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Abstract
Several methods for 3D tracking use previous knowledge of

scenario, which include workspace geometry, or active markers,
that make feasible the tridimensional tracking of objects. How-
ever, in non-controllable scenarios there is a great challenge to
guarantee a reliable and robust method. Parallel tracking method
using PT-cameras are complicated because there are several con-
ditions that affect motion detection (light, object displacement,
PT-camera velocity, to mention a few). This work proposes a
strategy for object tracking and estimating tridimensional posi-
tion through camera-PT array. The camera array is used as a re-
dundant way of focusing on reducing the error calculation. This
method consists in simultaneously tracking the target object in all
different cameras. Pan & Tilt are used as parameters of vectors
in spherical coordinates. The tracking process is performed via
active contours, which consists of a set of markers enclosing the
target object and considering the contour as a high-energy zone.
The tracking is then denoted as a Newton Rapson Optimization
process which solves the problem of locating the maxima energy
zone by superposing the latest reference position over the newest
position in a given pair of images. Finally, our approach is tested
in a controlled scenario. Luminance conditions are controlled
and local references are used to match the estimated position and
the real position.

Introduction
Growing cities make it difficult to monitor and analyze infor-

mation for decision making. In order to deal with this situation,
technology takes an important role as a tool to establish strate-
gies for identifying and handling circumstances represent rele-
vant information. Smart sensors are becoming more reliable and
economical, which makes it feasible to implement solutions in
crowded cities.
While the technology becomes more affordable, developing
the complementary infrastructure required to analyze the large
amounts of data in a short period becomes challenging. A typ-
ical task in automatic surveillance and monitoring is tracking ob-
jects. Nevertheless, this task is affected by several aspects such
as camera perspective, color affectations and synchrony absence
transmission which make it infeasible to track objects in outdoor
scenarios.
Some works, such as [1, 2, 3], proposed strategies for reliable
tracking in outdoor scenarios, although, as it can be appreciated
the repeatability and accuracy of these methods is compromised

in inverse factor. This work proposes a strategy for object tracking
and estimating tridimensional position through camera-PT array,
the basis of this approach is to dynamically track the target object
in all different cameras.
Pan & Tilt parameters of each camera are used as parameters of
vectors in spherical coordinates. The radius represents the dis-
tance between a specific camera and the target object. Using the
same parameters from each camera, a linear system is generated,
where the unknown values represent each camera’s radius. Be-
yond this point, the process is considered as an optimization task,
the objective of which is reducing the error estimation of the dis-
tance from the camera-PT array to the target object.
It is considered that the distance between real and estimated cen-
ters of the image is so small that it can be ignored when estimating
the tridimensional position. Then, each camera is represented by
a two-dimensional plane using local coordinates. For validation
purposes, an experimental analysis is done. This analysis consists
in validating artificial trajectories in closed scenarios, matching
the real and estimated trajectories.

Active Contours
By selecting energy terms that are appropriate for minimiza-

tion, the model can be forced to the desired solution enduring
local minimums. The obtained active model approaches the de-
sired solution when located near it. Models that minimize en-
ergy have been widely used in vision, perhaps being Sperling’s
stereo model [6] one of the earliest works. The problem that ac-
tive contours attempts to solve is locating salient image features
(i.e. edges, lines, and subjective contours) and tracking these fea-
tures. Active contours differs from other techniques for finding
salient contours since it uses an active model. Thus, it minimizes
its energy functional and presents dynamic behavior. Considering
that the contours appear to slither as their energy is minimized,
they are known as snakes (see Figure 1)[14]. The robustness of
active contours is dependable on what features are used as refer-
ences to perform the minimization step, in particular the approach
presented in this work employs the first derivative.
The snake approach does not attempt to solve the whole salient
image contours problem, it requires other techniques to approxi-
mate the desire contour before beginning. Although, even when
these techniques are not suitable, semiautomatic interpretation of
the image might still be achieved by the snake approach by using
an expert user to place the snake near the intended contour. The
basic snake model consists of a controlled continuity [7] spline
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Figure 1. Active contour.

