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Abstract
We present a novel methodology for accurately registering a vec-

tor road map to wide area motion imagery (WAMI) gathered from an

oblique perspective by exploiting the local motion associated with vehic-

ular movements. Specifically, we identify and compensate for global mo-

tion from frame-to-frame in the WAMI which then allows ready detection

of local motion that corresponds strongly with the locations of moving

vehicles along the roads. Minimization of the chamfer distance between

these identified locations and the network of road lines identified in the

vector road map provides an accurate alignment between the vector road

map and the WAMI image frame under consideration. The methodology

provides a significant improvement over the approximate geo-tagging

provided by on-board sensors and effectively side-steps the challenge

of matching features between the completely different data modalities

and viewpoints for the vector road map and the captured WAMI frames.

Results over a test WAMI dataset indicate the effectiveness of the pro-

posed methodology: both visual comparison and numerical metrics for

the alignment accuracy are significantly better for the proposed method

as compared with existing alternatives.

Introduction
Recent technological advances have made available number of air-

borne platforms for capturing imagery [1,2]. One of the specific areas of

emerging interest for applications is Wide Area Motion Imagery (WAMI)

where images at temporal rates of 1–2 frames per-second can be captured

for relatively large areas that span substantial parts of a city while main-

taining adequate spatial detail to resolve individual vehicles [3]. WAMI

platforms are becoming increasingly prevalent and the imagery they gen-

erate are also feeding a corresponding thrust in large scale visual data

analytics. The effectiveness of such analytics can be enhanced by com-

bining the WAMI with alternative sources of rich geo-spatial information

such as road maps. In this paper we focus on near real-time registra-

tion of vector road-map data to WAMI and propose a novel methodology

that exploits vehicular motion for accurate and computationally efficient

alignment.

Registering road map vector data with aerial imagery leads to rich

source of geo-spatial information, which can be used for many applica-

tions. One application of interest is moving vehicle detection and track-

ing in wide area motion imagery (WAMI). By registering the road net-

work to aerial imagery, we can easily filter out the false detections that

occurred off roads. Another interesting application is to detect and track

a suspicious vehicle that goes off road. These applications depend on

accurate road network alignment with the aerial imagery, which is the

focus of this paper.

In general, successive WAMI video frames are related by both

global and local motions. The global motion arises from the camera

movement due to the aerial platform movement, and it can be parame-

terized as a homography between the spatial coordinates for successive

frames under the assumption that the captured scene is planar. The local

motion arises due to the local movement of objects in the scene. Local

motion in WAMI for urban scenes is dominated by vehicle movements

on the network of roads within the captured area. We exploit these vehic-

ular movements to develop an effective registration scheme for aligning

vector road maps data with the captured WAMI frame.

(b)(a)
Figure 1: Road network alignment. (a) using only aerial frame meta-

data, (b) using our proposed algorithm.

WAMI frames are usually captured from platform equipped with

Global Positioning System (GPS) and Inertial Navigation System (INS)

which provide location and orientation information that are usually

stored with the aerial image as meta-data. This meta-data can be used

to align a road network extracted from external Geographic Information

System (GIS) source. However, as illustrated by the example in Fig.

1(a), the accuracy of the meta-data is limited and only provides an ap-

proximate alignment.

Registering an aerial image directly with a geo-referenced vector

road map is a challenging task because of the differences in the nature

of the data in the two formats: in one case the data consists of image

pixel values whereas in the other it is described as lines/curves connect-

ing a series of points. Because of the inherent differences in the data

formats, one cannot readily define low/mid-level features that are invari-

ant to the representations and can be used for registration as conventional

feature detectors, such as SIFT (Scale-Invariant Feature Transform) [4],

are used for finding corresponding points in images. For static imagery,

a lot of research has been done for aligning vector road maps to aerial

imagery, normally referred to as the process of conflating. In general,

conflation refers to a process that fuses spatial representation from mul-

tiple data sources to obtain a new superior representation. In [5–7], road

vector data are aligned with an aerial image by matching the road inter-

section points in both representations. The crucial element in these prior

works is the detection of road intersections from the aerial image. With

the availability of hyper-spectral aerial imagery, spectral properties and

contextual analysis are used in [5] to detect these road intersections in

the aerial scene. However, road segmentation is not robust for different

natural scenes specially when roads are obscured by shadows from trees

and nearby buildings. In [6], a Bayes classifier used to classify pixels as

on-road or off-road, then a localized template matching used to detect the

road intersections. However, to get a reasonable accuracy with the Bayes

classifier, a large number of manually labeled training pixels is required

for each data set. In [7], corner detection is used to detect the road inter-

sections, which is not reliable specially in high resolution aerial images,

that contain enough wide roads where the simple corner detection fails.

