the importance
of nodes.34 Alternatively,many technologies exist to visualize
time series data. For example, Saito et al. show the rate of
data with the evolution of time, and use color to enhance the
effect of the change.35 Chu et al. use a timeline to display the
evolution of topics over time.8 Wang et al. use a pixel table to
show different features’ cyclical changes.4,36

Differently from previous works, we provide a map view
for geographic information on topics, a cloud view for the
relationship of surveillance devices, a treemap view for other
detailed features, together with a matrix-table view to show
related messages with temporal evolution.

CONCLUSION AND FUTUREWORK
As numerous surveillance devices have been installed along
the roadsides in China, more and more vehicle trajectories
are captured and gathered to form the Big Traffic Dataset.
In this article, we introduce an LDA-based approach to
explore traffic regions based on massive traffic data. A real

case in Wenzhou City demonstrates the effectiveness of our
proposed approach and prototype system.

In the future, we would like to continue our work in the
following two aspects. First, the effects of different TLDA
parameters on results must be studied thoroughly to provide
explorative guidance. In addition, we will investigate how to
support the discovery of region topics about location feature
over a long period of time. If some traffic issues exist for
some period of time, the city needs to take some action to
solve the issues. It is of note that our current approach only
considers four features (location, direction, speed and vehicle
type) when applying the TLDA model. When exploring
the temporal patterns for specific region topics, we have
to use a fixed duration of time slot, such as one hour in
our case. We hope to be able to obtain clear insight into
drastic changes of traffic conditions with smaller and even
changeable durations of time slots, such as 5, 10 or 15 min,
if we incorporate the time feature when applying the TLDA
model in the future.
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