under the influence of image and external constraints energy.
The internal spline energy imposes a piecewise smoothness con-
straint. The image energy approaches the snake to salient image
features such as lines, edges and subjective contours. The exter-
nal constraints locate the snake near the desired local minimum.
The position of the snake can be parametrically represented by
v(s) = (x(s),y(s)), thus, the energy functional is given by

E∗snake =
∫ 1

0
Esnake(v(s))ds (1)

=
∫ 1

0
Eint(v(s))+Eimage(v(s))+Econ(v(s))ds,

where Eint is the internal energy of the spline that arises from
bending, Eimage represents the image energy, and Econ refers to
the external constraint energy [5]. Eint and Eimage are defined in
the next subsection.

Internal Energy
Internal energy spline can be expressed as

Eint =
(α(s) |Vs(s)|2 +β (s) |Vss(s)|2)

2
. (2)

The spline energy comprises a first-order term adjusted by select-
ing α(s) and a second-order term tuned by choosing β (s); α(s)
provokes the snake to behave as a membrane and β (s) induces
it to act as a thin plate. When β (s) = 0 is selected, the snake
becomes a second-order discontinuity and develops a corner [5].

Image Energy
To make snakes useful for early vision, energy functionals

are required to approach them to the most salient features of the
image. This method considers three energy functionals which ap-
proach the snakes to lines, edges and terminations. By combining
these using weights, the total image energy can be expressed.

Eimage = wlineEline +wedgeEedge +wtermEterm. (3)

Several snake behaviors might be created depending on the se-
lected weights [5].
Eline: The most commonly used image functional is the image in-
tensity. The sign of Wline determines whether the snake will be
attracted to light or dark lines.
Eedge: It is possible to find the edges in an image by using a very

simple energy functional defined by Eedge = −|∇I(x,y)|2, then
the snake will be attracted to contours with large image gradients.
Eterm: The termination of line segments and corners can be found
by slightly smoothing the image and using the curvature of level
lines. Being C(x,y) = Gσ (x,y)⊗ I(x,y) the smoothed image,
θ = tan−Cy/Cx the gradient angle, and n = (cosθ ,sinθ) and
n⊥ = (−sinθ ,cosθ) the unit vectors along and perpendicular to
the gradient direction; the curvature of the level contours is given
by

Eterm =
δθ

δn⊥

=
δ 2C/δ 2n⊥

δC/δn
(4)

=
CyyC2

x −2CxyCxCy +CxxC2
y

(C2
xC2

y )
3/2

.

Snakes can be attracted to edges or terminations depending on
Eterm and Eedge.
An unusual characteristic of the snake model is that it may
present hysteresis when there is a moving stimuli, as the snake is
constantly trying to minimize their energy [5].

Distance function
Defining A as the set of all pairs of integers (i, j), the function

f from A×A into the nonnegative integers is called a distance
function (see Figure 2) if it satisfies:

a) Positive definite, f (x,y) = 0 if and only if x = y.

b) Symmetric, f (x,y) = f (y,x) for all x,y in A.

c) Triangular, f (x,z)≤ f (x,y)+ f (y,z) for all x,y,z in A.

Figure 2. Distance function of a circle.

Estimating Object Position
Our proposal is based on redundant references given by a set

of PT cameras. All cameras are synchronized, tracking and cen-
tering in its local projection the object of interest. For each time
stamp, PT parameters as well as PT Camera position are referred
in a global coordinates reference. Thus, with this information a
linear system is built and local position is computed.

Pseudoinverse of Matrices
The inverse matrix concept can be extended for rectangular

matrices, resulting in the pseudoinverse. This matrix is a partic-
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ular case of the generalized inverse matrix, which is described
below.