Work on registration of (non-static) WAMI frames to geo-
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referenced vector road maps has received comparatively less attention,

even though the capability for performing such registration in a computa-

tionally efficient manner is crucial for a number real/near real-time analy-

sis applications for WAMI, as already mentioned. Some of the prior work

on this problem overcomes the problem posed by fundamentally differ-

ent modalities of the WAMI and vector datasets by using an auxiliary

geo-referenced image that is already aligned with the vector road map.

The aerial image frames are then aligned to the auxiliary geo-referenced

image by using conventional image feature matching methods. For ex-

ample, in [8], for the purpose of vehicular tracking, the aerial frame is

geo-registered with a geo-reference image and then a GIS database is

used for road network extraction. This road network is used to regularize

the matching of the current vehicle detections to the previous existing

vehicular tracks. In an alternative approach that relies on 3D geome-

try, in [9], SIFT is used to detect correspondences between the ground

features from a small footprint aerial video frame and geo-referenced

image. This geo-registration helps to estimate the camera pose and depth

map for each frame, and this depth map is used to segment the scene into

building, foliage, and roads using a multi-cue segmentation framework.

The process is computationally intensive and the use of the auxiliary geo-

referenced image is still plagued by problems with identification of cor-

responding feature points because of the illumination changes, different

capturing times, severe view point change in aerial imagery, and occlu-

sion. State of the art feature point detectors and descriptors such as SIFT

(Scale-Invariant Feature Transform) [4], and SURF (Speeded Up Ro-

bust Features) [10], often find many spurious matches that cause robust

estimators such as RANSAC [11] to fail when estimating a homogra-

phy. Also, these methods cannot work directly if the aerial video frames

have a different modality (infra-red for example) than the geo-referenced

image. Last, but not least, a single homography represents the relation

between two images when the scene is close to planar [12]. In WAMI,

aerial video frames usually taken from oblique camera array to cover

large ground area from moderate height and the scene usually contains

non ground objects such as building, trees, and foliage. Thus the planar

assumption does not necessarily hold across the entire imagery, although

it is not unreasonable for the road network.

In this paper, we propose an algorithm that accurately aligns a vec-

tor road network to WAMI aerial video frames by detecting the loca-

tions of moving vehicles and aligning the detected vehicle locations with

the network of roads in the vector road map. The vehicle locations are

readily detected by performing frame-to-frame registration using con-

ventional image feature matching methods and computing compensated

frame differences to identify local motion that differs significantly from

the overall global motion resulting from the camera movement. Such

local motion is predominantly due to moving vehicles and the regions

where the compensated frame differences are large correspond (predom-

inantly) to vehicle locations. We align the WAMI frames to the vector

road map by estimating the projective transformation parameters that, af-

ter appropriate application of the transformation, minimize a metric de-

fined as the sum of minimum squared distances from the detected vehi-

cle locations to the corresponding nearest points on the network of roads.

This metric is the well known chamfer distance, which can be efficiently

computed via the distance transform [13]. The chamfer distance serves

as an ideal quantitative metric for the degree of misalignment because

it does not require any feature correspondences or computation of dis-

placed frame differences, both of which are inappropriate for our prob-

lem setting because of the different modalities of the data. By exploiting

vehicle detections and using the vector road network, we implicitly trans-

fer both the aerial image and the geo-referenced one to a representation

that can be easily matched. In other words, unlike traditional methods,

our algorithm does not directly estimate any feature correspondence be-

tween the WAMI image frames and the vector road maps. Instead, it

aligns two binary images representing the vehicle detections and the net-

work of road lines identified in the vector map, thereby providing a more

accurate and robust alignment. A sample result from our algorithm is

shown in Fig. 1(b), where it can be appreciated that the method provides

an accurate alignment to the road network. Our main assumption here is

that the investigated scene should contain a forked road network which is

reasonable assumption for WAMI, which covers a city scale ground area

within each frame. Our algorithm does not depend on the aerial cam-

era sensor type; for example, it can be used directly with infra-red aerial

camera.