As matter of fact, matrix multiplication is not commuta-
tive; thus, for any matrix A ∈ Rm×n, there are almost two ma-
trices A−1− and A−1+ such that left-multiplication or right-
multiplication with A give us the identity matrix I. Whenever
A−1− becomes the same that A−1+ we say that it is a true inverse
matrix.

This situation become feasible when A is is squared and null
space is zero. Otherwise, A−1− and A−1+ are different matrices.
Both matrices are useful to give an approximation to linear system
expressed in A. This is, for a given system A× x = B for non-
squared matrix A, a possible solution becomes those matrix, such
that be the left-inverse of this system; i.e A−1−A×x = A−1−B. In
general terms, is the linear solution of rank projection of A matrix.
The pseudoinverse of A as a function of the orthogonal projections
associated with the subsets R(A) and N(A) is defined as follows:
Let A ∈ Rmxn, the pseudoinverse matrix of A or Moore-Penrose
matrix A† ∈ Rmxn is a matrix which satisfies [11]

1.− P≡ A†A is the orthogonal projection on N(A)⊥.

2.− P≡ AA† is the orthogonal projection on R(A)⊥.

Singular value decomposition
The singular value decomposition (SVD) of a matrix A ∈

Rmxn provides an extension of the concept of square matrix diag-
onalization, i.e., an orthogonal transformation of A into a diagonal
matrix of n×n that retains the norm ‖‖2. The following theorem
establishes the existence of the SVD for any rectangular matrix.
Let A ∈ Rmxn with rank(A) = r ≤ n then there are unit matrices
U ∈ Rmxm and V ∈ Rnxn and a matrix Σ ∈ Rmxn such that:

A = UΣV H (5)

Σ =

(
Σ1 0
0 0

)

Σ1 =


σ1 0 . . . 0
0 σ2 . . . 0

. . .
0 0 . . . σr

 ∈ Rrxr.

The non-null elements of the main diagonal of the Σ1 block satisfy
σ1 ≥ σ2 ≥ . . .≥ σn ≥ 0 and are called singular values of A [13].
Note that if U = (u1...ur) and V = (v1...vr) where ui and vi are
the columns of U and V respectively, then the SVD of A can be
written as

A =UΣH =
r

∑
i=1

σiuivH
i . (6)

Hence, the SVD of A can be interpreted as the sum of r = rank(A)
matrices of rank 1 (that is the matrices σiuivi).
The SVD of A is relevant since it allow to define the solution to the
linear least square problem as a function of the matrices U V yΣ

mentioned previously [9].

Estimating Object’s Position
Under the assumption that PT camera might align an object

of interest with its optical axis; the PT camera parameters repre-
sent a vector in direction of it. Similarly with all others cameras.
Thus, in a particular time stamp, with camera position in a global
reference, and its direction vector to the object, a linear system is
built where intersection represents local coordinates where object
is located.

This system become feasible whenever equation system be
free of any error source. But some approximation can be reach
under follow assumptions

• Center of image is the same than the optical axis.
• The relation Camera Resolution and step PT parameters are

consistent.
• Distance between camera and object are far enough that ob-

ject volume is dismiss.
• Error object location is assumed as Gaussian.

Then, a linear system might be solved via pseudoinverse,
which give an approach to the linearization of this system. For
further works, each one of last described situations should be im-
proved.

The difference between two images is used for detecting ob-
jects, as shown in Figure 3. Then, the active contours algorithm
proposed by M. Kass et al. [5] is employed to locate the con-
tour near the target object contour. This active contour model is
defined by an energy functional and it finds a solution using tech-
niques of variational calculus. In the work of Kass et al. they
represent the contour with a vector, v(s) = (x(s),y(s)), which has
the arc length, s, as a parameter. Also, they define the energy
functional of the contour and describe a method for finding the
contours associated with the local minimum of the functional.
The difference between two images enables obtaining the move-
ment in the scene (the object being moved through the workspace
in a controlled environment). After detecting the object by us-
ing the difference between two images, the centroid is obtained
through the distance function algorithm (Figure 3) proposed by
Rosenfeld & Pfaltz [8]. The distance function, also known as dis-
tance transform, of a binary image X relates each pixel with the
shortest path length (straight line) to the complement of the binary
image X . The algorithm is described by the following steps [15]:

1. Forward scan of all pixels p ∈ DX
if X(p) = 1
X(p) = 1+Min

{
X(q) : q ∈ N−G (p)

}
.

2. Backward scan of all pixels p ∈ DX
if X(p) 6= 0
X(p) = Min

{
X(p),1+Min

{
X(q) : q ∈ N+

G (p)
}}

.

The centroid of the object is calculated to locate the active contour
on its x,y coordinates.

The starting radius from the markers of the active con-
tour to the centroid is obtained by using a factor of 1.5 ∗
max(distance f unction), assuring that the active contour will be
located near the target contour (Figure 4), enabling the method of
M. Kass et al [5] to converge in each iteration of the algorithm
proposed herein.
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Figure 3. a) Object detection using frame difference. b) Centroid of the

target object.

Figure 4. Active contour located near the target object.

When the active contour converges to the desired contour (as seen
in Figure 5), the centroid is recalculated. This time, the snake
points are used to ensure it belongs to the target object and not
to some false positive result of the movement detection. Hence,
tracking and estimating the position of undesired objects is dis-
carded. The metric space generated by the active contour (using
the first derivative) for the test object is presented in Figure 6.

Figure 5. Active contour using 20 points.

Once the x,y coordinates of the active contour matching the target
object are obtained, the x and y axis distance from the coordinates
of the centroid to the center of the image are calculated. These
distances are then employed to center the objects and the vision
field of the camera. This is accomplished by using the Pan & Tilt
of each camera, which will be referred in the rest of this paper as
θ and φ .
Therefore, to obtain the tridimensional position of the object, a
system of equations is created starting from the following assump-
tions:

1.− The distance between real and estimated center of the
image is so small that it can be ignored when estimating the

Figure 6. Metric space employed in active contours.

tridimensional position.

2.− The position of the cameras in the workspace is known, as
required by the geometric approach used.

3.− Each camera has a global reference from which every tra-
jectory begins.

As each camera centers the target object in its vision field, it gives
the (x,y) coordinates of the object within the image and the angles
θ and φ (see Figure 7).

Figure 7. Target object centered by the cameras.

In order to develop the mathematical model that obtains the po-
sition of the object, we define the tridimensional position of the
object as the coordinates (Xr,Yr,Zr) and the two-dimensional co-
ordinates of the cameras as (x1,y1;x2,y2 . . .xn,yn) which can also
be expressed as pi = (xi,yi), also the PT-cameras parameters are
known and given by (θ1,φ1,θ2,φ2 . . .θn,φn), finally using spher-
ical coordinates the calculated distances from the object to each
camera are denoted as ri.
Using local coordinates, for each camera the object is located in

Ri = pi
camera position

+ (ri sinφ cosθ ,ri sinφ sinθ)
Ob ject distance to the camera

. (7)

Then for the whole camera-PT array, a linear system of equations
is built as follows:

R1
R2
R3
...

Rn

=


p1x + p1y P1x P1y
p2x + p2y P2x P2y
p3x + p3y P3x P3y
... +

...
...

...
pnx + pny Pnx Pny

 , (8)

where P = (ri sinφ cosθ ,ri sinφ sinθ).