This paper is organized as follows. The next section explains our

proposed algorithm. Results and a comparison against alternative meth-

ods are presented in the following section. The final section summarizes

concluding remarks.

Proposed algorithm for vehicle motion based
WAMI alignment

A high level overview of the proposed algorithm is shown in block-

diagram format in Fig. 2 using illustrative example images. Our algo-

rithm consists of three major parts. First, we do frame to frame registra-

tion to align temporally adjacent WAMI frame, denoted by It , and It+1,

into the common reference frame for It and compute the displaced frame-

to-frame difference [14] between them. The regions of significant mag-

nitude in these frame-to-frame differences correspond predominantly to

the locations of moving vehicles. Then we use the meta-data associated

with It along with the vector road network to generate a road network

coarsely aligned with It . Finally, we estimate the final alignment be-

tween the aligned road network and the vehicle detections by minimizing

the chamfer distance [13] between them which corresponds to minimiz-

ing the sum of the squared distances between each vehicle detection and

corresponding nearest point on the road network. The chamfer distance

measures how close the vehicle detections are to the road network and

therefore applies nicely to our problem.

registration
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Figure 2: Proposed algorithm block diagram.

We use a projective transformation [12] for our alignment, where

the 2D point p1 = (x,y) in the input image is mapped to the 2D point

p2 = (u,v) in the target image, by the transformations

u =
h1x+h2y+h3

h7x+h8y+1
, v =

h4x+h5y+h6

h7x+h8y+1
,

where the transformation is specified by the parameters β = [h1, . . . ,h8]
T

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.3.VSTIA-520

IS&T International Symposium on Electronic Imaging 2016
Video Surveillance and Transportation Imaging Applications 2016 VSTIA-520.2



and can be equivalent represented as the matrix multiplication





u

v

1



= Hβ





x

y

1



=





h1 h2 h3

h4 h5 h6

h7 h8 1









x

y

1





, (1)

where [x,y,1]T and [u,v,1]T are the homogeneous coordinate represen-

tation of p1 and p2 respectively. The projective transformation has 8

degree of freedoms and the only invariant property of this transform is

the cross ratio of any four collinear points [12].

Frame to frame alignment
Frame to frame alignment is essential step before obtaining the

moving car detections. By estimating the projective transformation that

align successive frames, It+1 and It , we can use it to compute the aligned

image Ĩt+1 which is aligned with It . Then we compute the local dif-

ferences between Ĩt+1 and It using frame difference. Specifically, we

compute the binary image

Id
t (x) =

{

1, if |It(x)− Ĩt+1(x)| ≥ τ

0, otherwise
, (2)

where τ is a suitably determined threshold that trades-off the detection

of true regions of local motion versus inevitable noise and other sources

of variations in the images. These detection points are presumed to cor-

respond to the locations of moving vehicles in our algorithm.

I

d

I

�

I

0

Figure 3: Frame difference result in a favorable two blobs for each mov-

ing vehicle due to low frame rate in WAMI.

As illustrated in Fig. 3, each moving vehicle results in two blobs in

Id
t due to the low frame rate in WAMI. One of these blobs can be elim-

inated using three frame difference [8]. However, in our case, because

the two blobs still reside on the road network, we use both to our advan-

tage. In other words, Id
t contains blobs at locations of the vehicles’ in the

current frame and in the (compensated) past frame. The total number of

such blobs approximates two times the number of vehicles in the scene

and using both locations helps improve the accuracy of the subsequent

chamfer based alignment in our algorithm.

To align a frame It+1 with the immediately temporally preceding

frame It , we use efficient alignment strategy. First, we use the enhanced

version of FAST (Features from Accelerated Segment Test) [15] algo-

rithm proposed in [16] to detect key-points in both images. The en-

hancement proposed in [16], allows FAST to have a good measure of

cornerness and overcome its limitations for multi-scale features, while

keeping its low computational complexity. Then, we extract the descrip-

tors associated with the detected key-points using FREAK (Fast Retina

Keypoint) descriptor [17]. Unlike, SIFT or SURF, FREAK yields an ef-

ficiently computed binary descriptor which can be matched with much

lower computational complexity using a simple Hamming distance mea-

sure. Finally we filter out the false matches and estimate the projective

transformation that align the two frames using RANSAC.

Road network extraction
The vector map provides the locations of the road segments in geo-

referenced coordinates and, for use in our registration process, we are

interested in extracting the approximate segments of the road network

that lie within the field of view for our WAMI frame.

Since we already have the approximate geographic positions of the

four corners of It from meta-data, we can compute the projective trans-

formation matrix Hg that transforms It from its coordinate system to the

p
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Figure 4: Mapping It to a geo-referenced coordinate system.

geo-referenced image’s system as shown in Fig. 4. We estimate the pa-

rameters of Hg by solving the system of linear equations

P̃i = s(Pi −P0) = Hgpi, (3)

where i ∈ {1, . . . ,4}, pi are the coordinates of the ith corner point in It
coordinate system, Pi are the coordinates of the ith corner point in geo-

referenced coordinate system, P0 is a common reference point, s is a

reasonable scaling factor to relate the resolutions of the two coordinate

systems. Both pi and Pi are represented in homogeneous coordinate sys-

tem, and we use the direct linear transformation algorithm (DLT) [12] to

compute Hg.

Using the computed Hg from (3), we project the vector road net-

work into the coordinate system of It . Consider the jth road segment

characterized by the geographical coordinates of both start and end

points. Then, we compute the corresponding pixel locations by the rela-

tion

p j = sH−1
g (P j −P0), (4)

for the start and end points of the jth road segment in the WAMI image.

In other words, we map the geographical coordinate of the start and end

points for each road segment into the corresponding pixel locations and

then draw a single pixel width line between these points. We use the

standard line clipping algorithm [18] to clip the line outside the image

region. Thus we obtain a binary image Ir
t which contain the road network

represented as series of line segments that are coarsely aligned with It
using the WAMI meta-data.

Aligning vehicle detections to the road network
To align the binary images Id

t and Ir
t (obtained as described in the

previous sections), we define a distance f (β ) between them for the align-

ment specified by the projective transformation with parameters β . We

motivate and develop this distance next, where we drop the subscript t

to simplify notation. Specifically, let pd
i denote the coordinates of the

non-zero pixels in Id , i.e. pd
i = {x : Id(x) 6= 0}, where i ∈ {1, . . . ,Nd},

and Nd is the total number of non-zero pixels in Id and, similarly, let

pr
k = {x : Ir(x) 6= 0} be the set of Nr coordinates for which Ir is nonzero,

where both pd
i and pr

k are represented in homogeneous coordinates. We

then define the distance f (β ) as

f (β ) =
1

Nd

Nd

∑
i=1

min
k

d(pr
k,Hβ pd

i ), (5)

where the transformation Hβ is as defined in (1) and d(a,b)≡ ‖a−b‖2
2.

The nonzero locations in Ir correspond to positions located on the road.

Under the (reasonable) assumption that most of the nonzero locations in

Id correspond to vehicle detection locations, this metric can be clearly

seen to be intuitively meaningful as the sum of the minimum squared-

distances between the vehicle detection locations and the corresponding
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nearest points in the road network. Computationally, f (β ) represents

the chamfer distance between Id and Ir under the projective alignment

specified by the parameters β , which can be computed efficiently using

distance transform [19]. To align the vehicle detection locations Id with

the road network Ir
t , we therefore seek the optimal projective transforma-

tion parameters β ∗
that minimize the chamfer distance f (β ).

To compute the optimal parameters, we adopt the Levenberg-

Marquardt (LM) [20] non-linear least squares optimization algorithm

which minimizes (5) in iterative fashion. In each iteration, the LM algo-

rithm estimate the parameter update vector δ ∈ R
8×1 such that the value

of the objective function is reduced when moving from β to β +δ with

the parameters converging to a minimum of the objective function with

the progression of iterations. The parameters update vector δ is obtained

by solving the following system of equations:

(A+λ I)δ =−b(β ), (6)

where b ∈ R
8×1 is the residual vector which computed as

b =
∂ f

∂β
=−

2

Nd

Nd

∑
i=1

JT
i [min

k
(pr

k −Hβ pd
i )], (7)

and Ji ∈R
2×8 is the Jacobian matrix computed at each transformed point

Hβ pd
i , which computed as

Ji =
∂Hβ pd

i

∂β
=

[

∂Hβ pd
i

∂h1
, . . . ,

∂Hβ pd
i

∂h8

]