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.3.VSTIA-513

IS&T International Symposium on Electronic Imaging 2016
Video Surveillance and Transportation Imaging Applications 2016 VSTIA-513.4



As observed in the last equation, it is assumed that all components
are linearly related. In real scenarios this might not hold and the
linear relation needs to be approximated.
Assuming that noise in physical variables is normal, pseudoin-
verse is employed. R1 . . .Rn values represent the system solution
and the target object position can be estimated using any Ri value
and substituting in any reference solution.
Finally, our approach is tested in a controlled scenario. Lumi-
nance conditions are controlled and local references are used
to compare the real and the estimated position, figures 8 and 9
present illustrations of the testing scenario.

In this scenario, there are artificial objects that are displaced.

Figure 8. Testing scenario.

Figure 9. Testing environment.

For each displacement, every camera centers the object and their
parameters θ and φ are obtained. In this paper, only xy plane dis-
placements are being considered (Figure 10).

Figure 10. Virtual workspace, where each red circle represents a camera

and the black dotted line is the trajectory of the object.

Table 1 presents the average iterations for each camera in the
array, that is the average number of iterations that each camera
needed to center the object during each tested trajectory. This
data is also presented as graphs in figures 11 and 12. Although,

the most important contribution of this work is proving that ob-
ject tracking and estimating tridimensional position is possible by
using a camera-PT array, the information regarding iterations will
be useful for future work.

Camera array average iterations during each tested trajectory.

Trajectory Iterations by camera
1.- Set square 2
2.- Wave Square 3
3.- Saw tooth 3
4.- Rectangle 3
5.- Triangle 2
6.- Circle 2
7.- Square 2
8.- Straight vertical 3
9.- Straight horizontal 2
10.- Diagonal 3

Behavior of camera one and two respect to iteration paths

Figure 11. Camera 1 & 2 iterations in experimentation.

Behavior of camera three and four respect to iteration paths

Figure 12. Camera 3 & 4 iterations in experimentation.

Paths used in experimentation. Figures 13 and 14 show some
of the trajectories that were used during experimentation to com-
pare them with the position estimated by the algorithm proposed
herein. Each trajectory was designed to test the effectiveness of
our algorithm, in terms of its ability to detect whether the final
position is different from the initial one.

Figure 13. Square & Saw tooth.
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Figure 14. Rectangle & Square wave.

Figure 15 presents information obtained from one of the cameras,
that is necessary for calculating the tridimensional position of the
object. Each camera in the array provides the same parameters for
each trayectory employed in object tracking.

Figure 15. Information table to obtain tridimensional position of the object.

Using the proposed approach, the estimated positions for different
trajectories are presented in figures 16, 17 and 18.

Figure 16. Real vs estimated L trajectory.

Figure 17. Real vs estimated diagonal trajectory.

A comparison of the real and estimated coordinates for the trajec-
tories is shown in figures 19, 20 and 21.

Conclusion
This work presented a unified approach for object tracking

and estimating tridimensional position based on active contours.

Figure 18. Real vs estimated horizontal trajectory.

Figure 19. Comparison of real and estimated coordinates for L trajectory.

Figure 20. Comparison of real and estimated coordinates for diagonal

trajectory.

Figure 21. Comparison of real and estimated coordinates for horizontal

trajectory.

Distance function is employed to determine the centroid of the ob-
ject and the tracking is achieved by comparing it to the center of
the image. Hence, the parameters of the camera-PT array are used
to center the object and the vision field of each camera. Finally,
the pseudoinverse is implemented to solve the equation system
generated by using these parameters. Experimental data supports
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our initial assertion that once the object is detected and focused
by the camera array, it is possible to calculate the distance from
each camera to the object which allows determining the tridimen-
sional position of the object. On the other hand, the algorithm
requires that the object is recognized by at least three cameras
in order to effectively estimate its location relative to the camera
array. Occlusions do not hinder the method unless the visibility
of the object is limited to less than three cameras. Furthermore,
the proposed method was successfully tested in a controlled sce-
nario. Finally, this work will provide the basis for an evolution of
the algorithm and future work focusing on moving the cameras to
spatial position and experimenting with conditions resembling a
real environment.
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