, (8)

and A ∈ R
8×8 is the approximation to the Hessian matrix, obtained as

A =
Nd

∑
i=1

JT
i Ji, (9)

where

∂Hβ pd
i

∂h1
=

[

xd
i

w
,0

]T

,

∂Hβ pd
i

∂h2
=

[

yd
i

w
,0

]T

,

∂Hβ pd
i

∂h3
=

[

1

w
,0

]T

,

∂Hβ pd
i

∂h4
=

[

0,
xd

i

w

]T

,

∂Hβ pd
i

∂h5
=

[

0,
yd

i

w

]T

,

∂Hβ pd
i

∂h6
=

[

0,
1

w

]T

,

∂Hβ pd
i

∂h7
=

[

−
xd

i z

w2
,−

xd
i z

w2

]T

,

∂Hβ pd
i

∂h8
=

[

−
yd

i z

w2
,−

yd
i z

w2

]T

,

w = xd
i h7 +yd

i h8 +1, z = xd
i h1 +yd

i h2 +h3. (10)

At each iteration, the parameters β is updated to the value β +δ , and the

process is continued until convergence.

Results
We evaluated our algorithm on a WAMI data set recorded using

CorvusEye 1500 Wide-Area Airborne System [3] for the Rochester, NY

region. For the vector road map, we use OpenStreetMap (OSM) [21].

OpenStreetMap, is a collaborative project, which uses free data sources

such as Volunteered Geographic Information (VGI) [22] to create a free

editable map of the world. The map data from OSM is available in a

vector format. For example, each road in a road network for a given area

is represented by multiple road segments connecting start and end points

specified in the map data by their latitude and longitude coordinates. Ad-

ditionally, many other properties of each road such as its type (highway,

residential, etc) and its number of lanes, etc are included in the data.

Our WAMI frames are each 4400 × 6600 pixels, and stored using

NITF 2.1 format [23], which stores a JPEG 2000 encoded image and

meta-data within a single file. We parse these files to extract the four ap-

proximate geographical coordinates for the corners associated with each

aerial frame.

We compare our proposed method with two alternative methods

which we will refer to as “Meta-data Based Alignment (MBA)” and

“SIFT matching with auxiliary geo-referenced image (SBA)”. The MBA

method simply uses the aerial frame meta-data to get the aligned road

network. The SBA method tries to match SIFT features between the

aerial image and an auxiliary geo-referenced image taken from Google

Maps, where aerial image meta-data is used to first orhto-rectify the

aerial image, and correspondences between this ortho-rectified image

and the geo-referenced image are obtained by SIFT feature matching.

Specifically, we extract SIFT features from the ortho-rectified aerial im-

age and the geo-referenced image, then for each feature point in one

image, we search for the corresponding point in the other image within

a circle with radius r, where center of the circle is determined by the ap-

proximate alignment parameters from the metadata and the radius of the

search is set by determining the maximum spatial error for the approx-

imate alignment provided by the meta-data. After obtaining these puta-

tive correspondences, we use RANSAC to filter out the incorrect matches

and to estimate the final transformation between the geo-referenced im-

age and the aerial image. We apply this transformation to the vector

road network, then undo the ortho-rectification to get the final result. Vi-

sual comparison for the road network in some frames aligned with pro-

posed method, and both the SBA method1, and the meta-data method,

are shown in Fig. 8 and Fig. 9. From these images, we can see that

the proposed method offers a significant enhancement over MBA which

depends only on the meta-data to get an aligned road network and over

SBA which uses SIFT and auxiliary geo-referenced Google map image.

The MBA method has significant errors because of the inaccuracy of the

meta-data parameters due to the limited accuracy of on-board naviga-

tion devices. The SBA method does not improve significantly because of

spurious correspondences found by the SIFT matching between the aerial

image and the Google map image which have significant differences due

to severe view point change, different illumination, and different captur-

ing times. Our proposed method does not face the challenges associated

with aligning images captured under these different conditions because it

aligns vehicle detections to the road network by transforming both into a

binary representation that then allows efficient computation of the cham-

fer distance as a meaningful metric.

To provide quantitative comparison between the methods, we man-

ually generate ground truth road network for few frames2 and calculate

three measures to quantify the accuracy of alignment. First, the chamfer

distance between the ground truth road network and the road network

generated from our method, the SBA method, and the MBA method are

shown in Table 1. The results in the table reinforce the conclusions seen

from the visual images. The proposed method has a much lower value

for the chamfer distance highlighting the fact that the proposed method

offers a significant improvement over both the MBA and SBA methods.

The second quantitative measure that we use is the precision-recall

performance. Because the lines in our road network have single pixel

width, to obtain a more meaningful metric, we dilate the roads in the

road network image by progressively increasing amounts and compute

the precision and recall for each dilation amount. For each dilation width,

we estimate the true positives (T P), the false positives (FP), and the false

negatives (FN), which are shown in Fig. 5 as a function of the dilation

width. After specifying T P,FP, and FN, calculating precision and recall

is straightforward. Precision-recall plot for frame no. 820 is shown in

Fig. 6. Once again, the significant improvement offered by the proposed

method over both the MBA and SBA methods is apparent from the plots.

1All results of SBA method, are reported using the radius r that gives the best
result.

2We generate the ground truth for only 4 frames because it is very tedious to
manually draw roads in WAMI image.
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Figure 5: Calculating T P,FP, and FN.

Finally, Fig. 7 shows the precision plot that shows the percentage

of accurately estimated road pixels for which the estimated road pixel

location is within some threshold distance of the ground truth. These

percentages are averaged over the same frames used to report the result

in this paper.

Frame no. MBA SBA Proposed method

1 28.22 17.1 6.36

300 122.28 83.09 9.30

416 36.95 26.49 8.69

820 87.35 87.29 6.68

Table 1: Chamfer distance between the ground truth road network and

the road network generated using the MBA method, the SBA method,

and our proposed method.
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Figure 6: Precision-recall plot that compare the performance of our pro-

posed method with other methods for frame no. 820.
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Figure 7: Precision plot that compare the performance of our proposed

method with the SBA method and the MBA method.

Our method, implemented in C++ using OpenCV [24], takes (5 ∼
10) seconds to align the vector road network with a WAMI frame. The

expensive part in our current implementation is the LM minimization,

which can be further speeded-up with the support of GPU processing,

particularly by parallelizing the Jacobian calculations as these are com-

puted independently for each pixel. Such parallelization, while beyond

the scope of the present work, has the potential for making the process

real-time allowing deployment of the method on airborne WAMI plat-

forms for real-time applications.

Conclusion
The framework proposed in this paper offers a methodology for

accurately registering vector road maps to wide area motion imagery

(WAMI) by exploiting vehicular motion. Specifically, local motion ob-

served in the WAMI image frames, after compensation of global mo-

tion via standard techniques, corresponds strongly with moving vehicles

and by minimizing the chamfer distance between the vehicle locations

identified from the local motion and the lines corresponding to the net-

work of roads in the vector map data, we provide an effective method

for aligning the two that does not require direct feature matching be-

tween these very different data modalities and also eliminates the need

for a geo-referenced image as an intermediary. Results obtained for our

test datasets show the effectiveness of the proposed methodology. Both

visually and in terms of numerical metrics for alignment accuracy, the

proposed method offers a very significant improvement over available

alternatives. Our future work focuses on exploiting the registered vector

road network for vehicle tracking in WAMI, and enhancing both the vec-

tor road network registration and vehicle tracking in a joint framework.

By leverage locations and directions of trajectories formed by vehicle

tracking in road network registration, and by exploiting vector road net-

work in vehicle tracking, both problems can benefit from each other, and

result in more accurate and robust solution, an approach that we are pur-

suing in ongoing work [25].
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(a)

(b)

(
)

(d)

Figure 8: Road network alignment results for frame no. 1 using different methods: (a) MBA, (b) SBA, (c) proposed alignment algorithm, (d) ground

truth. Left column is the full frame, while right one shows a smaller cropped region.
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(
)

(d)

Figure 9: Road network alignment results for frame no. 820 using different methods: (a) MBA, (b) SBA, (c) proposed alignment algorithm, (d) ground

truth. Left column is the full frame, while right one shows a smaller cropped region.
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